
Tensors for optimization(?)
Higher order and accelerated methods

Based on
Estimate sequence methods: extensions and approximations, Michel Baes, 2009
MLRG Fall 2020 – Tensor basics and applications – Nov 18

Tensors in optimization

Goal: find the minimum of a function f

Only available information is local: x , f (x),∇f (x), . . .

f

1

Tensors in optimization

Goal: find the minimum of a function f

Only available information is local: x , f (x),∇f (x), . . .

f

1

Tensors in optimization

Goal: find the minimum of a function f

Only available information is local: x , f (x),∇f (x), . . .

f

1

Tensors in optimization

Goal: find the minimum of a function f

Only available information is local: x , f (x),∇f (x), . . .

f

Which one is it?
1

Tensors in optimization

Goal: find the minimum of a function f

Only available information is local: x , f (x),∇f (x), . . .

f

Higher order derivatives = more information
1

But... isn’t Newton “bad”?

Newton’s method: x ′ = x − α[∇2f (x)]−1∇f (x)

Less stable than gradient descent Can go up instead of down
Only works for small problems Awful scaling with dimension

Why use even higher order information?

Today: a primer

Newton: the issues and how to fix them
General recipe for higher order
Some intuition for faster/approximate methods

Next week: Superfast higher order methods

2

But... isn’t Newton “bad”?

Newton’s method: x ′ = x − α[∇2f (x)]−1∇f (x)

Less stable than gradient descent Can go up instead of down
Only works for small problems Awful scaling with dimension

Why use even higher order information?

Today: a primer

Newton: the issues and how to fix them
General recipe for higher order
Some intuition for faster/approximate methods

Next week: Superfast higher order methods

2

But... isn’t Newton “bad”?

Newton’s method: x ′ = x − α[∇2f (x)]−1∇f (x)

Less stable than gradient descent Can go up instead of down
Only works for small problems Awful scaling with dimension

Why use even higher order information?

Today: a primer

Newton: the issues and how to fix them
General recipe for higher order
Some intuition for faster/approximate methods

Next week: Superfast higher order methods
2

The issues with Newton: Non-convex functions

3

The issues with Newton: Non-convex functions

3

The issues with Newton: Non-convex functions

3

The issues with Newton: Non-convex functions

3

The issues with Newton: Non-convex functions

3

The issues with Newton: Stability

4

The issues with Newton: Stability

4

The issues with Newton: Stability

4

The issues with Newton: Stability

What?

4

The issues with Newton: Stability

f
f′

f′′

4

Optimization

Want to minimize f . At x , we know f (x),∇f (x), . . .

f

x

Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information → Best algorithm?

Algorithm → Why does it work? When does it work?

Gradient descent → Modified Newton → Arbitrary order

5

Optimization

Want to minimize f . At x , we know f (x),∇f (x), . . .

f

x

Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information → Best algorithm?

Algorithm → Why does it work? When does it work?

Gradient descent → Modified Newton → Arbitrary order

5

Optimization

Want to minimize f . At x , we know f (x),∇f (x), . . .

f

x

Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information → Best algorithm?

Algorithm → Why does it work? When does it work?

Gradient descent → Modified Newton → Arbitrary order

5

Optimization

Want to minimize f . At x , we know f (x),∇f (x), . . .

f

x

Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information → Best algorithm?

Algorithm → Why does it work? When does it work?

Gradient descent → Modified Newton → Arbitrary order

5

Optimization

Want to minimize f . At x , we know f (x),∇f (x), . . .

f

x

Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information → Best algorithm?

Algorithm → Why does it work? When does it work?

Gradient descent → Modified Newton → Arbitrary order

5

First order

Gradient Descent (fixed α): xt+1 = xt − α∇f (xt)

Need continuity: if the gradient changes too fast, not informative

6

First order

Gradient Descent (fixed α): xt+1 = xt − α∇f (xt)

Need continuity: if the gradient changes too fast, not informative

6

First order

Gradient Descent (fixed α): xt+1 = xt − α∇f (xt)

Need continuity: if the gradient changes too fast, not informative

6

First order

Gradient Descent (fixed α): xt+1 = xt − α∇f (xt)

The Hessian is bounded → The gradient does not change too fast

Taylor expansion:

f (y) = f (x) + f ′(x)(y − x) + 1
2! f
′′(x)(y − x)2 +

1
3! f
′′′(x)(y − x)3 + . . .

