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I'll tune out of this talk

e Don't use quasi-Newton (QN) methods in my research

e Just implementation details



Okay maybe I'll half listen

¢ QN methods don’t work well for neural nets

e Paper tries to fix this



Why this paper? Practical aspects

e QN methods don’t work well for nonconvex problems

e How bad is the QN Hessian approximation?
o Bad enough to just toss it out?
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Why this paper? Goes against folk wisdom

e Don’t waste information
o Reuse historical curvature (gradient and momentum) information
o It's not a waste if it's no longer good info

e Wastefulness leads to slowness
o Starting from scratch at every step really bad for first order methods
o It's actually not too painful in practice with parallelization



Why this paper? Simple approach

e Rooting for the not-too-clever ideas

e¢ Random sampling is charmingly brute force
o Replace directions taken in the past with random directions
o Could this possibly work?



QN: high-level goal

e Quasi-Newton methods
o “attempt to combine the speed of Newton’s method and the scalability of
first-order methods by incorporating curvature information in a judicious
manner....”
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Gradient descent (GD)
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Picture from Boyd and Vandenberghe, Convex Optimization, 2004.
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Newton’s method
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Picture from Ardian Umam'’s blog post https://ardianumam.wordpress.com/
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QN: some details

Approximate Hessian with just first order information
Curvature pairs (sg,yx)

Sk = Wk — Wk_1, Yx = VF(wg)— VF(wg_1)

Characteristics of approximation
o Positive definite
o Symmetric
o Secant equation

BEc485 = Uk
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QN: some details

Update at kth iteration (H, is QN’s approx of the inverse Hessian)

Wiyl = Wi — ap HVF (wy)

H; lies between identity (GD) and true Hessian (Newton’s)

Low rank update of Hi to get Hi41
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QN: some details

Many flavors
o Paper looks at BFGS and SR1

Memory efficient versions (“limited” memory)
o Paper looks at I-BFGS and |-SR1
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Paper outline

Exploratory experiments
Algorithms

Convergence analysis
Main experiments
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Exploratory experiments

e “the cost of computing function values, gradients and Hessian
vector products appears to be comparable”

Performance on P100 GPU, single precision
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Finding new curvature pairs

Algorithm 1 Compute new (S,Y) curvature pairs
Input: w (iterate), m (memory), r (sampling radius), S = [ ], ¥ = [ | (curvature pair
containers).
1: Compute VF(w)
2: fori1=1,2,...,m do

t

3: Sample a random direction g;
4: Construct @ = w + ro;
5: Set s = w — @ and
_ [VF(w)-VF(w), Option I
0 {VQF(w)s, Option 11
6: SetS=[SslandY =[Y y]
7: end for

Output: S.Y




Proposed algorithm for sampled IBFGS

Algorithm 2 Sampled LBFGS (S-LBFGS)

Input: wq (initial iterate), m (memory), r (sampling radius).

1: for k=0.1.2.... do

2: Compute new (Sk, Yx) pairs via Algorithm 1

3 Compute the search direction pp = —HpV F(wy,)
4: Choose the steplength oy > 0

5 Set wr+1 = wr + arpk

6: end for

Does not start with the gradient direction

Samples new pairs instead of updating with newest pair
Steplength either constant or set with a line search
Sampled version of [-SR1 with trust region
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Computational cost and storage

Table 2. Summary of Computational Cost and Storage (per iteration) for different Quasi-
Newton methods.

method computational cost storage

BFGS nd + d? + kjond d?
"LBFGS  nd+4md+ kiend 2md
“S-LBFGS nd+ mnd + 4md + kjgnd 2md

SR1 nd + d* + nd + K¢rd? d?
LSHLITTTTT nd + nd + kgymd 2md

S-LSR1 nd + mnd + nd + k¢md 2md

e m = size of memory, n = number of examples, d = dimensionality
e Same storage requirements as limited memory versions
e Extra mnd computational cost per iteration
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Convergence analysis

