Tensors for optimization(?)

Higher order and accelerated methods

Based on
Estimate sequence methods: extensions and approximations, Michel Baes, 2009
MLRG Fall 2020 - Tensor basics and applications - Nov 18

Tensors in optimization

Goal: find the minimum of a function f

 Only available information is local: $x, f(x), \nabla f(x), \ldots$

Tensors in optimization

Goal: find the minimum of a function f

 Only available information is local: $x, f(x), \nabla f(x), \ldots$

Tensors in optimization

Goal: find the minimum of a function f

 Only available information is local: $x, f(x), \nabla f(x), \ldots$

Tensors in optimization

Goal: find the minimum of a function f

 Only available information is local: $x, f(x), \nabla f(x), \ldots$

Which one is it?

Tensors in optimization

Goal: find the minimum of a function f Only available information is local: $x, f(x), \nabla f(x), \ldots$

Higher order derivatives = more information

But... isn't Newton "bad"?

Newton's method: $\quad x^{\prime}=x-\alpha\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)$

But... isn't Newton "bad"?

$$
\text { Newton's method: } \quad x^{\prime}=x-\alpha\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)
$$

Less stable than gradient descent Only works for small problems

Can go up instead of down Awful scaling with dimension

Why use even higher order information?

But... isn't Newton "bad"?

Newton's method: $\quad x^{\prime}=x-\alpha\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)$

Less stable than gradient descent
Only works for small problems

Can go up instead of down Awful scaling with dimension

Why use even higher order information?

Today: a primer
Newton: the issues and how to fix them
General recipe for higher order
Some intuition for faster/approximate methods

Next week: Superfast higher order methods

$$
W
$$

$$
W
$$

$$
W
$$

$$
W d
$$

$$
V \alpha
$$

$$
V
$$

$$
V
$$

$$
V
$$

$$
V
$$

The issues with Newton: Stability

4

4

$f^{\prime \prime}$

Want to minimize f. At x, we know $f(x), \nabla f(x), \ldots$

Optimization

Want to minimize f. At x, we know $f(x), \nabla f(x), \ldots$

Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Optimization

Want to minimize f. At x, we know $f(x), \nabla f(x), \ldots$

Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information \rightarrow Best algorithm?

Optimization

Want to minimize f. At x, we know $f(x), \nabla f(x), \ldots$

Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information \rightarrow Best algorithm?
Algorithm \rightarrow Why does it work? When does it work?

Optimization

Want to minimize f. At x, we know $f(x), \nabla f(x), \ldots$

Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information \rightarrow Best algorithm?
Algorithm \rightarrow Why does it work? When does it work?

Gradient descent \rightarrow Modified Newton \rightarrow Arbitrary order

First order

Gradient Descent (fixed α): $\quad x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)$

Need continuity: if the gradient changes too fast, not informative

First order

$$
\text { Gradient Descent (fixed } \alpha \text {): } \quad x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

Need continuity: if the gradient changes too fast, not informative

First order

$$
\text { Gradient Descent (fixed } \alpha \text {): } \quad x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

Need continuity: if the gradient changes too fast, not informative

First order

$$
\text { Gradient Descent (fixed } \alpha \text {): } \quad x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

The Hessian is bounded \rightarrow The gradient does not change too fast

First order

$$
\text { Gradient Descent }(\text { fixed } \alpha): \quad x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

The Hessian is bounded \rightarrow The gradient does not change too fast

Taylor expansion:
$f(y)=f(x)+f^{\prime}(x)(y-x)+\frac{1}{2!} f^{\prime \prime}(x)(y-x)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(x)(y-x)^{3}+\ldots$

First order

$$
\text { Gradient Descent (fixed } \alpha \text {): } \quad x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

The Hessian is bounded \rightarrow The gradient does not change too fast

Taylor expansion:
$f(y)=f(x)+f^{\prime}(x)(y-x)+\frac{1}{2!} f^{\prime \prime}(x)(y-x)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(x)(y-x)^{3}+\ldots$
Truncated error:
$f(y)=f(x)+f^{\prime}(x)(y-x)+O\left((y-x)^{2}\right)$

First order

$$
\text { Gradient Descent (fixed } \alpha \text {): } \quad x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

The Hessian is bounded \rightarrow The gradient does not change too fast

Taylor expansion:
$f(y)=f(x)+f^{\prime}(x)(y-x)+\frac{1}{2!} f^{\prime \prime}(x)(y-x)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(x)(y-x)^{3}+\ldots$
Truncated error:

$$
\begin{aligned}
f(y) & =f(x)+f^{\prime}(x)(y-x)+O\left((y-x)^{2}\right) \\
& \leq f(x)+f^{\prime}(x)(y-x)+\left[\frac{1}{2} \max _{x} f^{\prime \prime}(x)\right](y-x)^{2}
\end{aligned}
$$

