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Motivation

Overall task: infer a distribution of topics based on the contents of
a documents.

I Given document contents x1, x2, . . . , xn infer the distribution
of topics h.



Figure: The Dirichlet model



Dependencies (from Mark’s 540 slides):

Traditionally these parameters are learned by Monte Carlo methods
like Gibbs sampling. Problem: this could be inefficient.



The Dirichlet model (another perspective) [Anandkumar
et. al.]

I h = (h1, h2, . . . , hk) ∈ Rk : proportions over topics

I x1, x2, x3, . . . ∈ Rd : observed variables (intuition: xv is what
the v th word in the document is)

I matrix O ∈ Rd×k : usually unknown, so we assume this exists
such that E(xv |h) = Oh for each v ∈ {1, 2, 3, . . .}

Dirichlet model: h itself follows a Dirichlet distribution over the k
topics. Distribution parameterized by α ∈ Rk

>0 as

pα(h) =
1

Z (α)

k∏
i=1

hαi−1
i

where Z (α) =
∏k

i=1 Γ(αi )
Γ(
∑

i αi )
is a normalizing constant. As

∑
i αi → 0

the distribution degenerates so pα(h) = 1 for exactly one h and 0
for the rest.



What are the implications of the O matrix?

LDA assumption: xv variables take on discrete values out of d
outcomes. Intuition here is that the distribution over these d
outcomes is dependent on the choice of topic h.
The ith column of O, Oi , is a probability vector of the conditional
probabilities of each word under each topic hi .

E(xv |h) =
k∑

i=1

P(t = i |h)E(xv |t = i , h) =
k∑

i=1

hi · Oi = Oh

O is assumed to have full column rank.



Tensors

Traditional methods for LDA involve sampling-based approaches,
this paper introduces a method that’s based on tensors.
The algorithm hinges on calculating the matrix of second moments
and tensor of third moments:

Pairs ∈ Rd×d = E[(xi − µ)⊗ (xj − µ)]

Triples ∈ Rd×d×d = E[(xi − µ)⊗ (xj − µ)⊗ (xl − µ)]



Necessary identities

”Lemma 3.1”:

Pairs =
k∑

i=1

σ2
i Oi ⊗ Oi

Triples =
k∑

i=1

µi ,3Oi ⊗ Oi ⊗ Oi where µi ,3 = E[(hi − E[hi ])
3]

Proof for Pairs:

E[(x1 − µ)⊗ (x2 − µ)] = E[E[(x1 − µ|h)]⊗ E[(x2 − µ)|h]]

= OE[(h − E[h])⊗ (h − E[h])]OT

= Odiag(. . . σ2
i . . .)O

T



Excess Correlation Analysis (ECA)

The goal of the algorithm is to estimate the O matrix.

1: procedure ECA(vector θ ∈ Rk , samples x)
2: Calculate Pairs = E[(xi − µ)⊗ (xj − µ)].
3: Calculate Triples = E[(xi − µ)⊗ (xj − µ)⊗ (xl − µ)].
4: Find a matrix U ∈ Rd×k such that

range(U) = range(Pairs).
5: Find V ∈ Rk×k such that V T (UTPairsU)V = Ik .
6: Set W ← UV .
7: Calculate the left singular vectors Ξ of the matrix

W TTriples(W θ)W , where
Triples(η) = E[(xi − µ)(xj − µ)T 〈η, xl − µ〉]

8: Return the set Ô = {(W+)T ξ : ξ ∈ Ξ}.
9: end procedure

Here W+ denotes the Moore-Penrose inverse of W .



Intuition for ECA

I ECA essentially performs two SVDs.
I the first (finding W )spherizes the data; the matrix W is

supposed to represent data that is ”projected” so that it has
covariance equal to the identity.

I the second (explicitly taking the singular vectors of
W TTriples(W θ)W ) is on the third-order moments.

I Taking these SVDs are efficient because the algo only
performs the decompositions on k × k matrices

I The paper’s introduction states that the overall purpose of
the SVD of the higher-order moment is to find ”directions
which exhibit non-Gaussianity”. It’s actually supposed to work
for any latent distribution with independent latent factors.



Identities about ECA

Theorem 3.1: Under the independent latent factor model,

I For all θ ∈ Rk , the algorithm returns a subset of the columns
of O.

I Let γi = µi ,3/σ
3
i (recall µi ,3 = E[(hi − E[hi ])

3]) , and assume
γi 6= 0 for each i ∈ [k]. If θ ∈ Rk is drawn uniformly at
random from the unit sphere Sk−1, then with probability 1,
the algorithm returns all the columns of O in canonical form
up to sign.



Proof sketch

I This theorem relies on the fact that it is feasible to find the
matrix V , which is true because UTPairsU can be shown to
be a full-rank matrix. Furthermore the matrix M = W TO is
orthogonal.

I The matrix W TTriples(W θ)W = MDMT where
D = diag(MT θ)diag(γ1, . . . , γk).

I As M is orthogonal we are thus able to find the eigenvalues of
this construction, and each singular vector ξ is in the form
siMei = siW

TOi . Thus (W+)T ξ = siOi .



Additional constraints and modifications for LDA

Under the Dirichlet model h has Dirichlet density is indeed a
product density, but the hi are not independent becasue h is
constrained so that

∑
hi = 1. If we assume α0 =

∑
i αi is known

then we can define the moments as follows:

µ = E[xi ]; Pairsα0 = E[xix
T
j ]− α0

α0 + 1
µµT

And a modified third moment as

Triplesα0
(η) = E[xix

T
j 〈η, x`〉]−

α0

α0 + 2
(E[xix

T
j ]ηµT + µηTE[xix

T
j ]

+ 〈η, µ〉E[xix
T
j ]) +

2α2
0

(α0 + 2)(α0 + 1)
〈η, µ〉µµT



Modified ECA algorithm for LDA

1: procedure ECA(vector θ ∈ Rk , samples x)
2: Calculate Pairsα0 and Triplesα)

.
3: Proceed as in the original ECA algorithm to find the matrix

W and singular values Ξ.
4: Return the set

Ô =

{
(W+)T ξ

~1T (W+)T ξ
| ξ ∈ Ξ

}
5: end procedure



Theorem 3.2:

I For all θ ∈ Rk using the modified algorithm returns a subset
of the columns of O

I If θ ∈ Rk is drawn uniformly at random from the unit sphere
Sk−1 then the algorithm returns all columns of O with
probability 1.

I The Dirichlet parameter α satisfies
α = α0(α0 + 1)Pairsα0(O+)T~1 where α0 =

∑
i αi .



Complexity

Key idea: You need to take enough samples of words in order to
come up with an accurate recovery of O. This is the value of ”d”
and determines the size of Pairs and Triples.
Precisely: If you take
N ≥ C1f (α, σk(O)) = C1((α0 + 1)/(mini αi/α0)σk(O)2) samples
to form empirical versions of the Pairs and Triples constructs, then
the algorithm returns a set of columns Ôi such that

‖Oi − Ôi‖ ≤ C2
(α0 + 1)2k3

(mini αi/α0)σk(O)3
√
N

Here σk(O) is the kth (minimum) singular value of O.



Discussion

I The algorithm can be seen as a method for obtaining a
particular desired decomposition of the tensor Triples, which is∑k

i=1 µi ,3Oi ⊗ Oi ⊗ Oi .

I Paper says that the method in practice is not stable, due to
the use of internal randomization.

I Authors suggest that other decomposition methods can be
used like ”simultaneous diagonalizations of matrices or direct
tensor decomposition methods”.
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