Deterministic
Constant stepsize and with Armijo linesearch

Proposed methods not worse than regular limited memory versions

o Strongly convex — converges linearly to optimal solution
o Nonconvex — converges to a stationary point

m Probability of accepting curvature pairs that sat'“‘" 1P
J > €
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Main experiments

1. Toy problem (find boundary between two classes)

Table 4. Toy Classification Problem: Neural Network Details

s A i network structure d
o T small 299999 36
medium  ~ 2-4-8-84-2 176
| large ~ 9-10-20-20-10-2° 908

Figure 9. Toy Classification
Problem



Main experiments

2. L2-reg logistic regression on rcvl (d=47,236) and w8a (d=300)
3. Nonlinear least squares on rcvl and w8a

4. Train on MNIST and CIFAR10 with deep NNs

Table 1. Deep Neural Networks used in the experiments.

model d input # classes

LeNet 32M 28 x 28 x 3 10
alexnet v2  50.3M 224 x 2243 1,000
vge a 132.8M 224 x 224 x 3 1,000
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Main experiments
Benchmarks used

ADAM. “we tuned the steplength and batch size for each problem independently”
GD. Armijo for steplength

BFGS. Armijo for steplength. Full (inverse) Hessian approximations

SR1. TR subproblem solved using CG-Steihaug. Full (inverse) Hessian approximation
IBFGS. two-loop recursion

SR1. Compact representations of SR1 matrices
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Results: toy problem
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Figure 10. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS
on toy classification problems. Networks: small (left); medium (center); large (right).
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Results: logistic regression
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Figure 12. Performance of GD, LBFGS, LSR1, S-LSR1 and S-LBFGS on Logistic Regression problems; rcvi
dataset (first row) and w8a dataset (second row).
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Results: nonlinear least squares
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Figure 13. Performance of GD, LBFGS, LSR1, S-LSR1 and S-LBFGS on Nonlinear Least Squares problems;

rcvl dataset (first row) and w8a dataset (second row).

“more recent, local and
reliable curvature information
indispensable in the
nonconvex setting”

“outperforms their classical
counterparts across the
board”
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Results: MNIST
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Figure 14. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on MNIST prob-
ems on Net1 (first row) and Net2 (second row).



Results: CIFAR10

0.5- ‘,,”"v L bt ek B ad anind Lt b 0.5
2x10° _GD 30.4- §°'4-
c — ADAM 2 = ‘a'
P —— LBFGS g J
-§- LSR1 \ ; 0.3 . %> § o 4
e A w
_— :';:cl;s £ ADAM 2
0,21 / e LBFGS 0.21 :
LSR1
N S-LSR1 .
0.1 == — SeLBFGS 0.1+ 1
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epochs Epochs Epochs
0,51 W
0,41 4/
2x10° ] — GP g § !
< l —— ADAM é s [
2 - LBFGS 2 |
= | LSR1 & % 0.3
] —— SISR1 g i lc\’DDAM
—— SLBFGS = T 0.2 LBFGS
LSR1
—— SalSRL
Lodord 0.1 —— S-LBFGS
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Epochs Epochs Epochs

Figure 15. Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on CIFAR10
problems on Net3 (first row) and Net4 (second row).



Results: training deep NNs

e outperformed classical variants

e “goal of these experiments is not to perform better than ADAM”

o stochastic vs deterministic
o well-tuned ADAM

e S-LSR1 has better performance than S-LBFGS

o “possible utilization of negative curvature in the updates”
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Discussion

Contrarian approach to QN methods
o theoretically not-worse
o maybe better in practice

Could this method be useful in deep learning?
o Yes if you are already using QN methods
o Maybe not if you areusing ADAM
Is the QN approximation so bad we can just throw it out?
o Maybe in nonconvex settings
Does this address the issues QN has in honconvex settings?

o Not sure - maybe more to look into
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