Tensors for optimization(?)

Higher order and accelerated methods

Based on
Estimate sequence methods: extensions and approximations, Michel Baes, 2009
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Higher order derivatives = more information
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Newton's method:  x' = x — a[V?f(x)] 1 Vf(x)

Less stable than gradient descent Can go up instead of down
Only works for small problems Awful scaling with dimension

Why use even higher order information?

Today: a primer

Newton: the issues and how to fix them
General recipe for higher order
Some intuition for faster/approximate methods

Next week: Superfast higher order methods
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Optimization

Want to minimize . At x, we know f(x), Vf(x),...
X \
Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information — Best algorithm?

Algorithm — Why does it work? When does it work?

Gradient descent — Modified Newton — Arbitrary order
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Gradient Descent (fixed «): Xer1 = X¢ — aVIF(x)

The Hessian is bounded — The gradient does not change too fast

Taylor expansion:
1

F(y) = F60 + FOy =)+ o 7 () <P+ 5

() y —x)* + ...

Truncated error:
fy) = f() + f'(x)(y = x) + O((y — x)*)
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Convex quadratic upper bound on f:
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First order
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First order
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The Hessian does not change too fast

F(x) + £/ ()(y = %) + 370y = x)* + O((y — x)°)
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The Hessian does not change too fast
f(x) + ' (x)(y = x) + 37 ()(y = x)* + [ maxs £ (x)] (v — x)°

The third derivative is bounded

1 M
X = argmin { (VF(c).y =)+ 3Gy ~xy =X+ g Iy = xl°

Cubic regularization of Newton's method
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General strategy

For mth order methods: If bounded (m + 1)th derivative

Minimize {mth order Taylor expansion + C||x — y||™"}

So far:

Issues with naive Newton
Regularity assumptions for GD and higher order methods

Cubic regularization
Next:

How to solve the subproblem
Some caveats

Is it faster? Fastest?
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Time per iteration
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Time per iteration

Cubic regularization update:

!
x =x—d

. 1 M, 3
min {(g.) + JHld. o]+ al*

... It's not convex (but it is simpler)
If ||d]| =r = minimizing a quadratic (with simple constraints)
d= [H + %l} h g
2
Find the fixed point of r= H [H+ %1] - gH (1D, convex)

Time: Matrix inverse (once, then reuse) O(n?)
+ a few iterations of a convex 1D solver (only matrix-vector products) 12
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GD works well # Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough
Bounds on £, " f" " ...

Some functions get “smoother” with higher derivatives, some less so

f f/ f‘// f/// f////
sin(cx)  ccos(cx)  —c?sin(cx)  —c3cos(cx)  c*sin(cx)
c<1l = maxf(M(x) =0 c>1 = maxf(M(x) - oo
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Is it faster?

After T steps, f(x7)—f*<?

(in convex world)

Cm depends on bound on f(™*+1) (and initial error)

Gradient descent: f(xe))—f"<GJT
Cubic regularization: f(x) — * < G/ T?
mth-order (regularized): f(xt) =< Cyn/T™

How many iterations to reach f(x7) —* <e?

Gradient descent: T>GC/e
Cubic regularization: T > (Cy/e)/?
mth-order (regularized): T > (Cp/e)tm
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Is it faster?

Time to reach f(x7) — f* <e¢

10° \\ Plot caveats
104 Q@
9}% - Height depends on constants

0 z
£ 10 %, - Only slopes are accurate
S o,
g , \C% Sop - Worst case, if assumptions hold
£ 10 .
z 1@9{1/‘% - Log-log scale
g 10! 1 o 3t
2 € 2
g
=
£ 10°
~

10-1 .

Main takeaway:
102 For tiny €, higher order methods are
104 1072 10° 102 better even if more expensive/iteration
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Is it fastest? (main part of the paper)

“Actual time”: nope
Only need to solve subproblem approximately (at first)

. - 1
ft’(Xt+1) - ft < &, e =0 <tc>

Number of iterations: nope (for convex functions)

Gradient descent: 1/T

Cubic regularization: 1/T? Accelerated Gradient Descent: 1/T?2

Accelerated cubic regularization: 1/T3 mth order: 1/Tm+1
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Main ideas

Optimization with higher order approximations
Regularity assumptions

Constructing upper bounds

Solving polynomials

Next week: Super fast accelerated higher order methods (and maybe a tensor)

Thanks!
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