Tensorising Neural Networks Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry Vetrov

UBC MLRG 2020 Winter Term 1 Presented by Gursimran Singh (simar)

*Slides adapted from various sources in references

Why tensors?

Many objects in machine learning can be treated as tensors:

- Data cubes (RGB images, videos, different shapes/orientations)
- Weight matrices can be treated as tensors, both in Conv-layers and fully-connected layers

Using tensor decompositions we can compress data!

Motivation

Problem: Neural network is too large to fit into memory.

Approaches:

- Distributed neural network
 - distribute parameters
 - challenge: training [Elastic Averaging SGD (NIPS'15)]
- Model compression
 - reduce required space

Problem Formulation

- Given $M\times N$ weight matrix W of a fully-connected layer

$$o(x;\theta) = f(W^T x + b)$$

- Goal
 - reduce space complexity
- Requirement
 - compact with back-propagation

$$W(i,j) = \sum_{r=1}^{R} U(i,r)\Sigma(r,r)V(j,r)^{T}$$

By low-rank SVD
$$W = \sum_{r=1}^{R} A_r B_r^T$$

Instead of updating *W*, $\frac{\partial E}{\partial W}$

update components

∂E	∂E
$\overline{\partial A_r}$	$\overline{\partial B_r}$

To integrated with back-propagation

Simple equations to compute gradients

TT-Decomposition: Two ideas to do better

Low-rank SVD works but can we do better than that?

Two key Ideas:

```
recursively applying low-rank SVD 1) r(M+N) \leq MN
```

Low-rank SVD works but can we do better than that?

Two key Ideas:

Low-rank SVD works but can we do better than that?

Two key Ideas:

gets thinner and thinner

Low-rank SVD works but can we do better than that?

Two key Ideas:

```
recursively applying low-rank SVD 1) r(M+N) \leq MN
```

2) if matrix is too thin => reshape

$$\frac{M}{m} + mN \le M + N$$

Low-rank SVD works but can we do better than that?

Two key Ideas:

```
recursively applying low-rank SVD 1) r(M+N) \leq MN
```

2) if matrix is too thin => reshape

$$\frac{M}{m} + mN \le M + N$$

Given two matrices X,Y with fixed total elements XY = C Min when X~=Y; func -> C/X+X Eg - 50+2 = 52 25+4 = 29 (less than 52)

Combination of the two ideas we discussed

If we want to TT-decompose a matrix

First, need to reshape it into a

tensor
$$\mathcal{W}: 2 \times 2 \times 2 \times 2 \times 5$$

unfold $\mathcal W$ by 1st dimension

 $2 \times 2 \times 2 \times 5$

and apply low-rank SVD

2

 $2 \times 2 \times 2 \times 5$

2

reshape $2 \times 2 \times 2 \times 5$ r_1 \approx r G_1 2 saved into $2 \times 2 \times 5$ $r_1 \times 2$

can approximate

fold into core tensors

$$\mathcal{A}(\boldsymbol{i}) = G_1[i_1]G_2[i_2]\cdots G_d[i_d]$$

Tensor-Train format

TT-rank = SVD decomposition rank

 $(r_1, r_2, r_3, r_4, r_5)$

TT-SVD algorithm for TT-Decomposition

Suppose, we want to approximate:

$$A(i_1,\ldots,i_d)\approx G_1(i_1)G_2(i_2)G_3(i_3)G_4(i_4)$$

- 1. A_1 is an $n_1 \times (n_2 n_3 n_4)$ reshape of A.
- 2. $U_1, S_1, V_1 = \mathrm{SVD}(A_1)$, U_1 is $n_1 \times r_1$ first core
- 3. $A_2=S_1V_1^*$, A_2 is $r_1\times(n_2n_3n_4).$ Reshape it into a $(r_1n_2)\times(n_3n_4)$ matrix
- 4. Compute its SVD: $U_2, S_2, V_2 = \text{SVD}(A_2),$ $U_2 \text{ is } (r_1n_2) \times r_2 - \text{ second core, } V_2 \text{ is } r_2 \times (n_3n_4)$ 5. $A_3 = S_2V_2^*$,
- 6. Compute its SVD: $U_3S_3V_3=\text{SVD}(A_3)\text{, }U_3\text{ is }(r_2n_3)\times r_3\text{, }V_3\text{ is }r_3\times n_4$

