Tensor Completion for Estimating Missing Values in Image Data

Adam Schmidt

December 9, 2020

\footnote{Ji Liu et al., 2009.}
Problem

- Estimate image data of tensors with low rank
Problem

- Estimate image data of tensors with low rank
- Signal: Order 1 Tensor
Problem

- Estimate image data of tensors with low rank
- Signal: Order 1 Tensor
- Image: Order 2 Tensor
Problem

- Estimate image data of tensors with low rank
- Signal: Order 1 Tensor
- Image: Order 2 Tensor
- Video: Order 3 Tensor
Problem

- Estimate image data of tensors with low rank
- Signal: Order 1 Tensor
- Image: Order 2 Tensor
- Video: Order 3 Tensor
- MRI Video: Order 4 Tensor
Solution

- Expand low-rank matrix completion to tensor completion
Figure 1: The left figure contains 80% missing entries shown as white pixels and the right figure shows its reconstruction using the low rank approximation.
Eating Our Vegetables

\[D_{\tau}(X) = U\Sigma_{\tau}V^\top \quad (1) \]

\[\Sigma_{\tau}(X) = \text{diag}(\max(\sigma_i - \tau, 0)) \quad (2) \]
Eating Our Vegetables

\[D_\tau(X) = U\Sigma_\tau V^\top \]
\[\Sigma_\tau(X) = \text{diag}(\max(\sigma_i - \tau, 0)) \]

Masked sample set: \(X_\Omega \)
Eating Our Vegetables

\[D_{\tau}(X) = U\Sigma_{\tau}V^\top \]
\[\Sigma_{\tau}(X) = \text{diag}(\max(\sigma_i - \tau, 0)) \]

Masked sample set: \(X_{\Omega} \)

Tensor \(X \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_n} \)
\[D_\tau(X) = U\Sigma_\tau V^\top \] (1)

\[\Sigma_\tau(X) = \text{diag}(\max(\sigma_i - \tau, 0)) \] (2)

Masked sample set: \(X_\Omega \)

Tensor \(\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_n} \) and a tensor unfold operation defined as:

\[\text{unfold}_k(\mathcal{X}) := X_{(k)} \in \mathbb{R}^{I_k \times (I_1 \times \ldots \times I_{k-1} \times I_{k+1} \times \ldots \times I_n)} \] (3)

and the reverse:

\[\text{fold}_k(X_{(k)}) = \mathcal{X} \] (4)
Trace Norm

The rank operation is discrete and non-convex.
Trace Norm

The rank operation is discrete and non-convex. Thus trace norm is used as a method:

$$\|X\|_{tr} = \sum_{i} \sigma_i(X)$$ (5)

Tightest convex envelope for rank of matrices. (loose reason: L1 enforces sparsity)
Matrix Completion

We have a matrix M at Ω. We want to estimate a low-rank X.
Matrix Completion

We have a matrix M at Ω. We want to estimate a low-rank X.

$$\min_X \frac{1}{2} \|X - M\|_\Omega^2$$

s.t. $\text{rank}(X) \leq r$
Matrix Completion

We have a matrix M at Ω. We want to estimate a low-rank X.

$$\min_{X} \frac{1}{2} \|X - M\|_\Omega^2$$

s.t. $\text{rank}(X) \leq r$

$$\min_{X,Y} \frac{1}{2} \|X - Y\|_F^2$$

s.t. $\text{rank}(X) \leq r$

$Y_\Omega = M_\Omega$

$$\min_{X,Y} \frac{1}{2} \|X - Y\|_F^2$$

s.t. $\|X\|_{tr} \leq c$

$Y_\Omega = M_\Omega$
Tensor Completion

\mathcal{T}_Ω is what we know

$$\min_{\mathcal{X}, \mathcal{Y}} : \frac{1}{2} \| \mathcal{X} - \mathcal{Y} \|^2_F$$

s.t. $\| \mathcal{X} \|_{tr} \leq c$

$\mathcal{Y}_\Omega = \mathcal{T}_\Omega$
Tensor Completion

\[
\min_{\mathcal{X}, Y} \quad \frac{1}{2n} \sum_{i=1}^{n} \|X^{(i)} - Y^{(i)}\|_F^2 \\
\text{s.t.} \|\mathcal{X}\|_{tr} \leq c \\
Y_\Omega = \mathcal{T}_\Omega
\]

