Tensorising Neural Networks

Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry Vetrov

UBC MLRG 2020 Winter Term 1

Presented by Gursimran Singh (simar)

Why tensors?

Many objects in machine learning can be treated as tensors:

- Data cubes (RGB images, videos, different shapes/orientations)
- Weight matrices can be treated as tensors, both in Conv-layers and fully-connected layers

Using tensor decompositions we can compress data!

Motivation

Problem: Neural network is too large to fit into memory.

Approaches:

- Distributed neural network
- distribute parameters
- challenge: training [Elastic Averaging SGD (NIPS'15)]
- Model compression
- reduce required space

Problem Formulation

- Given $M \times N$ weight matrix W of a fullyconnected layer

$$
o(x ; \theta)=f\left(W^{T} x+b\right)
$$

- Goal
- reduce space complexity
- Requirement
- compact with back-propagation

Naive Method: Low-rank SVD

$$
W(i, j)=\sum_{r=1}^{R} U(i, r) \Sigma(r, r) V(j, r)^{T}
$$

Naive Method: Low-rank SVD

Naive Method: Low-rank SVD

By low-rank SVD $\quad W=\sum_{r=1}^{R} A_{r} B_{r}{ }^{T}$
Instead of updating W,

$$
\frac{\partial E}{\partial W}
$$

update components

$$
\frac{\partial E}{\partial A_{r}} \quad \frac{\partial E}{\partial B_{r}}
$$

Naive Method: Low-rank SVD

- To integrated with back-propagation

$$
o=f\left(W^{T} x+b\right)
$$

- have calculate 3 gradients:

$$
W=\sum_{r=1}^{R} A_{r} B_{r}^{T}
$$

- output wrt input $\frac{\partial o}{\partial x}$
No change in these
- output wrt parameter

$$
\begin{aligned}
\frac{\partial o}{\partial A_{r}} & =f^{\prime}\left(W^{T} x+b\right) B_{r} \mathbf{1}^{T} x \\
\frac{\partial o}{\partial B_{r}} & =f^{\prime}\left(W^{T} x+b\right) \mathbf{1} A_{r}{ }^{T} x
\end{aligned}
$$

Simple equations to compute gradients

TT-Decomposition: Two ideas to do better

Low-rank SVD works but can we do better than that?
Two key Ideas:
recursively applying low-rank SVD
1)

$$
r(M+N) \leq M N
$$

Two ideas to do better

Low-rank SVD works but can we do better than that?
Two key Ideas:
recursively applying low-rank SVD
1)

$$
r(M+N) \leq M N
$$

Two ideas to do better

Low-rank SVD works but can we do better than that?
Two key Ideas:
recursively applying low-rank SVD
1)

$$
r(M+N) \leq M N
$$

Two ideas to do better

Low-rank SVD works but can we do better than that?
Two key Ideas:
recursively applying low-rank SVD
1)

$$
r(M+N) \leq M N
$$

2) if matrix is too thin => reshape

$$
\frac{M}{m}+m N \leq M+N
$$

Two ideas to do better

Low-rank SVD works but can we do better than that?
Two key Ideas:
recursively applying low-rank SVD
1)

$$
r(M+N) \leq M N
$$

2) if matrix is too thin => reshape

$$
\frac{M}{m}+m N \leq M+N
$$

Given two matrices X, Y with fixed total elements XY = C
Min when $X \sim=Y$; func -> $C / X+X$
Eg-50+2 = 52
$25+4=29$ (less than 52)

Tensor-Train Decomposition

Combination of the two ideas we discussed
If we want to TT-decompose a matrix

First, need to reshape it into a

```
tensor \mathcal{W : 2 }2\times2\times2\times2\times5
```


