Tensors for optimization (part 2)

3rd-order methods

Based on
[1] Superfast Second-Order Methods for Unconstrained Convex Optimization

[2] Inexact Accelerated High-order Proximal-point Methods



The purpose of this talk

(1) Give an overview of [1][2]

(2) Cover some missing steps in [1] (will use some standard calculus tricks)



Our goal

- min f(x)
Goal xeRdf( >:

Available local information:

z, f(2), Vf(2), V:f(2), V[ (), ..



J(6)

10 2 10
/
./
/
8! / 8
/
/
6 / 6
//
A /
M\
2| \
| \ /
B \\ /
2| el > R
4\ 4\ s
3 2 1 0 1 2 -4 3 2 -1 0
8o 8o

Common an optimizer: gradient descent GD @ x;11 ¢ 24 — Osz(xt)

Using local information: ¢, Vfl’l‘r) f(rf)



Why higher-order methods?

Higher-order methods: we

Gradient Descer
(2) design efficient methods
Ideal Path

wl

Efficient methods (inspired from Newton’s (2nd-order) method):
Quasi-Newton methods (LBFGS) e.g., Mark’s minFunc package

Adaptive gradient methods (Adam)



Basics

Gradient Descent (G - Tyl & T — onf(:z:t)

Alternative formulation of GD:
11
h(y) == f(xe)+ < Vo f(w),y —x >+ ag“’y — :z:tHQ

Tipq < arg Ir;in h(y) Vyh(y)‘y:mtle — ()

Vo)l = Vel (20) + =y = 20) = Vaf (20 + — (w1 — 20

=V.fla) + —(2y — oV, flzy) —a) =0
(¥



Basics

Newton’s method with a cubic regularization (from last week’s meeting)

, , 1 , 11 .
h(y) == fla)+ < Vaof(we),y — 2 > +§ < vif(l’t)(’y —T), Y — T4 >+53—,H;§/ — il»’fHS
:Ut_|_1 — al“g mln h(y) Cubic regularization
Y h(y)

T~

Issue: difficult to solve this minimization problem
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7D e 3
Hessian-vector product V= flz)[d]

TOday,S tOp|C Tensor-vector product nglfzzr,_:l[(l]g

3rd-order methods (with a regularization) Loy = VO f(): V() = 33 Ty
j

d:=y— x; \
Order does not matter (e.g., hessian is symmetric)

1 . 1 . . 11
M) = f(@)+ < Vaf (@), d > +5 < V3 (@)d,d > +5: < V3f(e)[dP,d > + = |ld]*

Ty < arg minh(y)

_ Yy
Issues:

(1) hard to compute exact 3rd derivatives/tensors Vif(il?t)
(2) difficult to solve this auxiliary minimization problem

Assumptions in [1]: f(x) is convex and is Lipschitz at all its 3rd-order derivatives
with a positive constant L



The meaning of a tensor

Tensor Algebra: Tensor decomposition under a coordinate system

A tensor is a coordinate component

In [1,2]: a tensor is defined by a (Euclidean) derivative. It is a coordinate
component under the base.



A calculus trick A similar identity for the hessian-vector product

V2 f(z)[d]
The tensor-vector product:

V? f(z)[d]* := lim L[Vf(;zt +7d) + Vf(x —7d) — 2V f(z)]

T7—0 7-2

Apply L'Hospital's rule twice
Numerator: |V f(z +7d) + Vf(x —7d) — 2V f(z)] = 0as7 — 0

Denominator: 72 —s () as 7 — ()



VO F ()d)? = lim [V (o + 7d) + Vf (@ — 7d) — 29 f ()]

Vi Vfle+7d)] = Vo [Vourafle + 7d)]
VVasrafo 4 7d) = V5. gl + 7]V 2 4 7d) = Vf{a 4 7d)
Numerator: [V2f(z + 7d)[d] — V*f(z — 7d)[d]] — OasT — 0

Apply L'Hospital's rule once (w.rt. T )

Denominator: 27 — QJas7T — ()
Apply L'Hospital's rule twice (w.r.t. T )

Numerator: 73 f(z 4 7d)[d]? + V3 f(z — 7d)[d]*> = 2V f(z)[d]*as T — 0

Denominator: 2
VA=V2_ fla — rd)[d]) = —[V3_, f(x — 7d)[d]][V(x — d)]
= —[V2_, f (z — rd)[d]][~d] = [V3_, . f(z — rd)[d]?



