Tensors for optimization (part 2)

3rd-order methods

Based on

[1] Superfast Second-Order Methods for Unconstrained Convex Optimization
[2] Inexact Accelerated High-order Proximal-point Methods

The purpose of this talk

(1) Give an overview of [1][2]
(2) Cover some missing steps in [1] (will use some standard calculus tricks)

Our goal

Goal: $\min _{x \in \mathcal{R}^{d}} f(x)$

Available local information:

$$
x, f(x), \nabla f(x), \nabla^{2} f(x), \nabla^{3} f(x), \ldots
$$

Common an optimizer: gradient descent GD : $x_{t+1} \leftarrow x_{t}-\alpha \nabla f\left(x_{t}\right)$

Using local information: $x_{t}, \nabla f\left(x_{t}\right), f\left(x_{t}\right)$

Why higher-order methods?

Higher-order methods:
(1) find a fast path
(2) design efficient methods

Path taken by Gradient Descer Ideal Path

Efficient methods (inspired from Newton's (2nd-order) method):
Quasi-Newton methods (LBFGS) e.g., Mark’s minFunc package
Adaptive gradient methods (Adam)

Basics

Gradient Descent GD : $x_{t+1} \leftarrow x_{t}-\alpha \nabla f\left(x_{t}\right)$

Alternative formulation of GD:

$$
\begin{aligned}
& h(y):=f\left(x_{t}\right)+<\nabla_{x} f\left(x_{t}\right), y-x_{t}>+\frac{1}{\alpha} \frac{1}{2!}\left\|y-x_{t}\right\|^{2} \\
& \left.x_{t+1} \leftarrow \arg \min _{y} h(y) \quad \nabla_{y} h(y)\right|_{y=x_{t+1}}=0
\end{aligned}
$$

$$
\left.\nabla_{y} h(y)\right|_{y=x_{t+1}}=\nabla_{x} f\left(x_{t}\right)+\frac{1}{\alpha}\left(y-x_{t}\right)=\nabla_{x} f\left(x_{t}\right)+\frac{1}{\alpha}\left(x_{t+1}-x_{t}\right)
$$

$$
=\nabla_{x} f\left(x_{t}\right)+\frac{1}{\alpha}\left(x_{t}-\alpha \nabla_{x} f\left(x_{t}\right)-x_{t}\right)=0
$$

Basics

Newton's method with a cubic regularization (from last week's meeting)

$$
h(y):=f\left(x_{t}\right)+\left\langle\nabla_{x} f\left(x_{t}\right), y-x_{t}\right\rangle+\frac{1}{2}\left\langle\nabla_{x}^{2} f\left(x_{t}\right)\left(y-x_{t}\right), y-x_{t}\right\rangle+\frac{1}{\alpha} \frac{1}{3!}\left\|y-x_{t}\right\|^{3}
$$

$$
x_{t+1} \leftarrow \arg \min _{y} h(y)
$$

Issue: difficult to solve this minimization problem

Today's topic

$$
\text { Tensor-vector product } \quad \nabla^{3} f\left(x_{t}\right)[d]^{2}
$$

3rd-order methods (with a regularization)

$$
d:=y-x_{t}
$$

$$
\Gamma_{i, j, k}=\nabla^{3} f\left(x_{t}\right) ; \nabla^{3} f\left(x_{t}\right)[d]^{2}:=\sum_{i} \sum_{j} \Gamma_{i, j, k} d_{i} d_{j}
$$

Order does not matter (e.g., hessian is symmetric)
$h(y):=f\left(x_{t}\right)+<\nabla_{x} f\left(x_{t}\right), d>+\frac{1}{2}<\nabla_{x}^{2} f\left(x_{t}\right) d, d>+\frac{1}{3!}<\nabla_{x}^{3} f\left(x_{t}\right)[d]^{2}, d>+\frac{1}{\alpha} \frac{1}{4!}\|d\|^{4}$ $x_{t+1} \leftarrow \arg \min h(y)^{2}$ Issues:
y
(1) hard to compute exact 3rd derivatives/tensors $\nabla_{x}^{3} f\left(x_{t}\right)$
(2) difficult to solve this auxiliary minimization problem

Assumptions in [1]: $f(x)$ is convex and is Lipschitz at all its 3rd-order derivatives with a positive constant L

The meaning of a tensor

Tensor Algebra: Tensor decomposition under a coordinate system
A tensor is a coordinate component

In [1,2]: a tensor is defined by a (Euclidean) derivative. It is a coordinate component under the base.