Tensor-Train Decomposition

unfold \mathcal{W} by $1^{\text {st }}$ dimension

Tensor-Train Decomposition

Tensor-Train Decomposition

Tensor-Train Decomposition

Tensor-Train Decomposition

Tensor-Train Decomposition

can approximate

$$
\mathcal{W}: 2 \times 2 \times 2 \times 2 \times 5
$$

Tensor-Train Decomposition

fold into core tensors

Tensor-Train Decomposition

$$
\begin{gathered}
\mathcal{W}\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right) \\
={ }_{2}^{i_{1}} r_{G_{1}}^{2} r_{1}^{2} \\
r_{2} \\
\mathcal{A}(\boldsymbol{i})=G_{1}\left[i_{1}\right] G_{2}\left[i_{2}\right] \cdots G_{d}\left[i_{d}\right] \\
\text { Tensor-Train format }
\end{gathered}
$$

TT-rank = SVD decomposition rank

$$
\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right)
$$

TT-SVD algorithm for TT-Decomposition

Suppose, we want to approximate:

$$
A\left(i_{1}, \ldots, i_{d}\right) \approx G_{1}\left(i_{1}\right) G_{2}\left(i_{2}\right) G_{3}\left(i_{3}\right) G_{4}\left(i_{4}\right)
$$

1. A_{1} is an $n_{1} \times\left(n_{2} n_{3} n_{4}\right)$ reshape of A .
2. $U_{1}, S_{1}, V_{1}=\operatorname{SVD}\left(A_{1}\right), U_{1}$ is $n_{1} \times r_{1}$ - first core
3. $A_{2}=S_{1} V_{1}^{*}, A_{2}$ is $r_{1} \times\left(n_{2} n_{3} n_{4}\right)$.

Reshape it into a $\left(r_{1} n_{2}\right) \times\left(n_{3} n_{4}\right)$ matrix
4. Compute its SVD:
$U_{2}, S_{2}, V_{2}=\operatorname{SVD}\left(A_{2}\right)$,
U_{2} is $\left(r_{1} n_{2}\right) \times r_{2}$ - second core, V_{2} is $r_{2} \times\left(n_{3} n_{4}\right)$
5. $A_{3}=S_{2} V_{2}^{*}$,
6. Compute its SVD:

$$
\begin{aligned}
& U_{3} S_{3} V_{3}=\operatorname{SVD}\left(A_{3}\right), U_{3} \text { is }\left(r_{2} n_{3}\right) \times r_{3}, V_{3} \text { is } \\
& r_{3} \times n_{4}
\end{aligned}
$$

Properties of TT-decomposition

- Has been shown that for an arbitrary tensor A a TT-representation exists but is not unique.
- It's natural to seek a representation with the lowest ranks
- TT-representation is very efficient in terms of memory if ranks are small

$$
\sum_{k=1}^{d} n_{k} \overline{\mathrm{r}}_{k-1} \mathrm{r}_{k} \text { vs } \prod_{k=1}^{d} n_{k}
$$

- Efficient rounding to prevent explosion of TT-Ranks
- Efficiently perform several types of operations on tensors
- Addition/ multiplication of constant
- Summation and the entrywise product of tensors (results TT-tensors with more rank)
- Global characteristics - sum of all elements and the Frobenius norm
- Sum two TT-matrices
- Matrix-by-vector (matrix-by-matrix) product

Properties of TT-decomposition

Operation	Output rank	Complexity
$\mathbf{A} \cdot$ const	r_{A}	$\left.O\left(d r_{A}\right)\right)$
$\mathbf{A}+$ const	$r_{A}+1$	$\left.O\left(d n r_{A}^{2}\right)\right)$
$\mathbf{A}+\mathbf{B}$	$r_{A}+r_{B}$	$O\left(d n\left(r_{A}+r_{B}\right)^{2}\right)$
$\mathbf{A} \odot \mathbf{B}$	$r_{A} r_{B}$	$O\left(d n r_{A}^{2} r_{B}^{2}\right)$
$\operatorname{sum}(\mathbf{A})$	-	$O\left(d n r_{A}^{2}\right)$

