Basics Concepts of Riemannian Manifolds

MLRG summer, 2021

Outline

Linear algebra

Multivariate/vector calculus
Manifold
Chart/coordinate
Riemannian vector, dual vector, Riemannian metric
Geodesic, retraction

Geometric meaning of the matrix determinant

Source: https://textbooks.math.gatech.edu/ila/determinants-volumes.html
An invertible matrix T can be viewed as a map

$$
\mathbf{T}=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]
$$

$T: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n}$

An informal geometric proof $\operatorname{vol}(\mathbf{P})=|\operatorname{det}(T)| \operatorname{vol}(\mathbf{C})$
We consider the $\mathrm{n}=3$ case .

$$
\operatorname{vol}(\mathbf{C})=1
$$

$$
\begin{aligned}
\mathbf{v}_{i} & =T\left(\mathbf{e}_{i}\right)=\mathbf{T} \mathbf{e}_{i} \\
\mathbf{T} & =\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cross product: } \\
& \mathbf{v}_{1} \times \mathbf{v}_{2}=\left[\begin{array}{lll}
\mathbf{e}_{1} & v_{1,1} & v_{2,1} \\
\mathbf{e}_{2} & v_{1,2} & v_{2,2} \\
\mathbf{e}_{3} & v_{1,3} & v_{2,3}
\end{array}\right] \\
& \begin{array}{l}
\text { base: }\left|\mathbf{v}_{1} \times \mathbf{v}_{2}\right| \\
\text { height: } \mathbf{e}_{\mathbf{2}} \cdot \mathbf{V}_{\mathbf{2}}
\end{array} \\
& 0
\end{aligned}
$$

$$
\text { height: } \mathbf{e}_{3} \cdot \mathbf{V}_{3}
$$

$$
\operatorname{vol}(\mathbf{P})=\left|\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right) \cdot \mathbf{v}_{3}\right|
$$

$$
\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right) \cdot \mathbf{v}_{3}=\operatorname{det}\left[\begin{array}{lll}
v_{1,1} & v_{2,1} & v_{3,1} \\
v_{1,2} & v_{2,2} & v_{3,2} \\
v_{1,3} & v_{2,3} & v_{3,3}
\end{array}\right]
$$

$$
\operatorname{vol}(\mathbf{P})=|\operatorname{det}(T)| \operatorname{vol}(\mathbf{C})
$$

$$
\operatorname{vol}(\epsilon \mathbf{P})=\epsilon^{2}|\operatorname{det}(T)|
$$

$$
d V_{y}=|\operatorname{det}(T)| d V_{x}
$$

$$
d V_{x}=\operatorname{vol}(\epsilon \mathbf{C})
$$

$$
d V_{y}=\operatorname{vol}(\epsilon \mathbf{P}), y=T(x)
$$

Integration by substitution

$\int_{\psi(\mathbf{S})} f(y) d V_{y}=\int_{\mathbf{S}} f \circ \psi(x)|\operatorname{det}(\nabla \psi)| d V_{x}$

$$
\psi: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n}
$$

 continuously diff.
We approximate map ψ using its linearization $T=\nabla \psi$

Classical examples: Work (line integral), Flux (surface integral)
ML example: normalizing flows $\quad y=\psi(x), x \sim p(x)$

$$
\begin{array}{r}
1=\int p_{y}(y) d y=\int p_{y}(\psi(x))|\operatorname{det}(\nabla \psi)| d x \\
1=\int p(x) d x
\end{array}
$$

$p_{y}(y)=p(x)|\operatorname{det}(\nabla \psi(x))|^{-1}, x=\psi^{-1}(y)$

Manifolds \& charts

A curved space locally looks like a flat/Euclidean space
$\psi(\mathbf{S}) \quad$ An open subset of a manifold
S An open subset in a Euclidean space
$\phi:=\psi^{-1} \quad$ a (local) chart/coordinate

Free parameters in a chart

We will assume ϕ_{1} and U_{1} are known.

