Tensors for optimization(?)

Higher order and accelerated methods

Based on
Estimate sequence methods: extensions and approximations, Michel Baes, 2009

MLRG Fall 2020 — Tensor basics and applications — Nov 18

Tensors in optimization

Goal: find the minimum of a function f

Only available information is local: x, f(x), Vf(x),...

W

Tensors in optimization

Goal: find the minimum of a function f

Only available information is local: x, f(x), Vf(x),...

N

W

AN

Tensors in optimization

Goal: find the minimum of a function f

Only available information is local: x, f(x), Vf(x),...

N

W

AN

Tensors in optimization

Goal: find the minimum of a function f

Only available information is local: x, f(x), Vf(x),...

W

AN

Which one is it?

Tensors in optimization

Goal: find the minimum of a function f

Only available information is local: x, f(x), Vf(x),...

W

Higher order derivatives = more information

But... isn’'t Newton “bad”?

Newton's method: x' = x — a[V?f(x)] 1 Vf(x)

But... isn’'t Newton “bad”?

Newton's method: x' = x — a[V?f(x)] 1 Vf(x)

Less stable than gradient descent Can go up instead of down
Only works for small problems Awful scaling with dimension

Why use even higher order information?

But... isn’'t Newton “bad”?

Newton's method: x' = x — a[V?f(x)] 1 Vf(x)

Less stable than gradient descent Can go up instead of down
Only works for small problems Awful scaling with dimension

Why use even higher order information?

Today: a primer

Newton: the issues and how to fix them
General recipe for higher order
Some intuition for faster/approximate methods

Next week: Superfast higher order methods

The issues with Newton: Non-convex functions

The issues with Newton: Non-convex functions

The issues with Newton: Non-convex functions

The issues with Newton: Non-convex functions

The issues with Newton: Non-convex functions

The issues with Newton: Stability

The issues with Newton: Stability

The issues with Newton: Stability

The issues with Newton: Stability

What?

The issues with Newton: Stability

LS

Optimization

Want to minimize . At x, we know f(x), Vf(x),...

Optimization

Want to minimize . At x, we know f(x), Vf(x),...
X \

Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Optimization
Want to minimize . At x, we know f(x), Vf(x),...
X \
Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information — Best algorithm?

Optimization
Want to minimize . At x, we know f(x), Vf(x),...
X \
Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information — Best algorithm?

Algorithm — Why does it work? When does it work?

Optimization

Want to minimize . At x, we know f(x), Vf(x),...
X \
Surrogate: Simple(r) to optimize, progress on it leads to progress on f

Assumptions on f and available information — Best algorithm?

Algorithm — Why does it work? When does it work?

Gradient descent — Modified Newton — Arbitrary order

Gradient Descent (fixed «): Xer1 = X¢ — aVIF(x)

Need continuity: if the gradient changes too fast, not informative

Gradient Descent (fixed «): Xer1 = X¢ — aVIF(x)

Need continuity: if the gradient changes too fast, not informative

Gradient Descent (fixed «): Xer1 = X¢ — aVIF(x)

Need continuity: if the gradient changes too fast, not informative

Gradient Descent (fixed «): Xer1 = X¢ — aVIF(x)

The Hessian is bounded — The gradient does not change too fast

Gradient Descent (fixed «): Xer1 = X¢ — aVIF(x)

The Hessian is bounded — The gradient does not change too fast

Taylor expansion:
1

3 () y —x)* + ...

F(y) = FO) + () —x) + 5 () — <P +

Gradient Descent (fixed «): Xer1 = X¢ — aVIF(x)

The Hessian is bounded — The gradient does not change too fast

Taylor expansion:
1

F(y) = F60 + FOy =)+ o 7 () <P+ 5

() y —x)* + ...

Truncated error:

fy) = f(x) + f'(x)(y = x) + O((y — x)*)

Gradient Descent (fixed «): Xer1 = X¢ — aVIF(x)

The Hessian is bounded — The gradient does not change too fast

Taylor expansion:
1

F(y) = F60 + FOy =)+ o 7 () <P+ 5

() y —x)* + ...

Truncated error:
fy) = f() + f'(x)(y = x) + O((y — x)*)

< A+ 0 =20 + | Fmaxr 0| (-

() = F0) + VFCy —)+ 5y — xP

-

Fy) = £+ VG —x) + 5y x|

7

Convex quadratic upper bound on f:

(@]
|
<
=
- X
|
=
<
I
x

<
|
X

\

I
<
-

X

Fy) = £+ VG —x) + 5y x|

7

First order

7

Fy) = £+ VG —x) + 5y x|

First order

7

Fy) = £+ VG —x) + 5y x|

The Hessian does not change too fast

F(x) + £/ ()(y = %) + 370y = x)* + O((y — x)°)

The Hessian does not change too fast
f(x) + ' (x)(y = x) + 37 ()(y = x)* + [maxs £ (x)] (v — x)°

The third derivative is bounded

The Hessian does not change too fast
f(x) + ' (x)(y = x) + 37 ()(y = x)* + [maxs £ (x)] (v — x)°

The third derivative is bounded

1 M
X = argmin { (VF(c).y =)+ 3Gy ~xy =X+ g Iy = xl°

Cubic regularization of Newton's method

Cubic regularization: non-convex

Newton Cubic regularization

10

Cubic regularization: non-convex

Newton Cubic regularization

10

Cubic regularization: non-convex

Newton Cubic regularization

10

Cubic regularization: non-convex

Newton Cubic regularization

10

Cubic regularization: non-convex

Newton Cubic regularization

10

Cubic regularization: non-convex

Stationary points

10

Cubic regularization: non-convex

Stationary points

10

General strategy

For mth order methods: If bounded (m + 1)th derivative

Minimize {mth order Taylor expansion + C||x — y||™"}

11

General strategy

For mth order methods: If bounded (m + 1)th derivative

Minimize {mth order Taylor expansion + C||x — y||™"}

So far:

Issues with naive Newton
Regularity assumptions for GD and higher order methods

Cubic regularization

11

General strategy

For mth order methods: If bounded (m + 1)th derivative

Minimize {mth order Taylor expansion + C||x — y||™"}

So far:

Issues with naive Newton
Regularity assumptions for GD and higher order methods

Cubic regularization
Next:

How to solve the subproblem
Some caveats

Is it faster? Fastest?