Tensor network diagrams

N -index tensor $=$ shape with N lines

Low-order tensor examples

v_{j}
$M_{i j}$
$T_{i j k}$

- Matrix-vector multiplication

$$
=\frac{\mathbf{b}=\mathbf{A x}}{I}
$$

- Matrix-matrix multiplication

- Tensor contraction

$$
\sum_{k=1}^{K} a_{i, j, k} b_{k, l, m, p}=c_{i, j, l, m, p}
$$

Formal definition: TT Decomposition of Tensor

Tensor A can be decomposed to TT format as:

$$
\mathbf{A}\left(i_{1}, i_{2}, \ldots, i_{d}\right)=\mathbf{G}_{\mathbf{1}}\left[i_{1}\right] \mathbf{G}_{\mathbf{2}}\left[i_{2}\right] \ldots \mathbf{G}_{\mathbf{d}}\left[i_{d}\right]
$$

Where:

$$
\mathbf{G}_{\mathbf{k}}\left[i_{k}\right] \in \mathbb{R}^{r_{k-1} \times r_{k}} \quad, \quad r_{0}=r_{d}=1
$$

- T-cores: G_{k}
- TT-ranks: $\quad r_{k}$
- TT max rank $r=\max r_{k}, k=0, \ldots, d$

Compression:

$$
\begin{gathered}
O\left(n^{d}\right) \rightarrow O\left(n d r^{2}\right) \\
\sum_{k=1}^{d} n_{k} r_{k-1} r_{k}=O\left(n d r^{2}\right)
\end{gathered}
$$

Formal definition: TT Decomposition of Tensor

Tensor A can be decomposed to TT format as:

$$
\begin{equation*}
\mathbf{A}\left(i_{1}, i_{2}, \ldots, i_{d}\right)=\mathbf{G}_{\mathbf{1}}\left[i_{1}\right] \mathbf{G}_{\mathbf{2}}\left[i_{2}\right] \ldots \mathbf{G}_{\mathbf{d}}\left[i_{d}\right] \tag{d}
\end{equation*}
$$

Where:

$$
\mathbf{G}_{\mathbf{k}}\left[i_{k}\right] \in \mathbb{R}^{r_{k-1} \times r_{k}} \quad, \quad r_{0}=r_{d}=1
$$

- T-cores:
G_{k}
- T-ranks: $\quad r_{k}$
- TT max rank $r=\max r_{k}, k=0, \ldots, d$

Compression:

$$
\begin{gathered}
O\left(n^{d}\right) \rightarrow O\left(n d r^{2}\right) \\
\sum_{k=1}^{d} n_{k} r_{k-1} r_{k}=O\left(n d r^{2}\right)
\end{gathered}
$$

Formal definition: TT-Vector

Consider a vector b b $\in \mathbb{R}^{\mathrm{N}}$
Where: $N=\Pi_{k=1}^{d} n_{k}$

We can represent it
using a tensor B :
$B \in \mathbb{R}^{\mathrm{n}_{1} \mathrm{xn}_{2} \mathrm{x} \ldots \mathrm{xn}_{\mathrm{d}}}$

We can establish a bijection:

$$
\mu: l \in\{1, \ldots, N\} \mapsto\left(\mu_{1}(l), \ldots, \mu_{d}(l)\right) \text { Where: }
$$

Where:

$$
B\left(\left(\mu_{1}(l), \ldots, \mu_{d}(l)\right)=b_{l}\right.
$$

$$
\mu_{k}(l) \in\left\{1, \ldots, n_{k}\right\}
$$

Step1: Convert the large matrix into a tensor
Step2: Decompose into TT-representation to get a TT-vector

Formal definition: TT-Vector network diagram

$$
b(l)=B(\left(\mu_{1}(l), \ldots, \mu_{d}(l)\right)=\underbrace{G_{1}\left[\mu_{1}(l)\right] \underbrace{G_{2}}_{r_{1} X r_{2}}\left[\mu_{2}(l)\right]}_{1 X r_{1}} \ldots \underbrace{G_{d}\left[\mu_{d}(l)\right]}_{r_{d-1} X 1}
$$

Formal definition: TT-Matrix

Consider a matrix A:
Where: $\quad A \in \mathbb{R}^{\mathrm{MxN}}$

$$
\text { And: } \quad M=\Pi_{k=1}^{d} m_{k} \quad, \quad N=\Pi_{k=1}^{d} n_{k}
$$

