

Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample

A.S. Berahas, M. Jahani, P. Richtarik, M. Takac (2021)

MLRG Spring 2022 Betty Shea

• Don't use quasi-Newton (QN) methods in my research

• Just implementation details

Okay maybe I'll half listen

• QN methods don't work well for neural nets

• Paper tries to fix this

Why this paper? Practical aspects

• QN methods don't work well for nonconvex problems

- How bad is the QN Hessian approximation?
 - Bad enough to just toss it out?

- Don't waste information
 - Reuse historical curvature (gradient and momentum) information

- Don't waste information
 - Reuse historical curvature (gradient and momentum) information
 - It's not a waste if it's no longer good info

- Don't waste information
 - Reuse historical curvature (gradient and momentum) information
 - \circ $\;$ It's not a waste if it's no longer good info

- Wastefulness leads to slowness
 - Starting from scratch at every step really bad for first order methods

- Don't waste information
 - Reuse historical curvature (gradient and momentum) information
 - \circ $\;$ It's not a waste if it's no longer good info

- Wastefulness leads to slowness
 - Starting from scratch at every step really bad for first order methods
 - It's actually not too painful in practice with parallelization

Why this paper? Simple approach

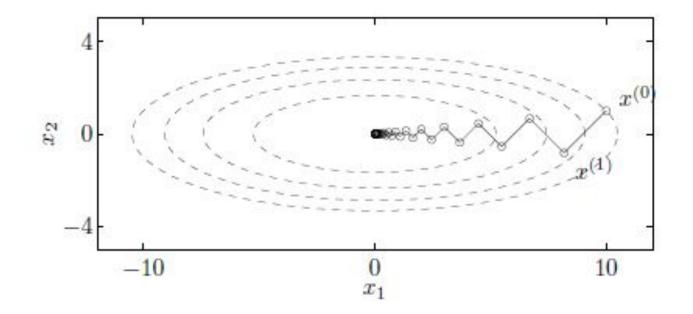
• Rooting for the not-too-clever ideas

- Random sampling is charmingly brute force
 - Replace directions taken in the past with random directions
 - Could this possibly work?

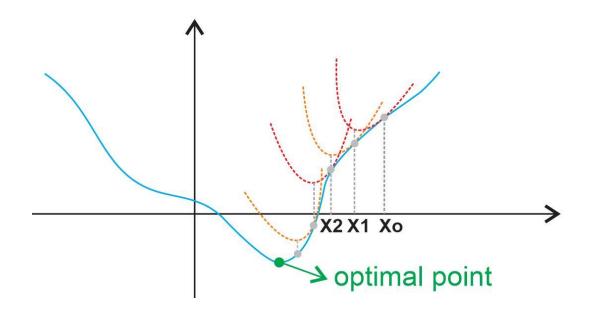
QN: high-level goal

- Quasi-Newton methods
 - "attempt to combine the speed of Newton's method and the scalability of first-order methods by incorporating curvature information in a judicious manner...."

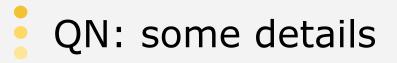
Gradient descent (GD)



Picture from Boyd and Vandenberghe, Convex Optimization, 2004.



Picture from Ardian Umam's blog post https://ardianumam.wordpress.com/



- Approximate Hessian with just first order information
- Curvature pairs (s_k, y_k)

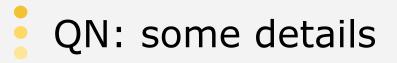
 $s_k = w_k - w_{k-1}, \quad y_k = \nabla F(w_k) - \nabla F(w_{k-1})$

- Characteristics of approximation
 - Positive definite
 - Symmetric
 - Secant equation

 $B_{k+1}s_k = y_k$

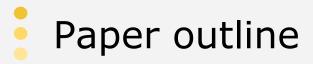
- Update at kth iteration (H_k is QN's approx of the inverse Hessian) $w_{k+1} = w_k - \alpha_k H_k \nabla F(w_k)$
- H_k lies between identity (GD) and true Hessian (Newton's)

• Low rank update of H_k to get H_{k+1}



- Many flavors
 - \circ $\,$ Paper looks at BFGS and SR1 $\,$

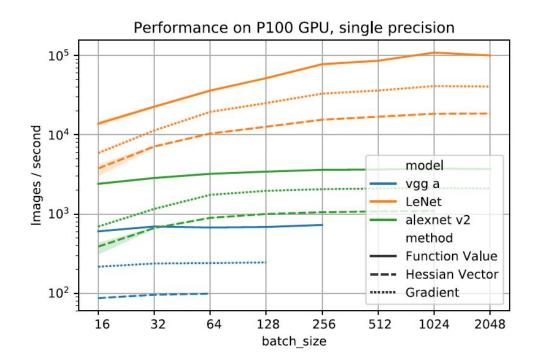
- Memory efficient versions ("limited" memory)
 - Paper looks at I-BFGS and I-SR1



- Exploratory experiments
- Algorithms
- Convergence analysis
- Main experiments

Exploratory experiments

• "the cost of computing function values, gradients and Hessian vector products appears to be comparable"



Finding new curvature pairs

Algorithm 1 Compute new (S, Y) curvature pairs

Input: w (iterate), m (memory), r (sampling radius), S = [], Y = [] (curvature pair containers).

