

# Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample

A.S. Berahas, M. Jahani, P. Richtarik, M. Takac (2021)

MLRG Spring 2022 Betty Shea





• Don't use quasi-Newton (QN) methods in my research

• Just implementation details

### Okay maybe I'll half listen

• QN methods don't work well for neural nets

• Paper tries to fix this

#### Why this paper? Practical aspects

• QN methods don't work well for nonconvex problems

- How bad is the QN Hessian approximation?
  - Bad enough to just toss it out?

- Don't waste information
  - Reuse historical curvature (gradient and momentum) information

- Don't waste information
  - Reuse historical curvature (gradient and momentum) information
  - It's not a waste if it's no longer good info

- Don't waste information
  - Reuse historical curvature (gradient and momentum) information
  - $\circ$   $\;$  It's not a waste if it's no longer good info

- Wastefulness leads to slowness
  - Starting from scratch at every step really bad for first order methods

- Don't waste information
  - Reuse historical curvature (gradient and momentum) information
  - $\circ$   $\;$  It's not a waste if it's no longer good info

- Wastefulness leads to slowness
  - Starting from scratch at every step really bad for first order methods
  - It's actually not too painful in practice with parallelization

### Why this paper? Simple approach

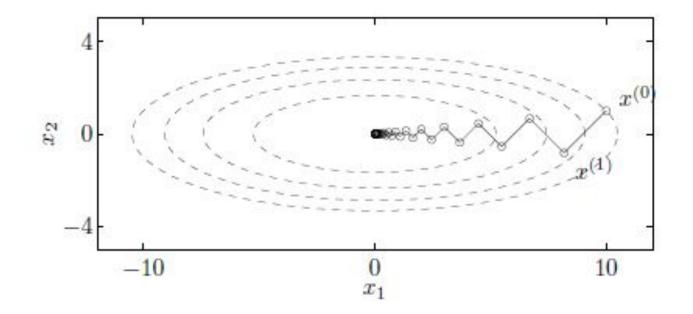
• Rooting for the not-too-clever ideas

- Random sampling is charmingly brute force
  - Replace directions taken in the past with random directions
  - Could this possibly work?

## QN: high-level goal

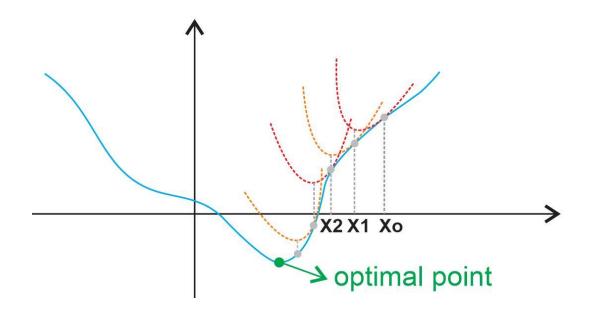
- Quasi-Newton methods
  - "attempt to combine the speed of Newton's method and the scalability of first-order methods by incorporating curvature information in a judicious manner...."

#### Gradient descent (GD)



Picture from Boyd and Vandenberghe, Convex Optimization, 2004.





Picture from Ardian Umam's blog post https://ardianumam.wordpress.com/

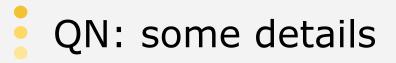


- Approximate Hessian with just first order information
- Curvature pairs  $(s_k, y_k)$

 $s_k = w_k - w_{k-1}, \quad y_k = \nabla F(w_k) - \nabla F(w_{k-1})$ 

- Characteristics of approximation
  - Positive definite
  - Symmetric
  - Secant equation

 $B_{k+1}s_k = y_k$ 



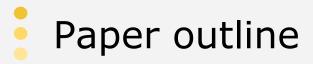
- Update at kth iteration ( $H_k$  is QN's approx of the inverse Hessian)  $w_{k+1} = w_k - \alpha_k H_k \nabla F(w_k)$
- $H_k$  lies between identity (GD) and true Hessian (Newton's)

