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What are the main contributions?

e Provide a computationally efficient and statistically
consistent moment-based estimator for mixtures of
spherical Gaussians

e Derive computational and information-theoretic barriers
to efficient estimation in mixture models (for spherical
Gaussians).

e Make connections to estimation problems related to
independent component analysis (ICA).
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Just as a little refresher...
Problem Statement

e K sub-populations

e Each modeled as multivariate
Gaussian.

e Each label picked according to some
mixture weight.
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What is the Goal? OF BRITISH COLUMBIA

In case you prefer the PGM...

Problem Statement

Zn e K sub-populations

e Each modeled as multivariate

Gaussian.
Xn
I »| e Each label picked according to some
N mixture weight.

Note that the “labels” are not observed.
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What do we want to do?

We want an efficient algorithm that approximately recovers
parameters from samples.

One example of such an algorithm...

This can be done with a local search for maximum likelihood
parameters (EM algorithm).
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Well Separated Mixtures

Estimation is easier if there is a large minimum separation
between component means.

J

What is Separation?

Se

sep 1= m|n M
i#f max{a,-,a,-}

This is not required in general but leads to exponential (exp(Q2(k))

where k is the number of clusters) running time / sample size.
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We can create an efficient algorithms for “non-degenerate”
models in high-dimensions (d > k) with spherical covariances.

How is this done?

Using the Method of Moments, they approximate the first
three moments of the GMM and then solve for the parameters
of the true models (means, covariances, and labels) with

respect to those estimated moments.
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The Spherical Gaussian Mixture model is defined in as follows.
e Let w; be the probability of choosing a component
i€lk]l:=A1,2.,.....,k}
o Let pu1, f1o, ..., i € RY be the component vectors

e Let 07,03,...,0%2 > 0 be component variances

We then define two matrices for convenience:

w = [wy, wa, ..., Wk]T eRF, A= [a|p2|.-|uk] € RELS
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Assuming the following data distribution...

We assume that the data was generated following,
k

X~ ZI[C =ilz where z ~N(uf,0%1),c~ Cat(w")
i=1

Algorithm Idea

Now we take these samples, compute empirical estimates of
some of the moments, and then match our current set of
parameters to those moments.
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Definition of Moment Generating function

Mx (t) == E(e‘TX).

Recall the Taylor series expansion

t2X2 t3X3 " Xn
X =1+tX+ + oot S
2! 3! n!

t2 B(X? tE(X3? t" E(X"
(X) PR B

Mx(t) = E(etX) = 1+t E(X) +

2! 3! n!
t?my  t3m t"m
=1htmy b o b e e e

2! 3! n!
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Method of Moments 2% DRTISH GOUUTIDN

Taylor Expansion of Moment Generating functions

Mx(t) = E(e'¥) = 1 +tE(X) + #EX?) | PEX) P E(X™) .

t2m2 t3m3 t"my,
2! 3! n!

=14+tm +

Important Fact

Recall from intro to probability, that a moment generating
function uniquely identifies a given distribution.
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How do we apply the method of moments to GMMs?

e Define some subset of moments in terms of the

parameters (means, variances, labels)

e Then solve for these parameters using empirical
estimates of these moments.

Couple Questions

e Which moments to use?

e How do we approximate them?

11
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Low-Order Estimates

moment order | reliable estimates? | unique solution?

1st, 2nd 7 X

1st- and 2"d-order moments (e.g., mean, covariance)
» Fairly easy to get reliable estimates.

]E)'('ES[)?® X] = Eg:[X® X]
» Can have multiple solutions to moment equations.
Eg,[X® X] ~ Ezcs[X® X] ~ Eg,[X®@ X], 01 # 02

12
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Method of Moments: Which moments to use? OF BRITISH COLUMBIA

High-Order Estimates

moment order | reliable estimates? | unique solution?
151! 2nd X
Q(k)" X

Q(k)"-order moments (e.g., Es[degree-k-poly(¥)])
» Uniguely pins down the solution.
» Empirical estimates very unreliable.

13
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Big ldea

k

EolX®@X] = > w[®j; + some sparse matrix;
i
K
EX®@X®X] = Z W, i ® ii; ® fij + sSome sparse tensor.

=1

Trick: “sparse stuff” can be estimated and thus removed.

Upshot: the following can be readily estimated (with #, T).

K K
My =Y w* i@’ and Tp =Y w* i@ @i
e e

Claim: {(/Z;, w;)} uniquely determined by My and Ts.

14
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Important Definitions

Define My : RY x R 5 R and Ty : R x R x R — R as

bi-linear and tri-linear functions.