We can establish the bijections:

$$
\nu: t \in\{1, \ldots, M\} \mapsto\left(\nu_{1}(t), \ldots, \nu_{d}(t)\right)
$$

And:

$$
\mu: l \in\{1, \ldots, N\} \mapsto\left(\mu_{1}(l), \ldots, \mu_{d}(l)\right)
$$

Where:

$$
\boldsymbol{\nu}(t)=\left(\nu_{1}(t), \ldots, \nu_{d}(t)\right) \text { and } \boldsymbol{\mu}(\ell)=\left(\mu_{1}(\ell), \ldots, \mu_{d}(\ell)\right)
$$

Formal definition: TT-Matrix

We can represent using a tensor W :

$$
W \in \mathbb{R}^{\mathrm{m}_{1} \mathrm{n}_{1} \mathrm{xm}_{2} \mathrm{n}_{2} \mathrm{x} \ldots \mathrm{xm}_{\mathrm{d}} \mathrm{n}_{\mathrm{d}}}
$$

Where:

$$
W(t, \ell)=\mathcal{W}\left(\left(\nu_{1}(t), \mu_{1}(\ell)\right), \ldots,\left(\nu_{d}(t), \mu_{d}(\ell)\right)\right)
$$

Cores: $\quad \boldsymbol{G}_{k}\left[\nu_{k}(t), \mu_{k}(\ell)\right], k=1, \ldots, d$,
Index: $\quad\left(\nu_{k}(t), \mu_{k}(\ell)\right)$

Formal definition: TT-Matrix network diagram

TensorNet:

TT-layer is a fully- connected layer with the weight matrix stored in the TT-format.

- A neural network with one or more TT-layers as TensorNet.

FC-layer:

TT-Layer

$$
\mathcal{Y}\left(i_{1}, \ldots, i_{d}\right)=\sum_{j_{1}, \ldots, j_{d}} \boldsymbol{G}_{1}\left[i_{1}, j_{1}\right] \ldots \boldsymbol{G}_{d}\left[i_{d}, j_{d}\right] \mathcal{X}\left(j_{1}, \ldots, j_{d}\right)+\mathcal{B}\left(i_{1}, \ldots, i_{d}\right)
$$

A TT-layer transforms a d-dimensional tensor \mathcal{X} (formed from the corresponding vector \boldsymbol{x}) to the d dimensional tensor \mathcal{Y} (which correspond to the output vector \boldsymbol{y}). We assume that the weight matrix \boldsymbol{W} is represented in the TT-format with the cores $\boldsymbol{G}_{k}\left[i_{k}, j_{k}\right]$.

TensorNet:

TT-layer is a fully- connected layer with the weight matrix stored in the TT-format.

- A neural network with one or more TT-layers as TensorNet.

FC-layer:

TT-Layer

$$
\mathcal{Y}\left(i_{1}, \ldots, i_{d}\right)=\sum_{j_{1}, \ldots, j_{d}} \boldsymbol{G}_{1}\left[i_{1}, j_{1}\right] \ldots \boldsymbol{G}_{d}\left[i_{d}, j_{d}\right] \mathcal{X}\left(j_{1}, \ldots, j_{d}\right)+\mathcal{B}\left(i_{1}, \ldots, i_{d}\right)
$$

TensorNet:

TT-layer is a fully- connected layer with the weight matrix stored in the TT-format.

- A neural network with one or more TT-layers as TensorNet.