Properties of TT-decomposition

- Has been shown that for an arbitrary tensor A a TT-representation exists but is not unique.
 - It's natural to seek a representation with the lowest ranks
- TT-representation is very efficient in terms of memory if ranks are small

$$\sum_{k=1}^d n_k \operatorname{r}_{k-1} \operatorname{r}_k$$
 vs $\prod_{k=1}^d n_k$

- Efficient rounding to prevent explosion of TT-Ranks
- Efficiently perform several types of operations on tensors
 - Addition/ multiplication of constant
 - Summation and the entrywise product of tensors (results TT-tensors with more rank)
 - Global characteristics sum of all elements and the Frobenius norm
 - Sum two TT-matrices
 - Matrix-by-vector (matrix-by-matrix) product

Properties of TT-decomposition

Operation	Output rank	Complexity
$\mathbf{A} \cdot \text{const}$	r _A	$O(dr_A))$
$\mathbf{A} + const$	$r_A + 1$	$O(dnr_A^2))$
$\mathbf{A} + \mathbf{B}$	$r_A + r_B$	$O(dn(r_A + r_B)^2)$
A ⊙ B	r _A r _B	$O(dnr_A^2 r_B^2)$
$sum(\mathbf{A})$	_	$O(dnr_A^2)$
• • •		

Tensor network diagrams

N-index tensor = shape with N lines

$$T^{s_1 s_2 s_3 \cdots s_N} = \underbrace{ \begin{array}{c} s_1 s_2 s_3 s_4 \cdots \cdots s_N \\ 1 & 1 & 1 & 1 \\ \end{array}}$$

Low-order tensor examples

*

Matrix-vector multiplication

Matrix-matrix multiplication

Tensor contraction

$$\sum_{k=1}^{K} a_{i,j,k} \ b_{k,l,m,p} = c_{i,j,l,m,p}$$

Formal definition: TT Decomposition of Tensor

Tensor **A** can be decomposed to TT format as:

$$\mathbf{A}(i_1,i_2,\ldots,i_d) = \mathbf{G_1}[i_1]\mathbf{G_2}[i_2]\ldots\mathbf{G_d}[i_d]$$

Where:

$$\mathbf{G_k}[i_k] \in {\rm I\!R}^{r_{k-1} imes r_k} \hspace{0.1 in}, \hspace{0.1 in} r_0 = r_d = 1$$

TT-cores: G_k TT-ranks: r_k TT max rank $r = max \ r_k$, $k = 0, \dots, d$

Compression:

$$O\!\left(n^d
ight) o O\!\left(ndr^2
ight)$$

$$\sum_{k=1}^{d} n_k r_{k-1} r_k = O(ndr^2)$$

Formal definition: TT Decomposition of Tensor

Tensor **A** can be decomposed to TT format as:

$$\mathbf{A}(i_1,i_2,\ldots,i_d) = \mathbf{G_1}[i_1]\mathbf{G_2}[i_2]\ldots\mathbf{G_d}[i_d]$$

$$A = \bigcup_{\substack{r_1 \\ r_1 \\ r_1 \\ r_2 \\ r_2 \\ r_3 \\ r_3 \\ r_4 \\ r_4 \\ r_6 \\ r$$

Where:

$$\mathbf{G_k}[i_k] \in {\rm I\!R}^{r_{k-1} imes r_k} \hspace{0.1 in}, \hspace{0.1 in} r_0 = r_d = 1$$

TT-cores: G_k TT-ranks: r_k TT max rank $r = max \; r_k$, $k = 0, \dots, d$

Compression:

$$O\!\left(n^d
ight) o O\!\left(ndr^2
ight)$$

$$\sum_{k=1}^{d} n_k r_{k-1} r_k = O(ndr^2)$$

Formal definition: TT-Vector

Where: $N=\Pi_{k=1}^d n_k$

We can represent it using a tensor B: $B \in {\rm I\!R}^{{
m n}_1 {
m x} {
m n}_2 {
m x} ... {
m x} {
m n}_{
m d}$