First order

$$
\tilde{f}(y)=f(x)+\nabla f(x)(y-x)+\frac{L}{2}\|y-x\|^{2}
$$

First order

$$
\tilde{f}(y)=f(x)+\nabla f(x)(y-x)+\frac{L}{2}\|y-x\|^{2}
$$

Convex quadratic upper bound on f :

$$
\begin{aligned}
& 0=\nabla \tilde{f}(y) \\
& 0=\nabla f(x)+L(y-x) \\
& y=x-\frac{1}{L} \nabla f(x)
\end{aligned}
$$

First order

$$
\tilde{f}(y)=f(x)+\nabla f(x)(y-x)+\frac{L}{2}\|y-x\|^{2}
$$

First order

$$
\tilde{f}(y)=f(x)+\nabla f(x)(y-x)+\frac{L}{2}\|y-x\|^{2}
$$

First order

$$
\tilde{f}(y)=f(x)+\nabla f(x)(y-x)+\frac{L}{2}\|y-x\|^{2}
$$

Second order

The Hessian does not change too fast

$$
f(x)+f^{\prime}(x)(y-x)+\frac{1}{2} f^{\prime \prime}(x)(y-x)^{2}+O\left((y-x)^{3}\right)
$$

Second order

The Hessian does not change too fast

$$
f(x)+f^{\prime}(x)(y-x)+\frac{1}{2} f^{\prime \prime}(x)(y-x)^{2}+\left[\frac{1}{6} \max _{x} f^{\prime \prime \prime}(x)\right](y-x)^{3}
$$

The third derivative is bounded

Second order

The Hessian does not change too fast

$$
f(x)+f^{\prime}(x)(y-x)+\frac{1}{2} f^{\prime \prime}(x)(y-x)^{2}+\left[\frac{1}{6} \max _{x} f^{\prime \prime \prime}(x)\right](y-x)^{3}
$$

The third derivative is bounded

$$
x^{\prime}=\arg \min _{y}\left\{\langle\nabla f(x), y-x\rangle+\frac{1}{2} \nabla^{2} f(x)[y-x, y-x]+\frac{M}{6}\|y-x\|^{3}\right\}
$$

Cubic regularization of Newton's method

Cubic regularization: non-convex

Cubic regularization: non-convex

Cubic regularization

Cubic regularization: non-convex

Cubic regularization

Cubic regularization: non-convex

Cubic regularization

Cubic regularization: non-convex

Cubic regularization: non-convex

Stationary points

Cubic regularization: non-convex

Stationary points

General strategy

For m th order methods: If bounded $(m+1)$ th derivative

Minimize $\quad\left\{m\right.$ th order Taylor expansion $\left.+C\|x-y\|^{m+1}\right\}$

General strategy

For m th order methods: If bounded $(m+1)$ th derivative

Minimize $\quad\left\{m\right.$ th order Taylor expansion $\left.+C\|x-y\|^{m+1}\right\}$

So far:
Issues with naïve Newton
Regularity assumptions for GD and higher order methods
Cubic regularization

General strategy

For m th order methods: If bounded $(m+1)$ th derivative

Minimize $\quad\left\{m\right.$ th order Taylor expansion $\left.+C\|x-y\|^{m+1}\right\}$

So far:
Issues with naïve Newton
Regularity assumptions for GD and higher order methods
Cubic regularization
Next:
How to solve the subproblem
Some caveats
Is it faster? Fastest?

Time per iteration

Cubic regularization update:

$$
\begin{gathered}
x^{\prime}=x-d \\
\min _{d}\left\{\langle g, d\rangle+\frac{1}{2} H[d, d]+\frac{M}{6}\|d\|^{3}\right\}
\end{gathered}
$$

... It's not convex

Time per iteration

Cubic regularization update:

$$
\begin{gathered}
x^{\prime}=x-d \\
\min _{d}\left\{\langle g, d\rangle+\frac{1}{2} H[d, d]+\frac{M}{6}\|d\|^{3}\right\} \\
\ldots \text { It's not convex (but it is simpler) }
\end{gathered}
$$

$$
\begin{array}{ll}
\text { If }\|d\|=r \quad & \Longrightarrow \quad \text { minimizing a quadratic (with simple constraints) } \\
d=\left[H+\frac{M r}{2} l\right]^{-1} g
\end{array}
$$

Time per iteration

Cubic regularization update:

$$
\begin{gathered}
x^{\prime}=x-d \\
\min _{d}\left\{\langle g, d\rangle+\frac{1}{2} H[d, d]+\frac{M}{6}\|d\|^{3}\right\}
\end{gathered}
$$

... It's not convex (but it is simpler)

If $\|d\|=r \quad \Longrightarrow \quad$ minimizing a quadratic (with simple constraints)

$$
d=\left[H+\frac{M r}{2} I\right]^{-1} g
$$

Find the fixed point of

$$
\begin{equation*}
r=\left\|\left[H+\frac{M r}{2} l\right]^{-1} g\right\| \tag{1D,convex}
\end{equation*}
$$

Time: Matrix inverse (once, then reuse) $O\left(n^{3}\right)$

+ a few iterations of a convex 1D solver (only matrix-vector products)

