# Predicting anticancer hyperfoods with graph convolutional networks

Gonzalez et al. 2021

Betty Shea 25 August 2021

MLRG





Canadian Cancer Society

- Nearly 1 in 2 Canadians (45% of men and 43% of women) is expected to develop cancer during their lifetime.
- About 1 out of 4 Canadians (26% of men and 23% of women) is expected to die from cancer.

https://action.cancer.ca/en/research/cancer-statistics/cancer-statistics-at-a-glance



Partially under our control: "modifying dietary and lifestyle factors alone can prevent between 30 and 40% of all cancer cases". Some factors:<sup>1</sup>

- glucose metabolism,
- omega 3:6 ratio imbalance,
- fruits and vegetables, etc ....

 $<sup>^1</sup>$ Michael S. Donaldson. Nutrition and cancer: A review of the evidence for an anti-cancer diet



# MEDITERRANEAN DIET NAMED #1 BEST DIET FOR 2021





Two biomarkers:

- **Individual genes**. Look at genes that are different between normal and cancerous cells.
  - independence assumption (single genetic mutations)
- **Biological pathways**. Look at dysfunctional pathways, or how cells function with and without cancer.
  - assumes genes work together

Does a drug/ food have a positive impact on either?



- a single food contains hundreds of food molecules
- food molecules regulate biological pathways, or processes, linked to reduced risk of cancer



https://www.genome.gov/about-genomics/fact-sheets/Biological-Pathways-Fact-Sheet

## Food and pathways



Pathways network: protein-protein interactions (PPI)s between contact points in cells.<sup>2</sup>



<sup>&</sup>lt;sup>2</sup>Image from Genetic Engineering & Biotechnology News:

https://www.genengnews.com/insights/protein-protein-interactions-get-a-new-groove-on/



Binary classification task:

- Input is a PPI graph and vectors representing drugs/ foods (non-Euclidean domain)
- Apply deep learning
- Output is whether a drug/ food has an anticancer effect



How does this fit into this term's MLRG?

- Geometric deep learning (sub-topic 3 in Wu's list)
- Use geometric prior to avoid curse of dimensionality (Nick's talk)
- "Nonlinear dimensionality reduction": learning a low-dimensional structure within a high-dimensional Euclidean space



### Main topics:

- Graph neural networks (GNN)s
- Anticancer hyperfoods

Graph neural networks (GNN)s

## Convolutional neural networks (CNN)s





FIGURE S1. The typical CNN architecture used in computer-vision applications such as image classification.

- Convolution layers: filters
- Pooling layers: reduce dimensionality

Figure from Bronstein et al. Geometric deep learning, 2017.



For images:

- Pixels have features that are equivariant to translation
- Convolutions capture this geometric prior

For biological applications:

- Some cells are related through pathways
- Graph structure captures this geometric prior



Generalize CNNs to non-Euclidean domains (graph)

- Euclidean functions applied to graphs, e.g. gradient, Laplacian
- Laplacian allows decomposition of a graph into a spectrum
- Allows generalization of CNN concepts, e.g. convolution, to graphs
- Spectral convolution: parameterized by eigenvalues to the Laplacian



Polynomial through the Laplacian  $\equiv$  polynomial through its eigenvalues. ChebNet

• Parameterize convolution with a polynomial expansion instead

Graph convolutional network (GCN)

• Simplify to a degree-2 polynomial

Both variants apply simple filters in the spacial domain.

Anticancer hyperfoods



- introduces an end-to-end model to classify drugs as anticancer or not
- encodes drugs and foods as graphs
- train model on FDA-labeled anticancer drugs
- anticancer foods have similar graphs to known FDA-approved anticancer drugs

## Methodology







- 2,048 clinically approved drugs from DrugBank and DrugCentral (209 positive, 1,839 negative)
- 7,793 food molecules from FooDB
- pathways taken from Kyoto Encyclopedia of Genes



#### Paper tries three variants of GNNs: GCN, ChebNet, GraphSAGE

Hyperparameter Space search 5.10<sup>-4</sup>, 5.10<sup>-3</sup> Learning rate L2-regularization 1.10<sup>-5</sup>, 1.10<sup>-4</sup>, 5.10<sup>-4</sup> Number of convolutional layers 1, 2, 3 Number of dropout layers 1.2 Batch normalization True, false Feature normalization True, false n-hops for ChebNet 2,4,6

#### Table 1 Hyperparameter space searched

Hyperparameters tuned using cross-entropy loss.