FC-layer:

$$
\underbrace{\mathbf{y}}_{M}=\underbrace{\mathbf{W}}_{M \times N} \underbrace{\mathbf{x}}_{N}+\underbrace{\mathbf{b}}_{M}
$$

TT-Layer

$$
\mathcal{Y}\left(i_{1}, \ldots, i_{d}\right)=\sum_{j_{1}, \ldots, j_{d}} \boldsymbol{G}_{1}\left[i_{1}, j_{1}\right] \ldots \boldsymbol{G}_{d}\left[i_{d}, j_{d}\right] \mathcal{X}\left(j_{1}, \ldots, j_{d}\right)+\mathcal{B}\left(i_{1}, \ldots, i_{d}\right)
$$

Forward pass: $\left.\quad O(M N) \rightarrow O\left(d r^{2} m^{\max (\mathrm{m}} \overline{\mathrm{k})} \max ^{2} M, N\right\}\right)$

TensorNet network diagram

Backpropagation

$$
\frac{\partial L}{\partial \boldsymbol{x}}=\boldsymbol{W}^{\top} \frac{\partial L}{\partial \boldsymbol{y}}, \quad \frac{\partial L}{\partial \boldsymbol{W}}=\frac{\partial L}{\partial \boldsymbol{y}} \boldsymbol{x}^{\top}, \quad \frac{\partial L}{\partial \boldsymbol{b}}=\frac{\partial L}{\partial \boldsymbol{y}} .
$$

layer. To compute the gradient of the loss function w.r.t. the bias vector \boldsymbol{b} and w.r.t. the input vector \boldsymbol{x} one can use equations (6). The latter can be applied using the matrix-by-vector product (where the matrix is in the TT-format) with the complexity of $O\left(d r^{2} n \max \{m, n\}^{d}\right)=O\left(d r^{2} n \max \{M, N\}\right)$.

$$
\underbrace{\frac{\partial L}{\partial \boldsymbol{G}_{k}\left[\tilde{i}_{k}, \tilde{j}_{k}\right]}}_{\mathrm{r}_{k-1} \times \mathrm{r}_{k}}=\sum_{\boldsymbol{i}} \frac{\partial L}{\partial \mathcal{Y}(\boldsymbol{i})} \frac{\partial \mathcal{Y}(\boldsymbol{i})}{\partial \boldsymbol{G}_{k}\left[\tilde{i}_{k}, \tilde{j}_{k}\right]} . \quad O\left(M \mathrm{r}_{k-1} \mathrm{r}_{k}\right)
$$

Backpropagation

$$
\begin{aligned}
& \mathcal{Y}(\boldsymbol{i})=\sum_{\boldsymbol{j}} G_{1}[\underbrace{\left.i_{1}, j_{1}\right]}_{a^{T}} \cdots G_{k}\left[i_{k}, j_{k}\right] \cdots \underbrace{\cdots}_{\text {calculus rule }} \underbrace{G_{d}\left[i_{d}\right.}_{b}, j_{d}] \mathcal{X}(\boldsymbol{j})+\mathcal{B}(\boldsymbol{i}) \\
& \frac{\partial \mathcal{Y}(\boldsymbol{i})}{\partial G_{k}\left[i_{k}, j_{k}\right]} \\
& \quad \frac{\partial\left(a^{T} X b\right)}{\partial X}=a b^{T}
\end{aligned}
$$

Backpropagation

$$
\begin{aligned}
& \mathcal{Y}(\boldsymbol{i})=\sum_{j} G_{1}[\underbrace{\left.i_{1}, j_{1}\right] \cdots G_{k}\left[i_{k}, j_{k}\right] \cdots}_{a^{T}} \underbrace{G_{d}\left[i_{d}, j_{d}\right] \mathcal{X}(\boldsymbol{j})+\mathcal{B}(\boldsymbol{i})}_{b} \\
& \frac{\partial \mathcal{Y}(\boldsymbol{i})}{\partial G_{k}\left[i_{k}, j_{k}\right]}=\sum_{\boldsymbol{j \backslash j _ { k }}}\left(G_{1}\left[i_{1}, j_{1}\right] \cdots\right)^{T}\left(\cdots G_{d}\left[i_{d}, j_{d}\right]\right)^{T} \mathcal{X}(\boldsymbol{j})
\end{aligned}
$$