We can establish a bijection: $\mu: l \in \{1, \dots, N\} \mapsto (\mu_1(l), \dots, \mu_d(l))$ Where: Where: $B((\mu_1(l), \dots, \mu_d(l)) = b_l)$

$$\mu_k(l) \in \{1,\ldots,n_k\}$$

Step1: Convert the large matrix into a tensor Step2: Decompose into TT-representation to get a TT-vector

Formal definition: TT-Vector network diagram

Formal definition: TT-Matrix

 $A\in {\rm I\!R}^{
m MxN}$

Consider a matrix A:

Where:

And:

$$M=\Pi_{k=1}^d m_k$$

$$N=\Pi_{k=1}^d n_k$$

7

We can establish the bijections:
$$u:t\in\{1,\ldots,M\}\mapsto(
u_1(t),\ldots,
u_d(t))$$
 And: $\mu:l\in\{1,\ldots,N\}\mapsto(\mu_1(l),\ldots,\mu_d(l))$

1

Where:

$$\boldsymbol{\nu}(t) = (\nu_1(t), \dots, \nu_d(t)) \text{ and } \boldsymbol{\mu}(\ell) = (\mu_1(\ell), \dots, \mu_d(\ell))$$

Formal definition: TT-Matrix

We can represent using a tensor W:

 $W \in {\rm I\!R}^{{\rm m_1n_1xm_2n_2x...xm_dn_d}}$

Where:

$$W(t,\ell) = \mathcal{W}((\nu_1(t),\mu_1(\ell)),\ldots,(\nu_d(t),\mu_d(\ell)))$$

Cores:
$$m{G}_k[
u_k(t),\mu_k(\ell)],\ k\ =\ 1,\ldots,d,$$
Index: $(
u_k(t),\mu_k(\ell))$

Formal definition: TT-Matrix network diagram

TensorNet:

TT-layer is a fully- connected layer with the weight matrix stored in the TT-format.

- A neural network with one or more TT-layers as TensorNet.

 j_1,\ldots,j_d

A TT-layer transforms a *d*-dimensional tensor \mathcal{X} (formed from the corresponding vector x) to the *d*-dimensional tensor \mathcal{Y} (which correspond to the output vector y). We assume that the weight matrix W is represented in the TT-format with the cores $G_k[i_k, j_k]$.

TensorNet:

TT-layer is a fully- connected layer with the weight matrix stored in the TT-format.

- A neural network with one or more TT-layers as TensorNet.

TensorNet:

TT-layer is a fully- connected layer with the weight matrix stored in the TT-format.

- A neural network with one or more TT-layers as TensorNet.

TensorNet network diagram

Backpropagation

$$\frac{\partial L}{\partial \boldsymbol{x}} = \boldsymbol{W}^{\mathsf{T}} \frac{\partial L}{\partial \boldsymbol{y}}, \quad \frac{\partial L}{\partial \boldsymbol{W}} = \frac{\partial L}{\partial \boldsymbol{y}} \boldsymbol{x}^{\mathsf{T}}, \quad \frac{\partial L}{\partial \boldsymbol{b}} = \frac{\partial L}{\partial \boldsymbol{y}}.$$

layer. To compute the gradient of the loss function w.r.t. the bias vector \boldsymbol{b} and w.r.t. the input vector \boldsymbol{x} one can use equations (6). The latter can be applied using the matrix-by-vector product (where the matrix is in the TT-format) with the complexity of $O(dr^2n \max\{m,n\}^d) = O(dr^2n \max\{M,N\})$.

$$\frac{\partial L}{\underbrace{\partial \boldsymbol{G}_k[\tilde{i}_k,\tilde{j}_k]}_{\mathbf{r}_{k-1}\times\mathbf{r}_k}} = \sum_{\boldsymbol{i}} \frac{\partial L}{\partial \mathcal{Y}(\boldsymbol{i})} \frac{\partial \mathcal{Y}(\boldsymbol{i})}{\partial \boldsymbol{G}_k[\tilde{i}_k,\tilde{j}_k]}. \qquad O(M \, \mathbf{r}_{k-1} \, \mathbf{r}_k)$$