Truncated error:

f (y) = f (x) + f ′(x)(y − x) + O((y − x)2)

≤ f (x) + f ′(x)(y − x) +
[

1
2 max

x
f ′′(x)

]
(y − x)2

7

First order

Gradient Descent (fixed α): xt+1 = xt − α∇f (xt)

The Hessian is bounded → The gradient does not change too fast

Taylor expansion:

f (y) = f (x) + f ′(x)(y − x) + 1
2! f
′′(x)(y − x)2 +

1
3! f
′′′(x)(y − x)3 + . . .

Truncated error:

f (y) = f (x) + f ′(x)(y − x) + O((y − x)2)

≤ f (x) + f ′(x)(y − x) +
[

1
2 max

x
f ′′(x)

]
(y − x)2

7

First order

Gradient Descent (fixed α): xt+1 = xt − α∇f (xt)

The Hessian is bounded → The gradient does not change too fast

Taylor expansion:

f (y) = f (x) + f ′(x)(y − x) + 1
2! f
′′(x)(y − x)2 +

1
3! f
′′′(x)(y − x)3 + . . .

Truncated error:

f (y) = f (x) + f ′(x)(y − x) + O((y − x)2)

≤ f (x) + f ′(x)(y − x) +
[

1
2 max

x
f ′′(x)

]
(y − x)2

7

First order

Gradient Descent (fixed α): xt+1 = xt − α∇f (xt)

The Hessian is bounded → The gradient does not change too fast

Taylor expansion:

f (y) = f (x) + f ′(x)(y − x) + 1
2! f
′′(x)(y − x)2 +

1
3! f
′′′(x)(y − x)3 + . . .

Truncated error:

f (y) = f (x) + f ′(x)(y − x) + O((y − x)2)

≤ f (x) + f ′(x)(y − x) +
[

1
2 max

x
f ′′(x)

]
(y − x)2

7

First order

f

x

f̃ (y) = f (x) +∇f (x)(y − x) + L
2‖y − x‖2

8

First order

f

x

f̃ (y) = f (x) +∇f (x)(y − x) + L
2‖y − x‖2

Convex quadratic upper bound on f :

0 = ∇f̃ (y)
=⇒ 0 = ∇f (x) + L(y − x)

=⇒ y = x − 1
L∇f (x)

8

First order

f

x

f̃ (y) = f (x) +∇f (x)(y − x) + L
2‖y − x‖2

8

First order

f

x

f̃ (y) = f (x) +∇f (x)(y − x) + L
2‖y − x‖2

8

First order

f

x

f̃ (y) = f (x) +∇f (x)(y − x) + L
2‖y − x‖2

8

Second order

The Hessian does not change too fast

f (x) + f ′(x)(y − x) + 1
2 f ′′(x)(y − x)2 + O((y − x)3)

The third derivative is bounded

x ′ = argmin
y

{
〈∇f (x), y − x〉+ 1

2∇
2f (x)[y − x , y − x] + M

6 ‖y − x‖3
}

Cubic regularization of Newton’s method

9

Second order

The Hessian does not change too fast

f (x) + f ′(x)(y − x) + 1
2 f ′′(x)(y − x)2 +

[1
6 maxx f ′′′(x)

]
(y − x)3

The third derivative is bounded

x ′ = argmin
y

{
〈∇f (x), y − x〉+ 1

2∇
2f (x)[y − x , y − x] + M

6 ‖y − x‖3
}

Cubic regularization of Newton’s method

9

Second order

The Hessian does not change too fast

f (x) + f ′(x)(y − x) + 1
2 f ′′(x)(y − x)2 +

[1
6 maxx f ′′′(x)

]
(y − x)3

The third derivative is bounded

x ′ = argmin
y

{
〈∇f (x), y − x〉+ 1

2∇
2f (x)[y − x , y − x] + M

6 ‖y − x‖3
}

Cubic regularization of Newton’s method

9

Cubic regularization: non-convex

Newton Cubic regularization

10

Cubic regularization: non-convex

Newton Cubic regularization

10

Cubic regularization: non-convex

Newton Cubic regularization

10

Cubic regularization: non-convex

Newton Cubic regularization

10

Cubic regularization: non-convex

Newton Cubic regularization

10

Cubic regularization: non-convex

Stationary points

10

Cubic regularization: non-convex

Stationary points

10

General strategy

For mth order methods: If bounded (m + 1)th derivative

Minimize {mth order Taylor expansion + C‖x − y‖m+1}

So far:

Issues with näıve Newton
Regularity assumptions for GD and higher order methods
Cubic regularization

Next:

How to solve the subproblem
Some caveats
Is it faster? Fastest?

