
Tensors for optimization (part 2)

3rd-order methods

Based on 
[1] Superfast Second-Order Methods for Unconstrained Convex Optimization
[2] Inexact Accelerated High-order Proximal-point Methods



The purpose of this talk
(1) Give an overview of [1][2]

(2) Cover some missing steps in [1] (will use some standard calculus tricks)



Our goal
Goal:

Available local information:

 

 



Motivation
Optimization: train a NN

Common an optimizer: gradient descent

Using local information: 



Why higher-order methods?
Higher-order methods:

(1) find a fast path
(2) design efficient methods

Efficient methods (inspired from Newton’s (2nd-order) method):

Quasi-Newton methods (LBFGS) e.g., Mark’s minFunc package

Adaptive gradient methods (Adam)



Basics
Gradient Descent

Alternative formulation of GD:



Basics
Newton’s method with a cubic regularization (from last week’s meeting)

Issue: difficult to solve this minimization problem

h(y)

f(y)

xt



Today’s topic
3rd-order methods (with a regularization)

Hessian-vector product 

Tensor-vector product 

Order does not matter (e.g., hessian is symmetric)

Issues: 

(1) hard to compute exact 3rd derivatives/tensors 
(2) difficult to solve this auxiliary minimization problem

Assumptions in [1]: f(x) is convex and is Lipschitz at all its 3rd-order derivatives 
with a positive constant L



The meaning of a tensor
Tensor Algebra: Tensor decomposition under a coordinate system 

A tensor is a coordinate component 

In [1,2]: a tensor is defined by a (Euclidean) derivative. It is a coordinate 
component under the base.



A calculus trick 
The tensor-vector product: 

Apply L'Hospital's rule twice

Numerator:

Denominator:

A similar identity for the hessian-vector product 



Apply L'Hospital's rule once (w.r.t.      )

Numerator:

Denominator:

Apply L'Hospital's rule twice (w.r.t.      )

Numerator:

Denominator: 2



Approximate derivatives 
Approximate the product using finite difference

If f(x) is Lipschitz at all its 3rd-order derivatives, we can bound the error between 
the exact product and the approximation. (see Eq 1.4-1.5 and Lemma 5 of [1])

Lipschitz at all its 3rd-order derivatives with a positive constant L



How to solve the auxiliary problem? 

Key results in [1] (assuming f(y) is Lipschitz of 3rd-order with a constant L):

(1) f(y) is bounded above by h(y) when     is large enough (>=L)
(2) If     is large enough (>=3L) and f(y) is convex, h(y) is also convex.  

Convexity of f(y) is needed. 



Implications of the results:

(1) h(y) is a valid upper bound for any x_t and y since we want to minimize f(y) 
(2) Inexactly solve h(y) with convergence guarantee  

In [1], a gradient-based method is used to solve h(y) (see Eq 4.8,4.19 of [1])

solving the auxiliary problem h(y) & solving the original problem f(x) In [2], this approach is called a 
bi-level minimization approach.



Summary
The algorithm proposed in [1]: 

(1) Construct a 3rd-order approximation with a regularizer at a current point 
(2) Approximate the tensor-vector product using finite difference
(3) Inexactly solve the auxiliary function  (an upper bound and convexity)
(4) Update the current point using an inexact solution

Some results from [1]:

(1) A (theoretical) superfast convergence rate 
(2) Implementing a 3rd-order method using the 2nd-order information (the trick)



Show f(y) <= h(y) 

Taylor truncation error for directional derivatives 

Our goal is to show

When                , we have



Recall: f(y) is Lipschitz at the 3rd-order (for simplicity, we assume x,y are scalars) 

                                                                        implies



Proof of



Thanks