What is the tensor trace norm?
Tensor Completion

\[
\min_{\mathcal{X}, \mathcal{Y}} \frac{1}{2n} \sum_{i=1}^{n} \| X(i) - Y(i) \|_F^2
\]

s.t. \[
\frac{1}{n} \sum_{i=1}^{n} \| X(i) \|_{tr} \leq c
\]

\[\mathcal{Y}_\Omega = \mathcal{T}_\Omega\]

Average of each unfolded trace norm.
Loosening it up:

\[
\min_{\mathcal{X}, \mathcal{Y}, M_i} \quad \frac{1}{2n} \sum_{i=1}^{n} \| M_i - Y(i) \|_F^2 \\
\text{s.t.} \quad \frac{1}{n} \sum_{i=1}^{n} \| M_i \|_{tr} \leq c \\
M_i = X(i) \text{ for } i = 1, 2, \ldots, n \\
\mathcal{Y}_\Omega = \mathcal{T}_\Omega
\]
Relaxing equality:

$$\min_{x, \mathbf{Y}, \mathbf{M}_i} : \frac{1}{2n} \sum_{i=1}^{n} \|\mathbf{M}_i - Y(i)\|_F^2$$

s.t. \(\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{M}_i\|_{tr} \leq c \)

\[\|\mathbf{M}_i - X(i)\|_F^2 \leq d_i, \text{ for } i = 1, 2, \ldots, n \]

\(\mathbf{Y}_\Omega = \mathcal{T}_\Omega \)
Tensor Completion

Converting to the dual:

$$\min_{\mathcal{X}, \mathcal{Y}, M_i} : \frac{1}{2n} \sum_{i=1}^{n} \| M_i - Y(i) \|_F^2$$

$$+ \frac{\gamma}{n} \sum_{i=1}^{n} \| M_i \|_{tr}$$

$$+ \frac{1}{2n} \sum_{i=1}^{n} \alpha_i \| M_i - X(i) \|_F^2$$

s.t. $\mathcal{Y}_\Omega = \mathcal{T}_\Omega$
Tensor Completion

Tossing in more weights:

\[
\min_{X,Y,M_i} : \frac{1}{2n} \sum_{i=1}^{n} \beta_i \| M_i - Y(i) \|_F^2 \\
+ \frac{1}{n} \sum_{i=1}^{n} \gamma_i \| M_i \|_{tr} \\
+ \frac{1}{2n} \sum_{i=1}^{n} \alpha_i \| M_i - X(i) \|_F^2 \\
\text{s.t. } Y_\Omega = T_\Omega
\]
Tensor Completion

Tossing in more weights:

\[
\min_{\mathcal{X}, \mathcal{Y}, M_i} : \frac{1}{2n} \sum_{i=1}^{n} \beta_i \| M_i - Y(i) \|^2_F \\
+ \frac{1}{n} \sum_{i=1}^{n} \gamma_i \| M_i \|_{tr} \\
+ \frac{1}{2n} \sum_{i=1}^{n} \alpha_i \| M_i - X(i) \|^2_F \\
\text{s.t } \mathcal{Y}_\Omega = \mathcal{T}_\Omega
\]

\(\mathcal{X} \) is totally free
Block Coordinate Descent

- divide into $n + 2$ blocks
- break up
\begin{align*}
\min_{x} & : \frac{1}{2} \sum_{i=1}^{n} \alpha_i \| M_i - X(i) \|_F^2 \\
\text{Solution is the weighted mean.}
\end{align*}
\[\min_{\mathcal{X}} : \frac{1}{2} \sum_{i=1}^{n} \alpha_i \| M_i - X_{(i)} \|_F^2 \]

(6)

Solution is the weighted mean.

\[\mathcal{X} = \frac{\sum_{i=1}^{n} \alpha_i \text{fold}_i(M_i)}{\sum_{i=1}^{n} \alpha_i} \]