$U_{1}=\left\{(x, y) \mid x^{2}+y^{2}=1, y>0,-1<x<1\right\}$
$\mathbf{S}_{1}=\{x \mid-1<x<1\} \subset \mathcal{R}^{1} \subset \mathcal{R}^{2}$
$\phi_{1}((x, y))=x \in \mathbf{S}_{1}$

$\psi_{1}(t):=\phi_{1}^{-1}(t)=\left(t, \sqrt{1-t^{2}}\right) \in U_{1}, t \in \mathbf{S}_{1}$

$$
x^{2}+y^{2}=1
$$

In set U_{1}, y is fully determined by x . Therefore, we only consider x is the single free parameter \# of free parameters implicitly defines the dimension of a manifold

We ONLY use free parameters to represent a vector in the manifold
We only compute gradients w.r.t. free parameters. There are some exceptions for matrix manifolds

Riemannian vectors and metric

Given a chart, $x=\left[x _1, \ldots \mathrm{x} _\mathrm{k}\right]$ represents a set of free variables.

A basis of a tangent vector space at point $\mathrm{b}=\left[\mathrm{b} _1, \ldots \mathrm{~b} _\mathrm{k}\right]$ is denoted by $\left\{\frac{\partial}{\partial x_{i}}\right\}_{i=1}^{k}$ A basis vector $\frac{\partial}{\partial x_{1}}$ can be viewed as the tangent vector of the coordinate curve/direction $\theta_{1}(t)$
$\frac{\partial}{\partial x_{1}}:=\left.\nabla_{t} \theta_{1}(t)\right|_{t=0}=\left.\nabla_{t}\left[b_{1}+t, b_{2}, \cdots, b_{k}\right]\right|_{t=0}$

$$
\left\langle\frac{\partial}{\partial x_{1}}, v\right\rangle_{\mathbf{F}}:=\mathbf{e}_{1}^{T} \mathbf{F} \mathbf{v} \quad \text { Metric } \quad \mathbf{F}
$$

Cartesian

Curvilinear

Gradients of a scalar function $\mathbf{h} \quad \frac{\partial}{\partial x_{1}}:=\left.\nabla_{t}\left[b_{1}+t, b_{2}, \ldots, b_{k}\right]\right|_{t=0}$
 Directional derivative
 $$
\frac{\partial}{\partial x_{1}}(f):=\left.\nabla_{t} f\left(\left[b_{1}+t, b_{2}, \cdots, b_{k}\right]\right)\right|_{t=0}
$$

A scalar function h defined on a k-dim manifold can be expressed as $f(x)$ given a chart, where $\mathrm{x}=\left[\mathrm{x} _1, \ldots . \mathrm{x} _\mathrm{k}\right]$ are free variables.

$$
\begin{aligned}
& \left\langle\frac{\partial}{\partial x_{1}}, \hat{\mathbf{g}}_{f}\right\rangle_{\mathbf{F}}:=\frac{\partial}{\partial x_{1}}(f)=\frac{\partial}{\partial x_{1}} f(x) \\
& \left\langle\frac{\partial}{\partial x_{1}}, \hat{\mathbf{g}}_{f}\right\rangle_{F}:=\mathrm{e}_{1}^{T} \mathbf{F} \hat{\mathbf{g}}_{f}
\end{aligned}
$$

Riemannian metric
Riemannian gradient (vector)
F

Euclidean gradient (dual vector) \mathbf{g}_{f}

$$
\hat{\mathbf{g}}_{f}=\mathbf{F}^{-1} \mathbf{g}_{f} \quad \mathbf{g}_{f}:=\left[\frac{\partial}{\partial x_{1}} f(x), \cdots, \frac{\partial}{\partial x_{k}} f(x)\right]
$$

Geodesic \& Manifold Exponential Map \& Retraction Maps

Given a starting point x and a Riemannian direction/gradient v,
A geodesic: a "straight line" on the manifold.
Input: t; Output: a point on the manifold
$L(t)=\mathbf{x}+t \mathbf{v} \quad$ a straight line in the Euclidean case
Given a starting point x and step-size $t=1$
The exponential map:
Input: v; Output: a point on the manifold

Retraction: an approximation of the exponential map