11

General strategy

For mth order methods: If bounded (m + 1)th derivative

Minimize {mth order Taylor expansion + C‖x − y‖m+1}

So far:

Issues with näıve Newton
Regularity assumptions for GD and higher order methods
Cubic regularization

Next:

How to solve the subproblem
Some caveats
Is it faster? Fastest?

11

General strategy

For mth order methods: If bounded (m + 1)th derivative

Minimize {mth order Taylor expansion + C‖x − y‖m+1}

So far:

Issues with näıve Newton
Regularity assumptions for GD and higher order methods
Cubic regularization

Next:

How to solve the subproblem
Some caveats
Is it faster? Fastest?

11

Time per iteration

Cubic regularization update:

x ′ = x − d

min
d

{
〈g , d〉+ 1

2 H[d , d] + M
6 ‖d‖

3
}

... It’s not convex

(but it is simpler)

If ‖d‖ = r =⇒ minimizing a quadratic (with simple constraints)

d =

[
H +

Mr
2 I

]−1

g

Find the fixed point of r =
∥∥∥[H + Mr

2 I
]−1 g

∥∥∥ (1D, convex)

Time: Matrix inverse (once, then reuse) O(n3)

+ a few iterations of a convex 1D solver (only matrix-vector products)

12

Time per iteration

Cubic regularization update:

x ′ = x − d

min
d

{
〈g , d〉+ 1

2 H[d , d] + M
6 ‖d‖

3
}

... It’s not convex (but it is simpler)

If ‖d‖ = r =⇒ minimizing a quadratic (with simple constraints)

d =

[
H +

Mr
2 I

]−1

g

Find the fixed point of r =
∥∥∥[H + Mr

2 I
]−1 g

∥∥∥ (1D, convex)

Time: Matrix inverse (once, then reuse) O(n3)

+ a few iterations of a convex 1D solver (only matrix-vector products)

12

Time per iteration

Cubic regularization update:

x ′ = x − d

min
d

{
〈g , d〉+ 1

2 H[d , d] + M
6 ‖d‖

3
}

... It’s not convex (but it is simpler)

If ‖d‖ = r =⇒ minimizing a quadratic (with simple constraints)

d =

[
H +

Mr
2 I

]−1

g

Find the fixed point of r =
∥∥∥[H + Mr

2 I
]−1 g

∥∥∥ (1D, convex)

Time: Matrix inverse (once, then reuse) O(n3)

+ a few iterations of a convex 1D solver (only matrix-vector products) 12

Caveats

GD works well 6= Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

GD Cubic regularization

13

Caveats

GD works well 6= Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

GD Cubic regularization

13

Caveats

GD works well 6= Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

GD Cubic regularization

13

Caveats

GD works well 6= Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

GD Cubic regularization

13

Caveats

GD works well 6= Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

GD Cubic regularization

Bounds on f , f ′, f ′′, f ′′′, . . .

Some functions get “smoother” with higher derivatives, some less so

13

Caveats

GD works well 6= Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

GD Cubic regularization

Bounds on f , f ′, f ′′, f ′′′, . . .

Some functions get “smoother” with higher derivatives, some less so

f f ′ f ′′ f ′′′ f ′′′′

sin(cx) c cos(cx) −c2 sin(cx) −c3 cos(cx) c4 sin(cx)

c < 1 =⇒ max f (m)(x)→ 0 c > 1 =⇒ max f (m)(x)→∞ 13

Is it faster?

After T steps, f (xT)− f ∗ ≤ ?

(in convex world)

Cm depends on bound on f (m+1) (and initial error)

Gradient descent: f (xt)− f ∗ ≤ C1/T
Cubic regularization: f (xt)− f ∗ ≤ C2/T 2

mth-order (regularized): f (xt)− f ∗ ≤ Cm/T m

How many iterations to reach f (xT)− f ∗ ≤ ε ?

Gradient descent: T ≥ C1/ε

Cubic regularization: T ≥ (C2/ε)
1/2

mth-order (regularized): T ≥ (Cm/ε)
1/m

14

Is it faster?