Variational Lemma

Lemma
If{ji;} are linearly independent and all w; > 0, then
each of the k distinct, isolated local maximizers t* of

max Ty(U,d,d) s.t. My(d,d) <1
UcRrY

satisfies, for some i € [k],

1

M()(-,a*) = W /7,', Tg(a*,ﬁ*,ﬁ*) = \/W,

ii5)
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Orthogonal Directions and Solutions

k
maxzm #h S't' ZWA" (ﬂha)z
i=1

Combine with constraints w;({/i;, E'*)z < 1toget

k k
= (wa@m)ﬁ* = D wi i@ @) = £/w ;. B
i=1 i=1

16
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Getting an Approximate Solution

Effectively want to solve

ming || T — T|? st My =M. )
Not convex in parameters ¢ = {(Z;, w;)}.
What we do: find one component (iZ;, w;) at a time, using
local optimization of related (also non-convex) objective function.
(2", wa*)
(E1* wi*) (fia*, ws™)

htd £3 *
0 Uz Uz

New robust algorithm for “tensor eigen-decomposition”
efficiently approximates all local optima, each corresponding to
acomponent. — Near-optimal solution to (). |

17
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Want to find all local maximizers of
max T(d,d,0) st M(d,0) <1 M
eRrd
Must address initialization and convergence issues.
Crucially using special tensor structure of T~ Ty,
together with non-linearity of 4 — T( -, U, i):
» Random initialization is good with significant probability.
(“Good" = simple iteration will quickly converge to some local max.)

» Can check if initialization was good by checking objective
value after a few steps.

» If value large enough: initialization was good; improve by
taking a few more steps.

» Else: abandon and restart.

18
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Condition from Lemma 1 (Restated)

Condition 1 (Non-degeneracy). The component means span a k-dimensional subspace (i.e., the
matrix A has column rank k), and the vector w has strictly positive entries.

19
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Moment Based Estimation: Theorems OF BRITISH COLUMBIA

rithmetic

Theorem 1 (Observable moment structure). Assume Condition 1 holds. The average variance

%= Zle w;o? is the smallest eigenvalue of the covariance matriz E[(z — E[z])(z — E[z])7]. Let
v € R? be any unit norm eigenvector corresponding to the eigenvalue 2. Define

My :=Elz(v" (z — E[]))?] € R,
My = IE[I ®z] —52I e Rdxd’

d
M; =E[z®z®7] _Z(M1®ei®ei+ei®M1®ei+8i®6i®M1) € Réxdxd
i=1
(where ® denotes tensor product, and {ei,es,...,eq} is the coordinate basis for R%). Then

k k k
Mlzzwi U?Hi, M2:Zwi i @ i, M3:Zwiﬂi®#i®ﬂi-
i=1 i=1

i=1
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Theorem 2 (Moment-based estimator). The following can be added to the results of Theorem 1.
Suppose n" p1,m" p2,...,n" pk are distinct and non-zero (which is satisfied almost surely, for in-
stance, if 1) is chosen uniformly at random from the unit sphere in R%). Then the matriz

Ma(n) := M2 My(m) MJ?

is diagonalizable (where 1 denotes the Moore-Penrose pseudoinverse); its non-zero eigenvalue /
eigenvector pairs (A1,v1), (A2, v2), -, (Mg, Vk) satisfy i = 07 pr(iy and Mz,l/zvi = 8iy/Tr) n(i) fOT
some permutation T on [k] and signs si,sa,...,s, € {£1}. The p;, o2, and w; are recovered (up
to permutation) with

i 1/2 1 -
Hn() = — ;/z MZ/ Vi o= o LUR w; = e] A'E[z].
n" My "v; g

Here for a third order tensor T € RI*d*d T(n) =
d d d

> hm1 Y1 2ot TiinisTiz€i © €, € RY*9 for any vector

o d

in R

21
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Where does this leave us?

Combining Theorem 1 and Theorem 2 basically gives us a
plug in estimator that can be converted into an algorithm.

22
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Creating an Algorithm: Moment Estimates OF BRITISH COLUMBIA

Moment Estimates

Let {(x;, h;) : i € [n]} be ni.id. copies of (x,h), and S :=
{x1,X2,....x,} with S being some independent copy also of

size n. Then we can define our empirical moment estimates:

p = Elz], My :=ElzzT], Mz =Ez®z® x|,
1 — 1 = 1 1
h=—=)» =z My :=— zz7, Msg:=—=)» zQzQuz, h=-—=> z
5] % Pl % =g % =8 %

23
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Relationship of parameters and Moments

If we restrict ourselves to the case where 07 = 03, ...,0%,

then the relationships between each moment and our mixture
parameters is defined under the following lemma:

Lemma 3 (Structure of moments).
k
p="> wi,
i=1
k
My = Zwmmz + 0?1,
i=1

k d
Ms:Zwiui®#i®ﬂi+022(u®e]-®ej+ej®u®e]-+ej®ej®u).
i=1 j=1

OF BRITISH COLUMBIA

24
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Notational Aside

For a third-order tensor Y € R™*™X™M and U, V, W € R™*",
this paper lets Y[U, V, W] € R"*"™" denote the third order
tensor given by:

YU, V,Wlji jojs = Z Uiy j1 Viz,ja Wis,js Yir sinyis>» V1,72, 43 € [n].

1<iy,i2,i3<m

25
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What are the key steps?

The algorithm can be broken up unto a couple of Key parts

Split data set (of size 2n) into S and S (each of size n)

Use S to compute empirical moments i, and Ms
whhich are used to construct 62, Mg, W, and B

e Use S to compute WT@ and M,[W, W, W], which are
then used to construct Ms[W, W, W]

e Do some magic with random projections....