Approximate derivatives

Approximate the product using finite difference

Ve f(z)[d)? =~ %[Vf(l +7d) + V f(z — 7d) — 2V f(x)]

T

If f(x) is Lipschitz at all its 3rd-order derivatives, we can bound the error between
the exact product and the approximation. (see Eq 1.4-1.5 and Lemma 5 of [1])

Lipschitz at all its 3rd-order derivatives with a positive constant L

V21 (@) = VPl < Lllz = yll, foranyz,y



How to solve the auxiliary problem?

d:=y—x

h(y) := f(x)+ < Vaf(@),d > + ; - Vif(wo)d,d > % - Vif(e)ld)?, d >+ l—HdH‘
Tyi1 < argmin h(y)

Y
Key results in [1] (assuming f(y) is Lipschitz of 3rd-order with a constant L):
1
(1) f(y) is bounded above by h(y) when - is large enough (>=L)

(
2) If 1 islarge enough (>=3L)and f(y)is convex, h(y) is also convex.
g g 7 \J y
(8%

Convexity of f(y) is needed.




Implications of the results:

(1) h(y) is a valid upper bound for any x_t and y since we want to minimize f(y)
(2) Inexactly solve h(y) with convergence guarantee

A(y) = Fe)+ < Vef(e),d > +3 < V3f()d,d> +35 < V3f@)dP,d > + =]

d:=y—x

In [1], a gradient-based method is used to solve h(y) (see Eq 4.8,4.19 of [1])

solving the auxiliary problem h(y) & solving the original problem f(x) In [2], this approach is called a
bi-level minimization approach.



Summary

The algorithm proposed in [1]:

(1) Construct a 3rd-order approximation with a regularizer at a current point
(2) Approximate the tensor-vector product using finite difference

(3) Inexactly solve the auxiliary function (an upper bound and convexity)
(4) Update the current point using an inexact solution

Some results from [1]:

(1) A (theoretical) superfast convergence rate
(2) Implementing a 3rd-order method using the 2nd-order information (the trick)



Show f(y) <= h(y) d:=y—x

h(w) 1= [ @)+ < Vaf (2).d > 47 < V3f(@)dod >+ < V3 f(a)[d.d > + =]

Taylor truncation error for directional derivatives

1 o1
Fy) = hly) = —5lly = 2l + 55 f (L=7)*Vof(ze+7(y—z))ly —a*dr < h(y)
. . 0

1/’ .
4 dvrd oo .
: ——|ly -z =7 Viflag+ 7y —a))dr <0
When [ < i,we have LH “ < _Hy T ”4 n4‘“ t“ 3y ' t
@ g T = | |
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. 1 ,.
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Recall: f(y) is Lipschitz at the 3rd-order (for simplicity, we assume X,y are scalars)

IV () = VW)l < Lllz — yll, foranyz, yimplies ||V f(z)| < L

3 i’ . 3 .
Vi f(z) = lim Vofly) =V flz)

Y—rx y—@x



1 /! | L |
Proof of 30 / (1 —7)°Vaf(z+7(y — )y — @) dr < 4—'||y — "
- Jo !
IVaf(z)| <L
Vif(ze+ 7y — 2)ly — 24]* < Ly — a4
1 L
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Y )JVTI + Ty —: ll[ — x| dT i l’-_i 311y — 2. 3dr — L :
: e)lly —w]idr < o | (L=7)°Lly —a]idr = [y ' [ (1-7)dr
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Thanks