- 1: Compute $\nabla F(w)$
- 2: for i = 1, 2, ..., m do
- 3: Sample a random direction σ_i
- 4: Construct $\bar{w} = w + r\sigma_i$
- 5: Set $s = w \bar{w}$ and
 - $y = \begin{cases} \nabla F(w) \nabla F(\bar{w}), & \text{Option I} \\ \nabla^2 F(w)s, & \text{Option II} \end{cases}$
- 6: Set $S = [S \ s]$ and $Y = [Y \ y]$
- 7: end for

Output: S,Y

Proposed algorithm for sampled IBFGS

Algorithm 2 Sampled LBFGS (S-LBFGS)

Input: w_0 (initial iterate), m (memory), r (sampling radius).

1: for
$$k = 0, 1, 2, ...$$
 do

- 2: Compute new (S_k, Y_k) pairs via Algorithm 1
- 3: Compute the search direction $p_k = -H_k \nabla F(w_k)$

4: Choose the steplength
$$\alpha_k > 0$$

5: Set
$$w_{k+1} = w_k + \alpha_k p_k$$

6: end for

- Does not start with the gradient direction
- Samples new pairs instead of updating with newest pair
- Steplength either constant or set with a line search
- Sampled version of I-SR1 with trust region

Computational cost and storage

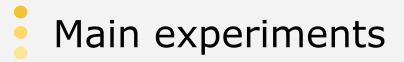
Table 2. Summary of Computational Cost and Storage (per iteration) for different Quasi-Newton methods.

method	computational cost	storage d^2	
BFGS	$nd + d^2 + \kappa_{ls}nd$		
LBFGS	$nd + 4md + \kappa_{ls}nd$	2md	
S-LBFGS	$nd + mnd + 4md + \kappa_{ls}nd$	2md	
SR1	$nd + d^2 + nd + \kappa_{tr}d^2$	d^2	
LSR1	$nd + nd + \kappa_{tr}md$	2md	
S-LSR1	$nd + mnd + nd + \kappa_{tr}md$	2md	

- m = size of memory, n = number of examples, d = dimensionality
- Same storage requirements as limited memory versions
- Extra mnd computational cost per iteration

Convergence analysis

- Deterministic
- Constant stepsize and with Armijo linesearch
- Proposed methods not worse than regular limited memory versions
 - Strongly convex \rightarrow converges linearly to optimal solution Ο
 - Nonconvex \rightarrow converges to a stationary point Ο
 - Probability of accepting curvature pairs that satisfy $s^T y > \epsilon \|s\|^2$



1. Toy problem (find boundary between two classes)

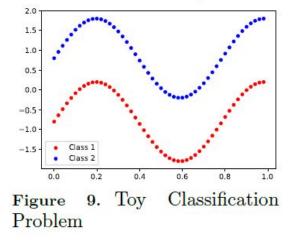


 Table 4. Toy Classification Problem: Neural Network Details

network	structure	d
small	2-2-2-2-2	36
medium	2-4-8-8-4-2	176
large	2-10-20-20-10-2	908

- 2. L2-reg logistic regression on rcv1 (d=47,236) and w8a (d=300)
- 3. Nonlinear least squares on rcv1 and w8a
- 4. Train on MNIST and CIFAR10 with deep NNs

Table 1. Deep Neural Networks used in the experiments.

model	d	\mathbf{input}	# classes
LeNet	3.2M	$28 \times 28 \times 3$	10
alexnet v2	50.3M	$224 \times 224 \times 3$	1,000
vgg a	132.8M	$224\times224\times3$	1,000

Main experiments

Benchmarks used

- ADAM. "we tuned the steplength and batch size for each problem independently"
- GD. Armijo for steplength
- BFGS. Armijo for steplength. Full (inverse) Hessian approximations
- SR1. TR subproblem solved using CG-Steihaug. Full (inverse) Hessian approximation
- lBFGS. two-loop recursion
- SR1. Compact representations of SR1 matrices

Results: toy problem

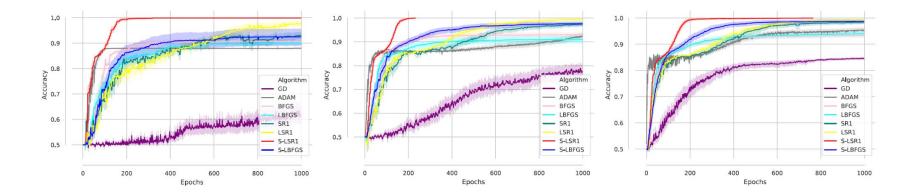
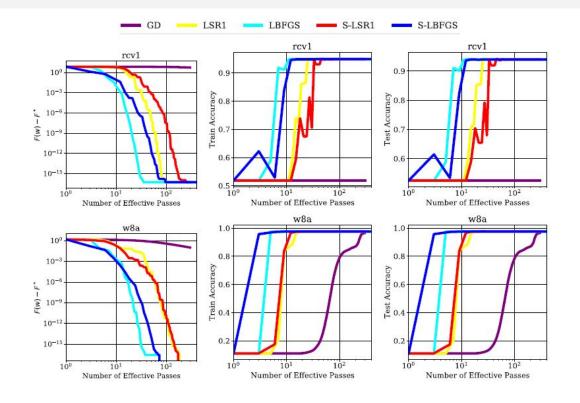


Figure 10. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classification problems. Networks: small (left); medium (center); large (right).

