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Tensors in optimization
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Only available information is local: x , f (x),∇f (x), . . .
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Tensors in optimization

Goal: find the minimum of a function f

Only available information is local: x , f (x),∇f (x), . . .

f

Higher order derivatives = more information
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But... isn’t Newton “bad”?

Newton’s method: x ′ = x − α[∇2f (x)]−1∇f (x)

Less stable than gradient descent Can go up instead of down
Only works for small problems Awful scaling with dimension

Why use even higher order information?

Today: a primer

Newton: the issues and how to fix them
General recipe for higher order
Some intuition for faster/approximate methods

Next week: Superfast higher order methods
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The issues with Newton: Non-convex functions
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The issues with Newton: Stability
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The issues with Newton: Stability

What?
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The issues with Newton: Stability

f
f′

f′′
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Optimization

Want to minimize f . At x , we know f (x),∇f (x), . . .

f

x

Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information → Best algorithm?

Algorithm → Why does it work? When does it work?

Gradient descent → Modified Newton → Arbitrary order
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First order

Gradient Descent (fixed α): xt+1 = xt − α∇f (xt)

Need continuity: if the gradient changes too fast, not informative
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First order

Gradient Descent (fixed α): xt+1 = xt − α∇f (xt)

The Hessian is bounded → The gradient does not change too fast

Taylor expansion:

f (y) = f (x) + f ′(x)(y − x) + 1
2! f
′′(x)(y − x)2 +

1
3! f
′′′(x)(y − x)3 + . . .

Truncated error:

f (y) = f (x) + f ′(x)(y − x) + O((y − x)2)

≤ f (x) + f ′(x)(y − x) +
[

1
2 max

x
f ′′(x)

]
(y − x)2
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First order

f

x

f̃ (y) = f (x) +∇f (x)(y − x) + L
2‖y − x‖2
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First order

f

x

f̃ (y) = f (x) +∇f (x)(y − x) + L
2‖y − x‖2

Convex quadratic upper bound on f :

0 = ∇f̃ (y)
=⇒ 0 = ∇f (x) + L(y − x)

=⇒ y = x − 1
L∇f (x)
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Second order

The Hessian does not change too fast

f (x) + f ′(x)(y − x) + 1
2 f ′′(x)(y − x)2 + O((y − x)3)

The third derivative is bounded

x ′ = argmin
y

{
〈∇f (x), y − x〉+ 1

2∇
2f (x)[y − x , y − x ] + M

6 ‖y − x‖3
}

Cubic regularization of Newton’s method
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Cubic regularization: non-convex

Newton Cubic regularization
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Cubic regularization: non-convex

Stationary points
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General strategy

For mth order methods: If bounded (m + 1)th derivative

Minimize {mth order Taylor expansion + C‖x − y‖m+1}

So far:

Issues with näıve Newton
Regularity assumptions for GD and higher order methods
Cubic regularization

Next:

How to solve the subproblem
Some caveats
Is it faster? Fastest?
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Time per iteration

Cubic regularization update:

x ′ = x − d

min
d

{
〈g , d〉+ 1

2 H[d , d ] + M
6 ‖d‖

3
}

... It’s not convex

(but it is simpler)

If ‖d‖ = r =⇒ minimizing a quadratic (with simple constraints)

d =

[
H +

Mr
2 I

]−1

g

Find the fixed point of r =
∥∥∥[H + Mr

2 I
]−1 g

∥∥∥ (1D, convex)

Time: Matrix inverse (once, then reuse) O(n3)

+ a few iterations of a convex 1D solver (only matrix-vector products)
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Caveats

GD works well 6= Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

GD Cubic regularization
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Caveats

GD works well 6= Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

GD Cubic regularization

Bounds on f , f ′, f ′′, f ′′′, . . .

Some functions get “smoother” with higher derivatives, some less so

f f ′ f ′′ f ′′′ f ′′′′

sin(cx) c cos(cx) −c2 sin(cx) −c3 cos(cx) c4 sin(cx)

c < 1 =⇒ max f (m)(x)→ 0 c > 1 =⇒ max f (m)(x)→∞ 13



Is it faster?

After T steps, f (xT )− f ∗ ≤ ?

(in convex world)

Cm depends on bound on f (m+1) (and initial error)

Gradient descent: f (xt)− f ∗ ≤ C1/T
Cubic regularization: f (xt)− f ∗ ≤ C2/T 2

mth-order (regularized): f (xt)− f ∗ ≤ Cm/T m

How many iterations to reach f (xT )− f ∗ ≤ ε ?

Gradient descent: T ≥ C1/ε

Cubic regularization: T ≥ (C2/ε)
1/2

mth-order (regularized): T ≥ (Cm/ε)
1/m
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Is it faster?

Time to reach f (xT )− f ∗ ≤ ε

10 4 10 2 100 102

 hard  error   easy 

10 2

10 1

100

101

102

103

104

105

T 
(n

um
be

r 
of

 it
er

at
io

ns
)

Gradient descentCubic regularization
3rd order

Plot caveats

- Height depends on constants
- Only slopes are accurate
- Worst case, if assumptions hold
- Log-log scale

Main takeaway:
For tiny ε, higher order methods are
better even if more expensive/iteration
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Is it fastest? (main part of the paper)

“Actual time”:

nope

Only need to solve subproblem approximately (at first)

f̃t(xt+1)− f̃ ∗t ≤ εt , εt = O
(

1
tc

)

Number of iterations:

nope (for convex functions)

Gradient descent: 1/T

Cubic regularization: 1/T 2 Accelerated Gradient Descent: 1/T 2

Accelerated cubic regularization: 1/T 3 mth order: 1/T m+1
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Main ideas

Optimization with higher order approximations
Regularity assumptions
Constructing upper bounds
Solving polynomials

Next week: Super fast accelerated higher order methods (and maybe a tensor)

Thanks!
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