Introduction to Geometric Deep Learning

Nick Ioannidis

June 14, 2021

- Geometry synonymous with Euclid until early 19th century
- Lobachevsky, Bolyai, Gauss, Riemann construct first examples of non-Euclidean geometry
- In 1872 Felix Klein publishes the Erlangen program that formalizes geometries into groups

Conservation laws derived from the first principles of symmetry (Noether's Theorem).

Unification on NN architectures

• Introduce an umbrella term for emerging techniques attempting to generalize deep neural models to non-Euclidean domains

- Provide a common mathematical framework to derive some of the successful NN architectures
- Create a constructive procedure to build future architectures

Neural Networks as Universal Approximatros

Curse of Dimensionality

Curse of Dimensionality

Curse of Dimensionality

A function $f : \mathcal{X}(\Omega) \to \mathcal{Y}$ is \mathfrak{G} -invariant if $f(\rho(\mathfrak{g})x) = f(x)$ for all $\mathfrak{g} \in \mathfrak{G}$ and $x \in \mathcal{X}(\Omega)$, i.e., its output is unaffected by the group action on the input. A function $f : \mathcal{X}(\Omega) \to \mathcal{X}(\Omega)$ is \mathfrak{G} -equivariant if $f(\rho(\mathfrak{g})x) = \rho(\mathfrak{g})f(x)$ for all $\mathfrak{g} \in \mathfrak{G}$, i.e., group action on the input affects the output in the same way.

Geometric Deep Learning Blueprint

The "5G" of Geometric Deep Learning

$$(x\star\theta)(u) = \langle x, S_u\theta \rangle = \int_{\mathbb{R}} x(v)\theta(u+v) \mathrm{d}v$$

General case of group convolution $(x \star \theta)(\mathfrak{g}) = \langle x, \rho(\mathfrak{g})\theta \rangle = \int_{\Omega} x(u)\theta(\mathfrak{g}^{-1}u) du$

Group equivariance $(x \star \theta)(\mathfrak{g}) = \langle x, \rho(\mathfrak{g})\theta \rangle = \int_{\Omega} x(u)\theta(\mathfrak{g}^{-1}u) du$

Convolution applied on signal domain $(x \star \theta)(\mathsf{R}) = \int_{\mathbb{S}^2} x(\mathsf{u}) \theta\left(\mathsf{R}^{-1}\mathsf{u}\right) \mathrm{d}\mathsf{u}$

Cosmic microwave background radiation. Signal on \mathbb{S}^2 .

Convolution applied on *SO*(3) group $((x \star \theta) \star \phi)(\mathsf{R}) = \int_{SO(3)} (x \star \theta)(\mathsf{Q})\phi(\mathsf{R}^{-1}\mathsf{Q}) d\mathsf{Q}$

$$\mathsf{F}(\mathsf{X},\mathsf{A}) = \begin{bmatrix} - & \phi(\mathsf{x}_1,\mathsf{X}_{\mathcal{N}_1}) & - \\ - & \phi(\mathsf{x}_2,\mathsf{X}_{\mathcal{N}_2}) & - \\ \vdots & & \\ - & \phi(\mathsf{x}_n,\mathsf{X}_{\mathcal{N}_n}) & - \end{bmatrix}$$

GNN - Convolutional

GNN - Message-Passing

$$= \phi \left(\mathsf{x}_{i}, \bigoplus_{j \in \mathcal{N}_{i}} \psi \left(\mathsf{x}_{i}, \mathsf{x}_{j} \right) \right)$$

f_i

Applications of Graphs in Natural Sciences

GNNs in Drug Discovery

Hardware Advances

GPU Vector

******************	1			
a de a de la de				
	1 1			
	1			
adeatadaceadaceada				

Part of the second second				
		1.4 1.	1.6	1.4 1.4

IPU Graph Thank you for your time