A calculus trick
A similar identity for the hessian-vector product $\nabla^{2} f\left(x_{t}\right)[d]$
The tensor-vector product:
$\nabla^{3} f\left(x_{t}\right)[d]^{2}:=\lim _{\tau \rightarrow 0} \frac{1}{\tau^{2}}[\nabla f(x+\tau d)+\nabla f(x-\tau d)-2 \nabla f(x)]$

Apply L'Hospital's rule twice
Numerator: $[\nabla f(x+\tau d)+\nabla f(x-\tau d)-2 \nabla f(x)] \rightarrow 0$ as $\tau \rightarrow 0$

Denominator: $\tau^{2} \rightarrow 0$ as $\tau \rightarrow 0$
$\nabla^{3} f\left(x_{t}\right)[d]^{2}:=\lim _{\tau \rightarrow 0} \frac{1}{\tau^{2}}[\nabla f(x+\tau d)+\nabla f(x-\tau d)-2 \nabla f(x)]$

$$
\nabla_{T}[\nabla f(x+\tau d)]=\nabla_{T}\left[\nabla_{x+\tau d} f(x+\tau d)\right]
$$

Apply L'Hospital's rule once (w.r.t. τ) $\quad \nabla_{r}\left(\nabla_{x+\tau} \delta(x+\tau d)=\nabla_{z+\tau d}^{2} f(x+\tau d)\right] \nabla_{T}(x+\tau d)=\nabla^{2} f(x+\tau d)[d]$
Numerator: $\left[\nabla^{2} f(x+\tau d)[d]-\nabla^{2} f(x-\tau d)[d]\right] \rightarrow 0$ as $\tau \rightarrow 0$
Denominator: $2 \tau \rightarrow 0$ as $\tau \rightarrow 0$
Apply L'Hospital's rule twice (w.r.t. τ)
Numerator: $\nabla^{3} f(x+\tau d)[d]^{2}+\nabla^{3} f(x-\tau d)[d]^{2} \rightarrow 2 \nabla^{3} f(x)[d]^{2}$ as $\tau \rightarrow 0$
Denominator: 2

$$
\begin{aligned}
\nabla_{\tau}\left[-\nabla_{x-\tau d}^{2} f(x-\tau d)[d]\right] & =-\left[\nabla_{x-\tau d}^{3} f(x-\tau d)[d]\right]\left[\nabla_{\tau}(x-\tau d)\right] \\
& =-\left[\nabla_{x-\tau d}^{3} f(x-\tau d)[d]\right][-d]=\left[\nabla_{x-\tau d}^{3} f(x-\tau d)[d]^{2}\right]
\end{aligned}
$$

Approximate derivatives

Approximate the product using finite difference
$\nabla^{3} f(x)[d]^{2} \approx \frac{1}{\tau^{2}}[\nabla f(x+\tau d)+\nabla f(x-\tau d)-2 \nabla f(x)]$

If $f(x)$ is Lipschitz at all its 3rd-order derivatives, we can bound the error between the exact product and the approximation. (see Eq 1.4-1.5 and Lemma 5 of [1])

Lipschitz at all its 3rd-order derivatives with a positive constant L

$$
\left\|\nabla^{3} f(x)-\nabla^{3} f(y)\right\| \leq L\|x-y\|, \text { for any } x, y
$$

How to solve the auxiliary problem?

$d:=y-x_{t}$
$h(y):=f\left(x_{t}\right)+<\nabla_{x} f\left(x_{t}\right), d>+\frac{1}{2}<\nabla_{x}^{2} f\left(x_{t}\right) d, d>+\frac{1}{3!}<\nabla_{x}^{3} f\left(x_{t}\right)[d]^{2}, d>+\frac{1}{\alpha} \frac{1}{4!}\|d\|^{4}$
$x_{t+1} \leftarrow \arg \min h(y)$
Key results in [1] (assuming $f(y)$ is Lipschitz of 3rd-order with a constant L):
(1) $f(y)$ is bounded above by $h(y)$ when $\frac{1}{\alpha}$ is large enough (>=L)
(2) If $\frac{1}{\alpha}$ is large enough $(>=3 L)$ and $f(y)$ is convex, $h(y)$ is also convex.

Convexity of $f(y)$ is needed.

Implications of the results:
(1) $h(y)$ is a valid upper bound for any $x _t$ and y since we want to minimize $f(y)$
(2) Inexactly solve $h(y)$ with convergence guarantee

$$
\begin{aligned}
& h(y):=f\left(x_{t}\right)+<\nabla_{x} f\left(x_{t}\right), d>+\frac{1}{2}<\nabla_{x}^{2} f\left(x_{t}\right) d, d>+\frac{1}{3!}<\nabla_{x}^{3} f\left(x_{t}\right)[d]^{2}, d>+\frac{1}{\alpha} \frac{1}{4!}\|d\|^{4} \\
& d:=y-x_{t}
\end{aligned}
$$

In [1], a gradient-based method is used to solve $h(y)$ (see Eq 4.8,4.19 of [1])
solving the auxiliary problem $h(y)$ \& solving the original problem $f(x) \ln [2]$, this approach is called a bi-level minimization approach.