Caveats

GD works well \neq Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

Caveats

GD works well \neq Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

GD

Cubic regularization

Caveats

GD works well \neq Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

GD

Cubic regularization

Caveats

GD works well \neq Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

GD

Cubic regularization

Caveats

$$
\text { GD works well } \neq \text { Cubic regularization works well }
$$

Quality of approximation goes up if higher derivatives are smooth enough

Bounds on $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \ldots$

Some functions get "smoother" with higher derivatives, some less so

Caveats

GD works well \neq Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

Bounds on $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \ldots$

Some functions get "smoother" with higher derivatives, some less so

$$
\begin{array}{ccccc}
f & f^{\prime} & f^{\prime \prime} & f^{\prime \prime \prime} & f^{\prime \prime \prime \prime} \\
\sin (c x) & c \cos (c x) & -c^{2} \sin (c x) & -c^{3} \cos (c x) & c^{4} \sin (c x) \\
c<1 \Longrightarrow & \max f^{(m)}(x) \rightarrow 0 & c>1 \Longrightarrow \max f^{(m)}(x) \rightarrow \infty
\end{array}
$$

Is it faster?

After T steps, $f\left(x_{T}\right)-f^{*} \leq$?

(in convex world)

Is it faster?

After T steps, $f\left(x_{T}\right)-f^{*} \leq$?

(in convex world)
C_{m} depends on bound on $f^{(m+1)}$ (and initial error)

$$
\begin{array}{ll}
\text { Gradient descent: } & f\left(x_{t}\right)-f^{*} \leq C_{1} / T \\
\text { Cubic regularization: } & f\left(x_{t}\right)-f^{*} \leq C_{2} / T^{2} \\
m \text { th-order (regularized): } & f\left(x_{t}\right)-f^{*} \leq C_{m} / T^{m}
\end{array}
$$

Is it faster?

$$
\text { After } T \text { steps, } f\left(x_{T}\right)-f^{*} \leq \text { ? }
$$

(in convex world)
C_{m} depends on bound on $f^{(m+1)}$ (and initial error)

Gradient descent:

$$
f\left(x_{t}\right)-f^{*} \leq C_{1} / T
$$

Cubic regularization:

$$
f\left(x_{t}\right)-f^{*} \leq C_{2} / T^{2}
$$

m th-order (regularized):
$f\left(x_{t}\right)-f^{*} \leq C_{m} / T^{m}$

How many iterations to reach $f\left(x_{T}\right)-f^{*} \leq \epsilon$?

Gradient descent:
Cubic regularization:
m th-order (regularized):

$$
\begin{aligned}
& T \geq C_{1} / \epsilon \\
& T \geq\left(C_{2} / \epsilon\right)^{1 / 2} \\
& T \geq\left(C_{m} / \epsilon\right)^{1 / m}
\end{aligned}
$$

Is it faster?

Time to reach $f\left(x_{T}\right)-f^{*} \leq \epsilon$

Plot caveats

- Height depends on constants
- Only slopes are accurate
- Worst case, if assumptions hold
- Log-log scale

Main takeaway:
For tiny ϵ, higher order methods are better even if more expensive/iteration
"Actual time":

Number of iterations:

Is it fastest?

"Actual time": nope

Only need to solve subproblem approximately (at first)

$$
\tilde{f}_{t}\left(x_{t+1}\right)-\tilde{f}_{t}^{*} \leq \epsilon_{t}, \quad \epsilon_{t}=O\left(\frac{1}{t^{c}}\right)
$$

Number of iterations:
"Actual time": nope

Only need to solve subproblem approximately (at first)

$$
\tilde{f}_{t}\left(x_{t+1}\right)-\tilde{f}_{t}^{*} \leq \epsilon_{t}, \quad \epsilon_{t}=O\left(\frac{1}{t^{c}}\right)
$$

Number of iterations: nope (for convex functions)

Gradient descent: $1 / T$
Cubic regularization: $1 / T^{2}$
"Actual time": nope

Only need to solve subproblem approximately (at first)

$$
\tilde{f}_{t}\left(x_{t+1}\right)-\tilde{f}_{t}^{*} \leq \epsilon_{t}, \quad \epsilon_{t}=O\left(\frac{1}{t^{c}}\right)
$$

Number of iterations: nope (for convex functions)

Gradient descent: $1 / T$
Cubic regularization: $1 / T^{2}$
Accelerated Gradient Descent: $1 / T^{2}$
"Actual time": nope

Only need to solve subproblem approximately (at first)

$$
\tilde{f}_{t}\left(x_{t+1}\right)-\tilde{f}_{t}^{*} \leq \epsilon_{t}, \quad \epsilon_{t}=O\left(\frac{1}{t^{c}}\right)
$$

Number of iterations: nope (for convex functions)

Gradient descent: $1 / T$
Cubic regularization: $1 / T^{2} \quad$ Accelerated Gradient Descent: $1 / T^{2}$

Accelerated cubic regularization: $1 / T^{3} \quad m$ th order: $1 / T^{m+1}$

Main ideas

Optimization with higher order approximations
Regularity assumptions
Constructing upper bounds
Solving polynomials

Next week: Super fast accelerated higher order methods

Thanks!