26
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1. Using the first half of the sample, compute empirical mean /i and empirical second-order
moments Ma.

2. Let 62 be the k-th largest eigenvalue of the empirical covariance matrix M\z —apt.
3. Let Mg be the best rank-k approximation to //\/1\2 — &%

My = ar [(Ms —61) — X2

g min
X eR4¥d:rank(X)<k
which can be obtained via the singular value decomposition.
4. Let U € R%* be the matrix of left orthonormal singular vectors of ]\724

5. Let W := IAI(UTJ/\ZQ[?)“/Q, where XT denotes the Moore-Penrose pseudoinverse of a
matrix X.

Also define B := ﬁ(UTﬁzﬁ)l/2~

27
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LearnGMM Algorithm: Technical Overview OF BRITISH COLUMBIA

6. Using the second half of the sample, compute whitened empirical averages WTE and
third-order moments &[VV\, w,Wl.

7. Let ﬁg[w\,jv\ﬁ] = A@[W@W] —6? 3L, (W) ® (WTe) @ (WTes) + (WTep) ®
W)@ (WTe) + (W'e) @ (W'e;) ® (WTﬁ))

J

8. Repeat the following steps ¢ times (where ¢ := [logy(1/8)] for confidence 1 — §):

(a) Choose § € R¥ uniformly at random from the unit sphere in R¥.
(b) Let {(#%,As) : i € [k]} be the eigenvector/eigenvalue pairs of Ms[W, W, W0].
Retain the results for which min({|5\i —Xli#u{N|ie [k]}) is largest.

9. Return the parameter estimates 2,
o Nia
fi; = 0T;3i B, i€ [k],

b= [fu|fio] - |fuw) o

28
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Sample Complexity

Theorem 3 (Finite sample bound). There ezists a polynomial poly(-) such that the following holds.
Let My be the matriz defined in Theorem 2, and ¢[Mp] be its t-th largest singular value (fort € [k] ).
Let bax := max;epy [|pill2 and wmin := mingep w;. Pick any €,6 € (0,1). Suppose the sample size
n satisfies

> poly (d, k, /e, 10(1/8), 1/ winin, 1 [Ma) /e[ Mal, B /54 Mz, 0% /51 [M2), ).
Then with probability at least 1 — § over the random sample and the internal randomness of the

algorithm, there exists a permutation m on [k] such that the {fi; : i € [k]} returned by LEARNGMM
satisfy

Nino = piallz < (llasllz + /<Ml )

for all i € [K].

Is this a nice result? | am not sure, but it relies on the
empirical moments converging by CLT at rate of n=1/2,
which does not seem great.

29
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Recommendation From Authors

Alternatives to LearnGMM used to extract the parameters

from estimates of M2 and M3 include:

e Simultaneous diagonalization techniques
(Bunse-Gerstner et al., 1993)

e Orthogonal tensor decompositions (Anandkumar et al.,
2012a)

These alternative methods are more robust to sampling error.

30
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ICA Overview

e h € R¥ be some random vector with independent entries
(unobserved signal)

h € R¥ be Multivariate Gaussian (noise)

e We observe x := Ah + z for some A€ RF*k and h / z
are independent

e Given a set of {x;,i =1,2,...m}, we want to recover h

This means that we can use this third order moment
matching scheme to solve ICA problems

31
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Formal Result

Theorem 4. In the ICA model described above, assume E[h;] = 0, E[h?] = 1, and ; := E[hf] -3 #
0 (ie., the excess kurtosis is non-zero), and that A is non-singular. Define f: R* =R by

F(m) =127 (ma(n) — 3ma(n)®)

T 2 T 2 T 12
where mp(n) = E[(nTz)?]. Suppose ¢ € R* and sy € R are such that Ez#:;j) s EzTiZ; s EzTi’;; €

R are distinct. Then the matriz

Mica(é,9) = (V2 (9)) (V2 (@)

o i Tizable ; P (@Tp)? (¢ p2)? (&7 u)? ; ;-
is diag the are (o T T and each have geometric multi
plicity one, and the corresponding eigenvectors are pi, fi2,. .., g (up to scaling and permutation).

Theorem 4 lets us estimate the columns of A up to scaling,
which in turn lets us estimate h.

32
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What did we talk about today?

e Gaussian Mixture Models (GMM)

e Method of Moments Estimators

e How to use Method of Moments to estimate parameters
in GMM

Sample complexity of such an algorithm

e How it can be extended to ICA like algorithms

. J

for more recent work in this area see:
http://proceedings.mlr.press/v65/1i17a/1i17a.pdf

33
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Recommended Reading

e https://www.cs.ubc.ca/~jnutini/documents/

mlrg_pca.pdf

e https://www.cs.columbia.edu/~djhsu/papers/
mog-slides.pdf

e https://arxiv.org/pdf/1206.5766.pdf

e https://www.cse.wustl.edu/~bjuba/cse519t/
f19/papers/Lil7a.pdf
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