11

Time per iteration

Cubic regularization update:

!
x =x—d

. 1 M, 3
min {(g.) + JHld. o]+ al*

... It's not convex

12

Time per iteration

Cubic regularization update:

!
x =x—d

. 1 M, 3
min {(g.) + JHld. o]+ al*

... It's not convex (but it is simpler)

If||d|| =r = minimizing a quadratic (with simple constraints)

—1
d= [H+%l} g

12

Time per iteration

Cubic regularization update:

!
x =x—d

. 1 M, 3
min {(g.) + JHld. o]+ al*

... It's not convex (but it is simpler)
If ||d]| =r = minimizing a quadratic (with simple constraints)
d= [H + %l} h g
2
Find the fixed point of r= H [H+ %1] - gH (1D, convex)

Time: Matrix inverse (once, then reuse) O(n?)
+ a few iterations of a convex 1D solver (only matrix-vector products) 12

GD works well # Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough

13

GD works well # Cubic regularization works well
Quality of approximation goes up if higher derivatives are smooth enough

GD Cubic regularization

13

GD works well # Cubic regularization works well
Quality of approximation goes up if higher derivatives are smooth enough

GD Cubic regularization

VAW

GD works well # Cubic regularization works well
Quality of approximation goes up if higher derivatives are smooth enough

GD Cubic regularization

VAW

GD works well # Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough
Bounds on £, " f" " ...

Some functions get “smoother” with higher derivatives, some less so

13

GD works well # Cubic regularization works well

Quality of approximation goes up if higher derivatives are smooth enough
Bounds on £, " f" " ...

Some functions get “smoother” with higher derivatives, some less so

f f/ f‘// f/// f////
sin(cx) ccos(cx) —c?sin(cx) —c3cos(cx) c*sin(cx)
c<1l = maxf(M(x) =0 c>1 = maxf(M(x) - oo

13

Is it faster?

After T steps, f(x7)—f*<?

(in convex world)

14

Is it faster?

After T steps, f(x7)—f*<?

(in convex world)

Cm depends on bound on f(™*+1) (and initial error)

Gradient descent: f(xe))—f"<GJT
Cubic regularization: f(x) — * < G/ T?
mth-order (regularized): f(xt) =< Cyn/T™

14

Is it faster?

After T steps, f(x7)—f*<?

(in convex world)

Cm depends on bound on f(™*+1) (and initial error)

Gradient descent: f(xe))—f"<GJT
Cubic regularization: f(x) — * < G/ T?
mth-order (regularized): f(xt) =< Cyn/T™

How many iterations to reach f(x7) —* <e?

Gradient descent: T>GC/e
Cubic regularization: T > (Cy/e)/?
mth-order (regularized): T > (Cp/e)tm

14

Is it faster?

Time to reach f(x7) — f* <e¢

10° \\ Plot caveats
104 Q@
9}% - Height depends on constants

0 z
£ 10 %, - Only slopes are accurate
S o,
g , \C% Sop - Worst case, if assumptions hold
£ 10 .
z 1@9{1/‘% - Log-log scale
g 10! 1 o 3t
2 € 2
g
=
£ 10°
~

10-1 .

Main takeaway:
102 For tiny €, higher order methods are
104 1072 10° 102 better even if more expensive/iteration
« hard error € easy -

15

Is it fastest? (main part of the paper)

“Actual time”:

Number of iterations:

16

Is it fastest? (main part of the paper)

“Actual time”: nope

Only need to solve subproblem approximately (at first)

- - 1
ft(Xt+1) - ft* < ¢, e=0 <tc>

Number of iterations:

16

Is it fastest? (main part of the paper)

“Actual time”: nope
Only need to solve subproblem approximately (at first)

. - 1
ft(Xt+1) - ft < ¢, e=0 <tc>

Number of iterations: nope (for convex functions)

Gradient descent: 1/T

Cubic regularization: 1/T?

16

Is it fastest? (main part of the paper)

“Actual time”: nope
Only need to solve subproblem approximately (at first)

. - 1
ft(Xt+1) - ft < ¢, e=0 <tc>

Number of iterations: nope (for convex functions)

Gradient descent: 1/T

Cubic regularization: 1/T? Accelerated Gradient Descent: 1/T?2

16

Is it fastest? (main part of the paper)

“Actual time”: nope
Only need to solve subproblem approximately (at first)

. - 1
ft’(Xt+1) - ft < &, e =0 <tc>

Number of iterations: nope (for convex functions)

Gradient descent: 1/T

Cubic regularization: 1/T? Accelerated Gradient Descent: 1/T?2

Accelerated cubic regularization: 1/T3 mth order: 1/Tm+1

16

Main ideas

Optimization with higher order approximations
Regularity assumptions

Constructing upper bounds

Solving polynomials

Next week: Super fast accelerated higher order methods (and maybe a tensor)

Thanks!

17

	anm4:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