For each of the three variants of GNN:

- 1. "Jumping knowledge network"
- 2. Pathway pooling



| Method      | ACC                                | F1                                 | AUPR                               | Precision ac                       | Recall ac                          | Precision non-ac                   | Recall non-ac                      |
|-------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| SVM         | 79.26 ± 4.2                        | 52.12 ± 5.92                       | 53.35 ± 10.97                      | $41.50 \pm 6.75$                   | $69.12 \pm 10.08$                  | 96.31 ± 1.06                       | 88.74 ± 3.20                       |
| RWR + SVM   | $81.13 \pm 3.79$                   | $51.84 \pm 5.79$                   | 67.43 ± 8.14                       | $38.98 \pm 5.38$                   | $75.08 \pm 6.92$                   | $96.90 \pm 0.83$                   | 86.67 ± 2.37                       |
| MLP         | 80.62 ± 3.81                       | 66.53 ± 5.02                       | 69.05 ± 5.01                       | 69.75 ± 6.74                       | 64.55 ± 8.23                       | 96.02 ± 0.85                       | 96.68 ± 1.30                       |
| GCN         | 80.52 ± 3.33                       | 63.95 ± 3.90                       | 66.45 ± 5.82                       | $63.33 \pm 5.72$                   | $65.51 \pm 7.42$                   | 96.08 ± 0.76                       | 95.54 ± 1.38                       |
| GraphSAGE   | 78.27 ± 6.11                       | 59.93 ± 6.53                       | $64.42 \pm 9.96$                   | $61.04 \pm 5.72$                   | $61.15 \pm 13.48$                  | 95.62 ± 1.37                       | 95.38 ± 1.51                       |
| ChebNet     | $\textbf{83.46} \pm \textbf{2.52}$ | $\textbf{67.99} \pm \textbf{2.87}$ | $\textbf{73.91} \pm \textbf{3.49}$ | $\textbf{65.46} \pm \textbf{4.53}$ | $\textbf{71.27} \pm \textbf{5.58}$ | $\textbf{96.71} \pm \textbf{0.59}$ | $\textbf{95.65} \pm \textbf{0.96}$ |
| MLP-P       | 76.72 ± 2.68                       | 54.40 ± 3.56                       | 59.79 ± 7.64                       | 51.67 ± 11.33                      | 60.73 ± 7.81                       | 95.44 ± 0.72                       | 92.72 ± 3.18                       |
| GCN-P       | $78.70 \pm 5.36$                   | 57.43 ± 7.61                       | $60.03 \pm 8.48$                   | 52.77 ± 7.69                       | $64.03 \pm 11.05$                  | 95.83 ± 1.18                       | 93.37 ± 1.72                       |
| GraphSAGE-P | $77.09 \pm 4.18$                   | 54.07 ± 4.88                       | 60.55 ± 9.51                       | $48.87 \pm 4.06$                   | $61.64 \pm 9.65$                   | 95.53 ± 0.96                       | 92.55 ± 1.95                       |
| ChebNet-P   | 76.10 ± 2.67                       | 55.71 ± 4.46                       | 59.68 ± 9.53                       | 53.72 ± 4.07                       | 57.86 ± 4.96                       | 95.17 ± 0.53                       | 94.35 ± 0.44                       |

#### Table 3 Summary of results (%) on anticancer drug prediction

ACC = balanced accuracy, F1 = harmonic mean of precision and recall, AUPR = area under the precision-recall curve, ac = anticancer, non-ac = non-anticancer

SVM and RWR+SVM are benchmarks from another paper.



#### Observations

- All three encoding methods costs roughly the same amount of time
- Pathway pooling lowered the performance of every GNN
- ChebNet was the best performer

Best anticancer-predicted molecules

- Genistein, an isoflavone present in soy
- Pterostilbene, found in grapes and blueberries



## Takeaways

- 1. Spectrum-free GNNs
- 2. Biological priors
- 3. Blueberry-soy smoothie

## Thanks!





https://www.besthealthmag.ca/recipes/wild-blueberry-soy-shake/



Bronstein, MM., Bruna, I., LeCun, Y., Szlam, A. & Vandergheynst, P. Geometric deep learning. Going beyond Euclidean data. IEEE Signal Proc. Mag. 34(4): 18-42, 2017.