• Low rank update of  $H_k$  to get  $H_{k+1}$ 



- Many flavors
  - $\circ$   $\,$  Paper looks at BFGS and SR1  $\,$

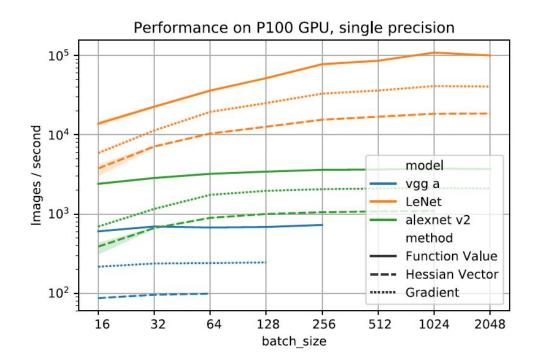
- Memory efficient versions ("limited" memory)
  - Paper looks at I-BFGS and I-SR1



- Exploratory experiments
- Algorithms
- Convergence analysis
- Main experiments

#### Exploratory experiments

• "the cost of computing function values, gradients and Hessian vector products appears to be comparable"



### Finding new curvature pairs

Algorithm 1 Compute new (S, Y) curvature pairs

Input: w (iterate), m (memory), r (sampling radius), S = [], Y = [] (curvature pair containers).

- 1: Compute  $\nabla F(w)$
- 2: for i = 1, 2, ..., m do
- 3: Sample a random direction  $\sigma_i$
- 4: Construct  $\bar{w} = w + r\sigma_i$
- 5: Set  $s = w \bar{w}$  and
  - $y = \begin{cases} \nabla F(w) \nabla F(\bar{w}), & \text{Option I} \\ \nabla^2 F(w)s, & \text{Option II} \end{cases}$
- 6: Set  $S = [S \ s]$  and  $Y = [Y \ y]$
- 7: end for

Output: S,Y

#### Proposed algorithm for sampled IBFGS

Algorithm 2 Sampled LBFGS (S-LBFGS)

**Input:**  $w_0$  (initial iterate), m (memory), r (sampling radius).

1: for 
$$k = 0, 1, 2, ...$$
 do

- 2: Compute new  $(S_k, Y_k)$  pairs via Algorithm 1
- 3: Compute the search direction  $p_k = -H_k \nabla F(w_k)$

4: Choose the steplength 
$$\alpha_k > 0$$

5: Set 
$$w_{k+1} = w_k + \alpha_k p_k$$

6: end for

- Does not start with the gradient direction
- Samples new pairs instead of updating with newest pair
- Steplength either constant or set with a line search
- Sampled version of I-SR1 with trust region

#### Computational cost and storage

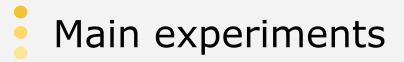
**Table 2.** Summary of Computational Cost and Storage (per iteration) for different Quasi-Newton methods.

| method  | computational cost               | storage $d^2$ |  |
|---------|----------------------------------|---------------|--|
| BFGS    | $nd + d^2 + \kappa_{ls}nd$       |               |  |
| LBFGS   | $nd + 4md + \kappa_{ls}nd$       | 2md           |  |
| S-LBFGS | $nd + mnd + 4md + \kappa_{ls}nd$ | 2md           |  |
| SR1     | $nd + d^2 + nd + \kappa_{tr}d^2$ | $d^2$         |  |
| LSR1    | $nd + nd + \kappa_{tr}md$        | 2md           |  |
| S-LSR1  | $nd + mnd + nd + \kappa_{tr}md$  | 2md           |  |

- m = size of memory, n = number of examples, d = dimensionality
- Same storage requirements as limited memory versions
- Extra mnd computational cost per iteration