(7)
Solution is the weighted mean with a mask

\[Y_{\bar{\Omega}} = \left(\frac{\sum_{i=1}^{n} \alpha_i \cdot fold_i(M_i)}{\sum_{i=1}^{n} \alpha_i} \right)_{\bar{\Omega}} \]
\[\min_{M_i} : \frac{\beta_i}{2} \| M_i - Y_{(i)} \|_F^2 + \frac{\gamma_i}{n} \| M_i \|_{tr} + \frac{\alpha_i}{2n} \| M_i - X_{(i)} \|_F^2 \]

(9)

Solution:

\[M = D_\tau(Z), \]

\[\tau = \frac{\gamma_i}{\alpha_i + \beta_i}, Z_i = \frac{\alpha_i X_{(i)} + \beta_i Y_{(i)}}{\alpha_i + \beta_i} \]

(10)

\[D_\tau(X) = U \Sigma_\tau V^\top \]

(11)
Compared Methods

- CP/Parafac
- Tucker
- SVD
Table 1: The RSE comparison on the synthetic data of size $40 \times 40 \times 40 \times 40$. P: Parafac model based heuristic algorithm; T: Tucker model heuristic algorithm; SVD: the heuristic algorithm based on the SVD; α_0, α_{10} and α_{50} denote the proposed LRTC algorithm with three different values of the parameter: $\alpha = 0$, $\alpha = 10$ and $\alpha = 50$, respectively. The top, middle and bottom parts of the table respond to the sample percentage: 3%, 20% and 80%, respectively.

<table>
<thead>
<tr>
<th>Rank</th>
<th>T</th>
<th>P</th>
<th>SVD</th>
<th>α_0</th>
<th>α_{10}</th>
<th>α_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,11,10,9</td>
<td>725</td>
<td>677</td>
<td>759</td>
<td>321</td>
<td>302</td>
<td>257</td>
</tr>
<tr>
<td>14,16,15,14</td>
<td>892</td>
<td>901</td>
<td>863</td>
<td>72.5</td>
<td>70.2</td>
<td>65.3</td>
</tr>
<tr>
<td>20,22,21,19</td>
<td>1665</td>
<td>1302</td>
<td>1474</td>
<td>50.1</td>
<td>46.9</td>
<td>36.2</td>
</tr>
<tr>
<td>24,25,25,26</td>
<td>2367</td>
<td>1987</td>
<td>2115</td>
<td>40.6</td>
<td>38.7</td>
<td>38.7</td>
</tr>
<tr>
<td>10,11,9,11</td>
<td>371</td>
<td>234</td>
<td>347</td>
<td>16.3</td>
<td>14.2</td>
<td>12.7</td>
</tr>
<tr>
<td>15,15,16,14</td>
<td>728</td>
<td>530</td>
<td>611</td>
<td>8.92</td>
<td>8.41</td>
<td>8.23</td>
</tr>
<tr>
<td>21,19,21,20</td>
<td>1093</td>
<td>982</td>
<td>895</td>
<td>8.48</td>
<td>8.56</td>
<td>8.48</td>
</tr>
<tr>
<td>24,25,26,26</td>
<td>1395</td>
<td>1202</td>
<td>1260</td>
<td>40.7</td>
<td>34.3</td>
<td>13.7</td>
</tr>
<tr>
<td>10,9,11,9</td>
<td>145</td>
<td>45</td>
<td>136</td>
<td>3.08</td>
<td>4.01</td>
<td>3.12</td>
</tr>
<tr>
<td>15,14,14,16</td>
<td>326</td>
<td>65</td>
<td>217</td>
<td>2.17</td>
<td>2.05</td>
<td>2.35</td>
</tr>
<tr>
<td>21,20,19,21</td>
<td>518</td>
<td>307</td>
<td>402</td>
<td>1.36</td>
<td>2.06</td>
<td>1.27</td>
</tr>
<tr>
<td>24,25,25,26</td>
<td>685</td>
<td>509</td>
<td>551</td>
<td>1.41</td>
<td>1.59</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Table 2: The RSE comparison on the brain MRI data of size $181 \times 217 \times 181$. P: Parafac model based heuristic algorithm; T: Tucker model heuristic algorithm; SVD: the heuristic algorithm based on the SVD; α_0, α_{10} and α_{50} denote the proposed LRTC algorithm with three different values of the parameter: $\alpha = 0$, $\alpha = 10$ and $\alpha = 50$, respectively. The top and bottom parts respond to the sample percentage: 20% and 80%, respectively.