Backpropagation

backward pass

$$
O(M N) \rightarrow O\left(d^{2} r^{4} m \max \{M, N\}\right)
$$

$$
\begin{aligned}
& \mathcal{Y}(\boldsymbol{i})=\sum_{\boldsymbol{j}} G_{1}[\underbrace{\left.i_{1}, j_{1}\right] \cdots}_{a^{T}} G_{k}\left[i_{k}, j_{k}\right] \cdots \underbrace{\cdots}_{b} G_{d}\left[i_{d}, j_{d}\right] \mathcal{X}(\boldsymbol{j})+\mathcal{B}(\boldsymbol{i}) \\
& \frac{\partial \mathcal{Y}(\boldsymbol{i})}{\partial G_{k}\left[i_{k}, j_{k}\right]}=\sum_{\boldsymbol{j} \backslash j_{k}}\left(G_{1}\left[i_{1}, j_{1}\right] \cdots\right)^{T}\left(\cdots G_{d}\left[i_{d}, j_{d}\right]\right)^{T} \mathcal{X}(\boldsymbol{j})
\end{aligned}
$$

Experimental results: MNIST

- Small: MNIST

number of parameters in the weight matrix of the first layer
TT-Layers provide much better flexibility than the matrix rank keeping same compression level TT-layers with too small number of values for each tensor dimension and with too few dimensions perform worse than their more balanced counterparts

Experimental results: ImageNet

Architecture	TT-layers compr.	vgg-16 compr.	vgg-19 compr.	vgg-16 top 1	vgg-16 top 5	vgg-19 top 1	vgg-19 top 5
FC FC FC	1	1	1	30.9	11.2	29.0	10.1
TT4 FC FC	50972	3.9	3.5	31.2	11.2	29.8	10.4
TT2 FC FC	194622	3.9	3.5	31.5	11.5	30.4	10.9
TT1 FC FC	713614	3.9	3.5	33.3	12.8	31.9	11.8
TT4 TT4 FC	37732	7.4	6	32.2	12.3	31.6	11.7
MR1 FC FC	3521	3.9	3.5	99.5	97.6	99.8	99
MR5 FC FC	704	3.9	3.5	81.7	53.9	79.1	52.4
MR50 FC FC	70	3.7	3.4	36.7	14.9	34.5	15.8

Table 2: Substituting the fully-connected layers with the TT-layers in vgg-16 and vgg-19 networks on the ImageNet dataset. FC stands for a fully-connected layer; TT \square stands for a TT-layer with all the TT-ranks equal " \square "; MR \square stands for a fully-connected layer with the matrix rank restricted to " \square ". We report the compression rate of the TT-layers matrices and of the whole network in the second, third and fourth columns.

Great compression factor of 194622 with 0.3 accuracy drop

Experimental results: ImageNet

Type	1 im. time (ms)	100 im. time (ms)
CPU fully-connected layer	16.1	97.2
CPU TT-layer	1.2	94.7
GPU fully-connected layer	2.7	33
GPU TT-layer	1.9	12.9

Table 3: Inference time for a 25088×4096 fully-connected layer and its corresponding TT-layer with all the TT-ranks equal 4 . The memory usage for feeding forward one image is 392 MB for the fully-connected layer and 0.766 MB for the TT-layer.

TT-Layer has better inference time in comparison to FC-Layer

Challenges

- Input data may not admit low-rank TT approximation (small r)
- Nonlinear activation destroy TT format

Similar works

Lebedev V. et al. Speeding-up convolutional neural networks using fine-tuned cp-decomposition arXiv:1412.6553.
$8.5 x$ speedup with 1% accuracy drop

Recent example: Yang, Yinchong, Denis Krompass, and Volker Tresp. "Tensor-Train Recurrent Neural Networks for Video Classification." arXiv:1707.01786
3000 parameters in TT-LSTM vs 71,884,800 in LSTM
Accuracy is better due to additional regularisation

Thanks

References

[1] Tensorizing Neural Network; NIPS 2015 slides [link]
[2] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry Vetrov, Tensorizing Neural Networks; NIPS 2015
[3] Slides by Moussa Traore Mehraveh Javan [link]
[4] Tensor Train in machine learning Slides [link]
[5] More slides -> [Link1], [Link2]
[6] Lecture Notes [Link]