## Convergence analysis

- Deterministic
- Constant stepsize and with Armijo linesearch
- Proposed methods not worse than regular limited memory versions
  - Strongly convex  $\rightarrow$  converges linearly to optimal solution Ο
  - Nonconvex  $\rightarrow$  converges to a stationary point Ο
    - Probability of accepting curvature pairs that satisfy  $s^T y > \epsilon \|s\|^2$



1. Toy problem (find boundary between two classes)

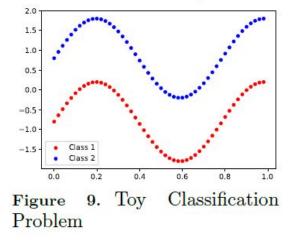


 Table 4. Toy Classification Problem: Neural Network Details

| network | structure       | d   |
|---------|-----------------|-----|
| small   | 2-2-2-2-2       | 36  |
| medium  | 2-4-8-8-4-2     | 176 |
| large   | 2-10-20-20-10-2 | 908 |



- 2. L2-reg logistic regression on rcv1 (d=47,236) and w8a (d=300)
- 3. Nonlinear least squares on rcv1 and w8a
- 4. Train on MNIST and CIFAR10 with deep NNs

Table 1. Deep Neural Networks used in the experiments.

| $\operatorname{model}$ | d      | $\mathbf{input}$          | # classes |
|------------------------|--------|---------------------------|-----------|
| LeNet                  | 3.2M   | $28 \times 28 \times 3$   | 10        |
| alexnet v2             | 50.3M  | $224 \times 224 \times 3$ | 1,000     |
| vgg a                  | 132.8M | $224\times224\times3$     | 1,000     |

## Main experiments

Benchmarks used

- ADAM. "we tuned the steplength and batch size for each problem independently"
- GD. Armijo for steplength
- BFGS. Armijo for steplength. Full (inverse) Hessian approximations
- SR1. TR subproblem solved using CG-Steihaug. Full (inverse) Hessian approximation
- lBFGS. two-loop recursion
- SR1. Compact representations of SR1 matrices

#### Results: toy problem

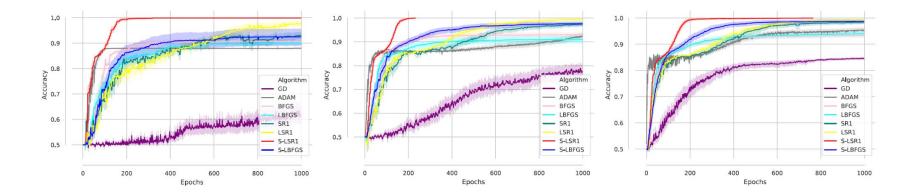
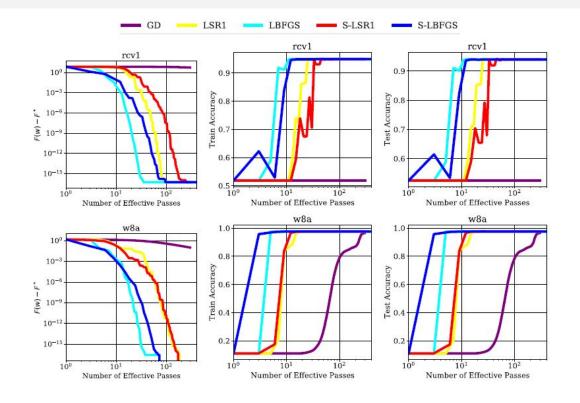


Figure 10. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classification problems. Networks: small (left); medium (center); large (right).

#### Results: logistic regression



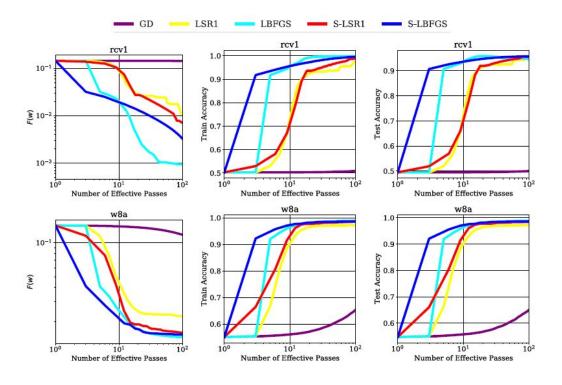
• Better on w8a than rcv1?