Gonzalez, G., Gong, S., Laponogov, I., Bronstein, M. & Veselkov, K. Predicting anticancer hyperfoods with graph convolutional networks, 2021.

Kipf, TN. & Welling, M. Semi-supervised classification with graph convolution networks. In 5th International Conference on Learning Representation (ICLR), 2017.



Given Euclidean domain  $\Omega$  and unknown function  $y: L^2(\Omega) \to \mathcal{Y}$  observed on a training set

$$\left\{f_i \in L^2(\Omega), y_i = y(f_i)\right\}_{i \in I}$$

The function y is invariant means

$$y(T_v f) = y(f)$$
 for any  $f \in L^2(\Omega)$  and  $v \in \Omega$ 

The function y is equivariant means

$$y(T_v f) = T_v y(f)$$
 for any  $f \in L^2(\Omega)$  and  $v \in \Omega$ 

where  $T_v f(x) = f(x - v)$  for all  $x, v \in \Omega$  is a translation operator and  $L^2$  denotes square-integrable.

See Bronstein et al. 2017.



A deformation  $\mathcal{L}_{\tau}$  where  $\tau : \Omega \to \Omega$  is a smooth vector field, acts on  $L^2(\Omega)$  as  $\mathcal{L}_{\tau}f(x) = f(x - \tau(x))$ . Models local translations. Translation invariance is

 $|y(\mathcal{L}_v f) - y(f)| \approx \|\nabla \tau\|$ 

where  $\|\nabla \tau\|$  measures the smoothness of a deformation field. Translation equivariance is

 $|y(\mathcal{L}_{v}f) - \mathcal{L}_{\tau}y(f)| \approx \|\nabla \tau\|$ 

See Bronstein et al. 2017.



These notes on graph functions come from Bronstein et al. 2017.

Weighted, undirected graph G = (V, E) with weights  $a_i > 0$  for each vertex  $i \in V$  and weights  $w_{ij} \ge 0$  for each edge  $(i, j) \in E$ . First define inner products. Given real-valued functions  $f, g: V \to \mathbb{R}$  and  $F, G: E \to \mathbb{R}$ 

$$\langle f, g \rangle_{L^2(V)} = \sum_{i \in V} a_i f_i g_i$$
 (1)

$$\langle F, G \rangle_{L^2(E)} = \sum_{i \in E} w_{ij} F_{ij} G_{ij}$$
 (2)

This lets us define Hilbert spaces  $L^2(V)$  and  $L^2(E)$ .



Graph gradient  $abla : L^2(V) \to L^2(E)$ 

$$(\nabla f)_{ij} = f_i - f_j = -(\nabla f)_{ji}$$
<sup>(3)</sup>

Graph divergence  $div: L^2(E) \rightarrow L^2(V)$ 

$$(divF)_i = \frac{1}{a_i} \sum_{j:(i,j) \in E} w_{ij}F_{ij}G_{ij}$$

$$\tag{4}$$

(3) and (4) are adjoint with respect to (1) and (2)

$$\langle F, \nabla f \rangle_{L^{2}(E)} = \langle \nabla^{*}F, f \rangle_{L^{2}(V)} = \langle -divF, f \rangle_{L^{2}(V)}$$
(5)



Graph Laplacian defined as an operator  $\Delta: L^2(V) \rightarrow L^2(V)$  where  $\Delta = - \textit{div} \nabla$ .

(3) and (4) give

$$(\Delta f)_{i} = \frac{1}{a_{i}} \sum_{(i,j) \in E} w_{ij}(f_{i} - f_{j})$$
(6)

or

$$\Delta f = A^{-1}(D - W)\mathbf{f} \tag{7}$$

where  $A = diag(a_1, \ldots, a_n)$  contains vertex weights,  $D = diag\left(\sum_{j:j \neq i} w_{ij}\right)$  contains the degree of vertices,  $W = (w_{ij})$  contains edge weights and  $\mathbf{f} = (f_1, \ldots, f_n)^T$ 



These notes on graph convolutions come from Bronstein et al. 2017 and Kipf and Welling 2017. Let |V| = N. Filter  $g_{\theta} = diag(\theta)$  parameterized by  $\theta \in \mathbb{R}^{N}$ .



GCN