Backpropagation

backward pass

 $O(MN) \rightarrow O(d^2r^4m\max\{M,N\})$

Experimental results: MNIST

• Small: MNIST

number of parameters in the weight matrix of the first layer

TT-Layers provide much better flexibility than the matrix rank keeping same compression level TT-layers with too small number of values for each tensor dimension and with too few dimensions **perform worse than their more balanced counterparts**

Experimental results: ImageNet

Architecture	TT-layers compr.	vgg-16 compr.	vgg-19 compr.	vgg-16 top 1	vgg-16 top 5	vgg-19 top 1	vgg-19 top 5
FC FC FC TT4 FC FC	$\frac{1}{50972}$	$\begin{array}{c}1\\3.9\end{array}$	$1 \\ 3.5$	$\begin{array}{c} 30.9\\ 31.2 \end{array}$	$\begin{array}{c} 11.2 \\ 11.2 \end{array}$	$\begin{array}{c} 29.0\\ 29.8\end{array}$	$\begin{array}{c} 10.1 \\ 10.4 \end{array}$
TT2 FC FC	$\frac{50972}{194622}$	3.9 3.9	3.5	$\frac{31.2}{31.5}$	11.2 11.5	$\frac{29.8}{30.4}$	10.4 10.9
TT1 FC FC	713614	3.9	3.5	33.3	12.8	31.9	11.8
TT4 TT4 FC	37732	7.4	6		12.3	31.6	
MR1 FC FC	3521	3.9	$\frac{3.5}{2.5}$	99.5	97.6 52.0	99.8	99 52.4
MR5 FC FC MR50 FC FC	704 70	$\begin{array}{c} 3.9\\ 3.7\end{array}$	$\begin{array}{c} 3.5\\ 3.4\end{array}$	$\begin{array}{c} 81.7\\ 36.7\end{array}$	$\begin{array}{c} 53.9 \\ 14.9 \end{array}$	$\begin{array}{c} 79.1 \\ 34.5 \end{array}$	$\begin{array}{c} 52.4 \\ 15.8 \end{array}$

Table 2: Substituting the fully-connected layers with the TT-layers in vgg-16 and vgg-19 networks on the ImageNet dataset. FC stands for a fully-connected layer; TT \Box stands for a TT-layer with all the TT-ranks equal " \Box "; MR \Box stands for a fully-connected layer with the matrix rank restricted to " \Box ". We report the compression rate of the TT-layers matrices and of the whole network in the second, third and fourth columns.

Great compression factor of 194622 with 0.3 accuracy drop

Experimental results: ImageNet

Туре	1 im. time (ms)	100 im. time (ms)
CPU fully-connected layer	16.1	97.2
CPU fully-connected layer CPU TT-layer	1.2	94.7
GPU fully-connected layer	2.7	33
GPU TT-layer	1.9	12.9

Table 3: Inference time for a 25088×4096 fully-connected layer and its corresponding TT-layer with all the TT-ranks equal 4. The memory usage for feeding forward one image is 392MB for the fully-connected layer and 0.766MB for the TT-layer.

TT-Layer has better inference time in comparison to FC-Layer

Challenges

- Input data may not admit low-rank TT approximation (small r)
- Nonlinear activation destroy TT format

Similar works

Lebedev V. et al. Speeding-up convolutional neural networks using fine-tuned cp-decomposition arXiv:1412.6553.

8.5x speedup with 1% accuracy drop

Recent example: Yang, Yinchong, Denis Krompass, and Volker Tresp. "Tensor-Train Recurrent Neural Networks for Video Classification." arXiv:1707.01786

3000 parameters in TT-LSTM vs 71,884,800 in LSTM Accuracy is better due to additional regularisation

Thanks

References

[1] Tensorizing Neural Network; NIPS 2015 slides [link]

[2] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry Vetrov, Tensorizing Neural Networks; NIPS 2015

[3] Slides by Moussa Traore Mehraveh Javan [link]

[4] Tensor Train in machine learning Slides [link]

[5] More slides -> [<u>Link1</u>], [<u>Link2</u>]

[6] Lecture Notes [Link]