Summary

The algorithm proposed in [1]:

(1) Construct a 3rd-order approximation with a regularizer at a current point
(2) Approximate the tensor-vector product using finite difference
(3) Inexactly solve the auxiliary function (an upper bound and convexity)
(4) Update the current point using an inexact solution

Some results from [1]:
(1) A (theoretical) superfast convergence rate
(2) Implementing a 3rd-order method using the 2nd-order information (the trick)

Show f(y) <= h(y)

$$
d:=y-x_{t}
$$

$h(y):=f\left(x_{t}\right)+\left\langle\nabla_{x} f\left(x_{t}\right), d\right\rangle+\frac{1}{2}\left\langle\nabla_{x}^{2} f\left(x_{t}\right) d, d\right\rangle+\frac{1}{3!}\left\langle\nabla_{x}^{3} f\left(x_{t}\right)[d]^{2}, d\right\rangle+\frac{1}{\alpha} \frac{1}{4!}\|d\|^{4}$
Taylor truncation error for directional derivatives
$f(y)=h(y)-\frac{1}{\alpha 4!}\left\|y-x_{t}\right\|^{4}+\frac{1}{3!} \int_{0}^{1}(1-\tau)^{3} \nabla_{x}^{4} f\left(x_{t}+\tau\left(y-x_{t}\right)\right)\left[y-x_{t}\right]^{4} d \tau \leq h(y)$
When $L \leq \frac{1}{\alpha}$, we have $\frac{L}{4!}\left\|y-x_{t}\right\|^{4} \leq \frac{1}{\alpha 4!}\left\|y-x_{t}\right\|^{4}-\frac{1}{\alpha!\|}\left\|y-x_{t}\right\|^{4}+\frac{1}{3!} \int_{0}^{1}(1-\tau)^{3} \nabla_{x}^{4} f\left(x_{t}+\tau\left(y-x_{t}\right)\right) d \tau \leq 0$
Our goal is to show

$$
\frac{1}{3!} \int_{0}^{1}(1-\tau)^{3} \nabla_{x}^{4} f\left(x_{t}+\tau\left(y-x_{t}\right)\right) d \tau \leq \frac{1}{\alpha 4!}\left\|y-x_{t}\right\|^{4}
$$

$$
\frac{1}{3!} \int_{0}^{1}(1-\tau)^{3} \nabla_{x}^{4} f\left(x_{t}+\tau\left(y-x_{t}\right)\right)\left[y-x_{t}\right]^{4} d \tau \leq \frac{L}{4!}\left\|y-x_{t}\right\|^{4} \leq \frac{1}{\alpha 4!}\left\|y-x_{t}\right\|^{4}
$$

Recall: $\mathrm{f}(\mathrm{y})$ is Lipschitz at the 3rd-order (for simplicity, we assume x, y are scalars)

$$
\left\|\nabla^{3} f(x)-\nabla^{3} f(y)\right\| \leq L\|x-y\|, \text { for any } x, y \text { implies } \quad\left\|\nabla_{x}^{4} f(x)\right\| \leq L
$$

$$
\nabla^{4} f(x)=\lim _{y \rightarrow x} \frac{\nabla^{3} f(y)-\nabla^{3} f(x)}{y-x}
$$

Proof of

$$
\frac{1}{3!} \int_{0}^{1}(1-\tau)^{3} \nabla_{x}^{4} f\left(x_{t}+\tau\left(y-x_{t}\right)\right)\left[y-x_{t}\right]^{4} d \tau \leq \frac{L}{4!}\left\|y-x_{t}\right\|^{4}
$$

$$
\left\|\nabla_{x}^{4} f(x)\right\| \leq L
$$

$$
\nabla^{4} f\left(x_{t}+\tau\left(y-x_{t}\right)\right)\left[y-x_{t}\right]^{4} \leq L\left\|y-x_{t}\right\|^{4}
$$

$$
\frac{1}{3!} \int_{0}^{1}(1-\tau)^{3} \nabla^{4} f\left(x_{t}+\tau\left(y-x_{t}\right)\right)\left[y-x_{t}\right]^{4} d \tau \leq \frac{1}{3!} \int_{0}^{1}(1-\tau)^{3} L\left[y-x_{t}\right]^{4} d \tau=\left[y-x_{t}\right]^{\frac{L}{3!}} \int_{0}^{1}(1-\tau)^{3} d \tau
$$

$$
\int_{0}^{1}(1-\tau)^{3} d \tau=-\left.\frac{1}{4}(1-\tau)^{4}\right|_{\tau=0} ^{\tau=1}=\frac{1}{4}
$$

$$
\frac{1}{3!} \int_{0}^{1}(1-\tau)^{3} \nabla_{x}^{4} f\left(x_{t}+\tau\left(y-x_{t}\right)\right)\left[y-x_{t}\right]^{4} d \tau \leq \frac{L}{4!}\left\|y-x_{t}\right\|^{4}
$$

Thanks