After T steps, f (xT)− f ∗ ≤ ?

(in convex world)
Cm depends on bound on f (m+1) (and initial error)

Gradient descent: f (xt)− f ∗ ≤ C1/T
Cubic regularization: f (xt)− f ∗ ≤ C2/T 2

mth-order (regularized): f (xt)− f ∗ ≤ Cm/T m

How many iterations to reach f (xT)− f ∗ ≤ ε ?

Gradient descent: T ≥ C1/ε

Cubic regularization: T ≥ (C2/ε)
1/2

mth-order (regularized): T ≥ (Cm/ε)
1/m

14

Is it faster?

After T steps, f (xT)− f ∗ ≤ ?

(in convex world)
Cm depends on bound on f (m+1) (and initial error)

Gradient descent: f (xt)− f ∗ ≤ C1/T
Cubic regularization: f (xt)− f ∗ ≤ C2/T 2

mth-order (regularized): f (xt)− f ∗ ≤ Cm/T m

How many iterations to reach f (xT)− f ∗ ≤ ε ?

Gradient descent: T ≥ C1/ε

Cubic regularization: T ≥ (C2/ε)
1/2

mth-order (regularized): T ≥ (Cm/ε)
1/m

14

Is it faster?

Time to reach f (xT)− f ∗ ≤ ε

10 4 10 2 100 102

 hard error easy

10 2

10 1

100

101

102

103

104

105

T
(n

um
be

r
of

 it
er

at
io

ns
)

Gradient descentCubic regularization
3rd order

Plot caveats

- Height depends on constants
- Only slopes are accurate
- Worst case, if assumptions hold
- Log-log scale

Main takeaway:
For tiny ε, higher order methods are
better even if more expensive/iteration

15

Is it fastest? (main part of the paper)

“Actual time”:

nope

Only need to solve subproblem approximately (at first)

f̃t(xt+1)− f̃ ∗t ≤ εt , εt = O
(

1
tc

)

Number of iterations:

nope (for convex functions)

Gradient descent: 1/T

Cubic regularization: 1/T 2 Accelerated Gradient Descent: 1/T 2

Accelerated cubic regularization: 1/T 3 mth order: 1/T m+1

16

Is it fastest? (main part of the paper)

“Actual time”: nope

Only need to solve subproblem approximately (at first)

f̃t(xt+1)− f̃ ∗t ≤ εt , εt = O
(

1
tc

)

Number of iterations:

nope (for convex functions)

Gradient descent: 1/T

Cubic regularization: 1/T 2 Accelerated Gradient Descent: 1/T 2

Accelerated cubic regularization: 1/T 3 mth order: 1/T m+1

16

Is it fastest? (main part of the paper)

“Actual time”: nope

Only need to solve subproblem approximately (at first)

f̃t(xt+1)− f̃ ∗t ≤ εt , εt = O
(

1
tc

)

Number of iterations: nope (for convex functions)

Gradient descent: 1/T

Cubic regularization: 1/T 2

Accelerated Gradient Descent: 1/T 2

Accelerated cubic regularization: 1/T 3 mth order: 1/T m+1

16

Is it fastest? (main part of the paper)

“Actual time”: nope

Only need to solve subproblem approximately (at first)

f̃t(xt+1)− f̃ ∗t ≤ εt , εt = O
(

1
tc

)

Number of iterations: nope (for convex functions)

Gradient descent: 1/T

Cubic regularization: 1/T 2 Accelerated Gradient Descent: 1/T 2

Accelerated cubic regularization: 1/T 3 mth order: 1/T m+1

16

Is it fastest? (main part of the paper)

“Actual time”: nope

Only need to solve subproblem approximately (at first)

f̃t(xt+1)− f̃ ∗t ≤ εt , εt = O
(

1
tc

)

Number of iterations: nope (for convex functions)

Gradient descent: 1/T

Cubic regularization: 1/T 2 Accelerated Gradient Descent: 1/T 2

Accelerated cubic regularization: 1/T 3 mth order: 1/T m+1

16

Main ideas

Optimization with higher order approximations
Regularity assumptions
Constructing upper bounds
Solving polynomials

Next week: Super fast accelerated higher order methods (and maybe a tensor)

Thanks!

17

	anm4:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