• Sampled version seems better initially?

• "competitive with the classical variants"

Figure 12. Performance of GD, LBFGS, LSR1, S-LSR1 and S-LBFGS on Logistic Regression problems; rcv1 dataset (first row) and w8a dataset (second row).

#### Results: nonlinear least squares



 "more recent, local and reliable curvature information indispensable in the nonconvex setting"

 "outperforms their classical counterparts across the board"

Figure 13. Performance of GD, LBFGS, LSR1, S-LSR1 and S-LBFGS on Nonlinear Least Squares problems; rcv1 dataset (first row) and w8a dataset (second row).

**Results: MNIST** 

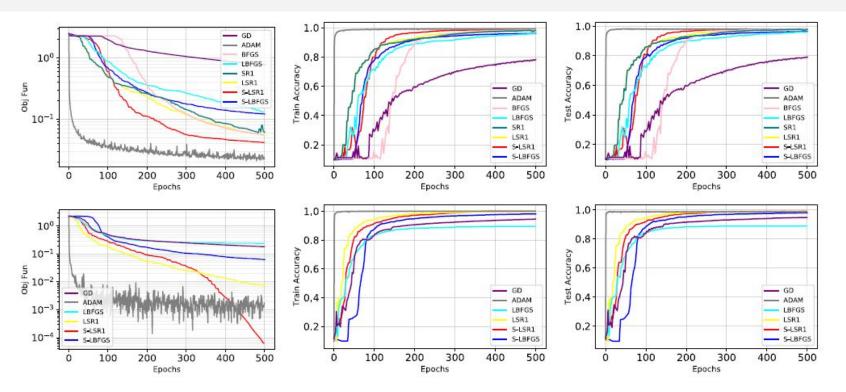


Figure 14. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on MNIST probems on Net1 (first row) and Net2 (second row).

**Results: CIFAR10** 

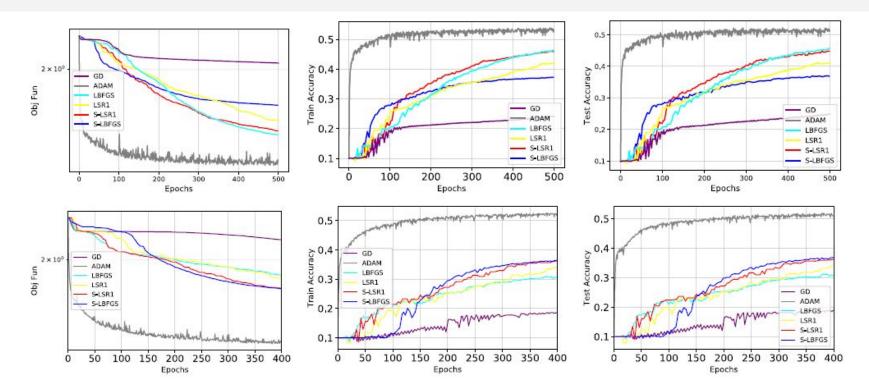


Figure 15. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on CIFAR10 problems on Net3 (first row) and Net4 (second row).

#### Results: training deep NNs

• outperformed classical variants

- "goal of these experiments is not to perform better than ADAM"
  - stochastic vs deterministic
  - well-tuned ADAM

- S-LSR1 has better performance than S-LBFGS
  - $\circ$  "possible utilization of negative curvature in the updates"



- Contrarian approach to QN methods
  - theoretically not-worse
  - maybe better in practice
- Could this method be useful in deep learning?
  - Yes if you are already using QN methods
  - Maybe not if you areusing ADAM
- Is the QN approximation so bad we can just throw it out?
  - Maybe in nonconvex settings
- Does this address the issues QN has in nonconvex settings?
  - Not sure maybe more to look into