Results: logistic regression



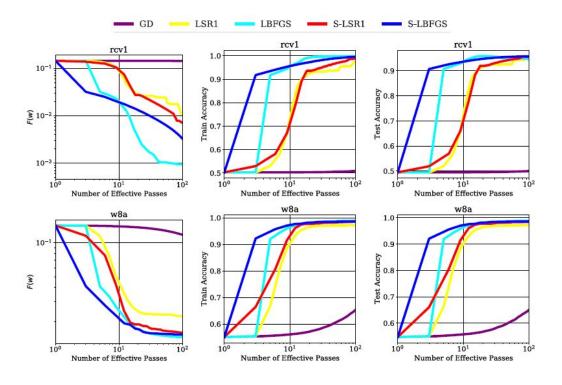
• Better on w8a than rcv1?

• Sampled version seems better initially?

• "competitive with the classical variants"

Figure 12. Performance of GD, LBFGS, LSR1, S-LSR1 and S-LBFGS on Logistic Regression problems; rcv1 dataset (first row) and w8a dataset (second row).

Results: nonlinear least squares



 "more recent, local and reliable curvature information indispensable in the nonconvex setting"

 "outperforms their classical counterparts across the board"

Figure 13. Performance of GD, LBFGS, LSR1, S-LSR1 and S-LBFGS on Nonlinear Least Squares problems; rcv1 dataset (first row) and w8a dataset (second row).

Results: MNIST

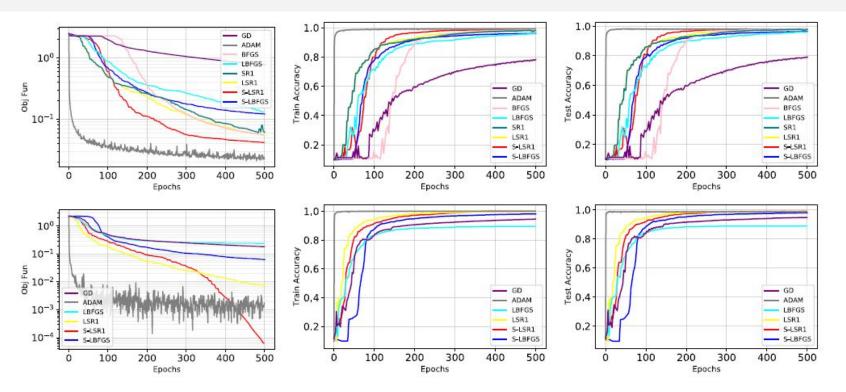


Figure 14. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on MNIST probems on Net1 (first row) and Net2 (second row).

Results: CIFAR10

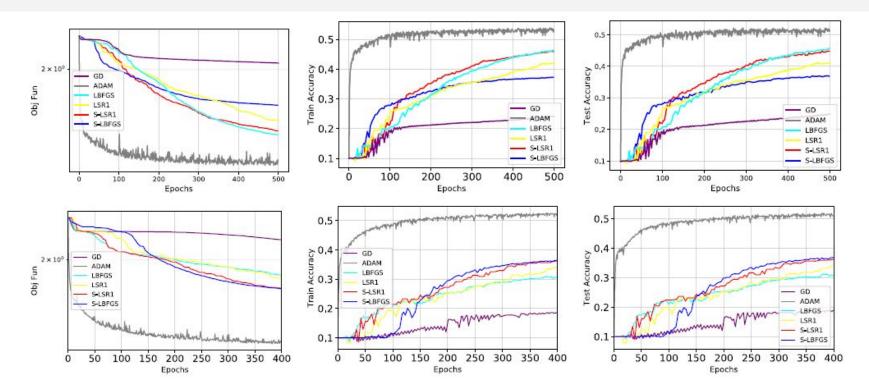


Figure 15. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on CIFAR10 problems on Net3 (first row) and Net4 (second row).

Results: training deep NNs

• outperformed classical variants

- "goal of these experiments is not to perform better than ADAM"
 - stochastic vs deterministic
 - well-tuned ADAM

- S-LSR1 has better performance than S-LBFGS
 - \circ "possible utilization of negative curvature in the updates"

- Contrarian approach to QN methods
 - theoretically not-worse
 - maybe better in practice
- Could this method be useful in deep learning?
 - Yes if you are already using QN methods
 - Maybe not if you areusing ADAM
- Is the QN approximation so bad we can just throw it out?
 - Maybe in nonconvex settings
- Does this address the issues QN has in nonconvex settings?
 - Not sure maybe more to look into