<table>
<thead>
<tr>
<th>Rank</th>
<th>T</th>
<th>P</th>
<th>SVD</th>
<th>α_0</th>
<th>α_{10}</th>
<th>α_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>21,24,23</td>
<td>311</td>
<td>234</td>
<td>274</td>
<td>210</td>
<td>193</td>
<td>177</td>
</tr>
<tr>
<td>38,41,37</td>
<td>1259</td>
<td>1001</td>
<td>1322</td>
<td>148</td>
<td>141</td>
<td>121</td>
</tr>
<tr>
<td>90,93,87</td>
<td>4982</td>
<td>3982</td>
<td>5025</td>
<td>61.0</td>
<td>53.7</td>
<td>42.8</td>
</tr>
<tr>
<td>21,24,23</td>
<td>12.3</td>
<td>8.64</td>
<td>5.48</td>
<td>29.4</td>
<td>12.8</td>
<td>13.5</td>
</tr>
<tr>
<td>35,42,36</td>
<td>179</td>
<td>153</td>
<td>99</td>
<td>4.41</td>
<td>5.32</td>
<td>5.69</td>
</tr>
<tr>
<td>39,48,41</td>
<td>279</td>
<td>345</td>
<td>199</td>
<td>0.72</td>
<td>1.05</td>
<td>1.26</td>
</tr>
<tr>
<td>45,55,47</td>
<td>606</td>
<td>523</td>
<td>513</td>
<td>1.22</td>
<td>1.35</td>
<td>1.06</td>
</tr>
</tbody>
</table>
Pretty Results

Figure 2: The left image (one slice of the MRI) is the original; we randomly select pixels for removal shown in white in the middle image; the right image is the result of the proposed completion algorithm.

Figure 3: Facade in-painting. The top image is the original image; we select the lamp and satellite dishes together with a large set of randomly positioned squares as the missing parts shown in white in the middle image; the bottom image is the result of the proposed completion algorithm.

Figure 4: Video completion. The left image (one frame of the video) is the original; we randomly select pixels for removal shown in white in the middle image; the right image is the result of the proposed LTRC algorithm.
Figure 5: The top left image is a rendering of an original phong BRDF; we randomly select 90% of the pixels for removal shown in white in the top right image; the bottom image is the result of the proposed LRTC algorithm.
Where is this useful?

\[J. \text{ Liu et al., 2013.} \]
Where is this useful?

Images?

\(^2\text{J. Liu et al., 2013.}\)
Where is this useful?

Images?
follow-up paper2

2J. Liu et al., 2013.
Pathological Cases

\[\begin{bmatrix}
N \\
\end{bmatrix} = \text{rank } n \]

\[\begin{bmatrix}
\begin{array}{c}
\vdots \\
\end{array}
\end{bmatrix} = \text{rank } 1 \]

\[\text{rot } \frac{\pi}{4} \]

\[\text{Noise} \]

[Graphs and matrices with annotations]

19 / 24
Shopping for alternatives

\(^3\)H. Liu et al., 2019.
CoSTCo3 Takes in indices, spits out value at those indices

Figure 2: Model architecture of CoSTCo.

Uses relus and 2d convs. Seems interesting for non-spatially dependent data.

3H. Liu et al., 2019.
Implicit Functions

Fourier Features4, NeRF5 and its many children, some conditioned children6.

Allow interpolation for free. Implicit neural functions for continuous images7 and sinusoidal activation functions Implicit Neural Representations with Periodic Activation Functions8

4Tancik et al., n.d.
5Mildenhall et al., 2020.
6Yu et al., 2020.
7Skorokhodov, Ignatyev, and Elhoseiny, 2020.
8Sitzmann et al., 2020.
References I

Tancik, Matthew et al. (n.d.). “Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains”. In: (), p. 11.