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Overview

What are the main contributions?

• Provide a computationally efficient and statistically

consistent moment-based estimator for mixtures of

spherical Gaussians

• Derive computational and information-theoretic barriers

to efficient estimation in mixture models (for spherical

Gaussians).

• Make connections to estimation problems related to

independent component analysis (ICA).
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What is the Goal?

Just as a little refresher...

Problem Statement

• K sub-populations

• Each modeled as multivariate

Gaussian.

• Each label picked according to some

mixture weight.
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What is the Goal?

In case you prefer the PGM...

Problem Statement

• K sub-populations

• Each modeled as multivariate

Gaussian.

• Each label picked according to some

mixture weight.

Note that the “labels” are not observed.
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What is the Goal?

What do we want to do?

We want an efficient algorithm that approximately recovers

parameters from samples.

One example of such an algorithm...

This can be done with a local search for maximum likelihood

parameters (EM algorithm).
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When Can We Make Efficient Algorithms

Well Separated Mixtures

Estimation is easier if there is a large minimum separation

between component means.

What is Separation?

This is not required in general but leads to exponential (exp(Ω(k))

where k is the number of clusters) running time / sample size.
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Main Paper Result

Result

We can create an efficient algorithms for “non-degenerate”

models in high-dimensions (d ≥ k) with spherical covariances.

How is this done?

Using the Method of Moments, they approximate the first

three moments of the GMM and then solve for the parameters

of the true models (means, covariances, and labels) with

respect to those estimated moments.
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Notation

The Spherical Gaussian Mixture model is defined in as follows.

• Let wi be the probability of choosing a component

i ∈ [k] := {1, 2., ....., k}
• Let µ1, µ2, ..., µk ∈ Rd be the component vectors

• Let σ21, σ
2
2, ..., σ

2
k ≥ 0 be component variances

We then define two matrices for convenience:

w := [w1,w2, ...,wk ]> ∈ Rk , A := [µ1|µ2|...|µk ] ∈ Rd×k
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Review: Gaussian Mixture Model (Spherical)

Assuming the following data distribution...

We assume that the data was generated following,

x ∼
k∑

i=1

I[c = i ] zi where zi ∼ N (µ∗i , σ
2∗
i I ), c ∼ Cat(w∗)

Algorithm Idea

Now we take these samples, compute empirical estimates of

some of the moments, and then match our current set of

parameters to those moments.
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Moments

Definition of Moment Generating function

Recall the Taylor series expansion

Taylor Expansion of Moment Generating functions
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Method of Moments

Taylor Expansion of Moment Generating functions

Important Fact

Recall from intro to probability, that a moment generating

function uniquely identifies a given distribution.
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Method of Moments

How do we apply the method of moments to GMMs?

• Define some subset of moments in terms of the

parameters (means, variances, labels)

• Then solve for these parameters using empirical

estimates of these moments.

Couple Questions

• Which moments to use?

• How do we approximate them?
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Method of Moments: Which moments to use?

Low-Order Estimates
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Method of Moments: Which moments to use?

High-Order Estimates
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Method of Moments: Which moments to use?

Big Idea
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How do we know this works?

Important Definitions

Define Mθ : Rd × Rd → R and Tθ : Rd × Rd × Rd → R as

bi-linear and tri-linear functions.

Variational Lemma
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Proof Out-Line: Variational Lemma

Orthogonal Directions and Solutions
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How to Solve the Moment Equations

Getting an Approximate Solution

17



Local Optimization and Approximate Solutions

Initialization and Convergence
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Moment Based Estimation: Theorems

Condition from Lemma 1 (Restated)
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Moment Based Estimation: Theorems

Computing Moments with Tensor Arithmetic
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Method of Moments

Estimating parameters using moments

Here for a third order tensor T ∈ Rd×d×d T (η) =∑d
i1=1

∑d
i2=1

∑d
i3=1 Ti1,i2,i3ηi3ei1 ⊗ ei2 ∈ Rd×d for any vector

in Rd
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Creating an Algorithm

Where does this leave us?

Combining Theorem 1 and Theorem 2 basically gives us a

plug in estimator that can be converted into an algorithm.
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Creating an Algorithm: Moment Estimates

Moment Estimates

Let {(xi , hi) : i ∈ [n]} be n i.i.d. copies of (x,h), and S :=

{x1, x2, ....xn} with S̄ being some independent copy also of

size n. Then we can define our empirical moment estimates:
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Creating an Algorithm: Solving for Parameters

Relationship of parameters and Moments

If we restrict ourselves to the case where σ21 = σ22, ..., σ
2
k ,

then the relationships between each moment and our mixture

parameters is defined under the following lemma:
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LearnGMM Algorithm: Notation

Notational Aside

For a third-order tensor Y ∈ Rm×m×m and U,V ,W ∈ Rm×n,

this paper lets Y [U,V ,W ] ∈ Rn×n×n denote the third order

tensor given by:

25



LearnGMM Algorithm: Technical Overview

What are the key steps?

The algorithm can be broken up unto a couple of Key parts

• Split data set (of size 2n) into S and S̄ (each of size n)

• Use S to compute empirical moments µ̂, and M̂3

whhich are used to construct σ̂2, M̂2, Ŵ , and B̂

• Use S̄ to compute Ŵ>µ̂ and M̂3[Ŵ , Ŵ , Ŵ ], which are

then used to construct M̂3[Ŵ , Ŵ , Ŵ ]

• Do some magic with random projections....
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LearnGMM Algorithm: Technical Overview

Part 1
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LearnGMM Algorithm: Technical Overview

Part 2

Part 3
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LearnGMM Sample Complexity

Finite Sample Complexity

Is this a nice result? I am not sure, but it relies on the

empirical moments converging by CLT at rate of n−1/2,

which does not seem great.
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Note On Practical Implementation

Recommendation From Authors

Alternatives to LearnGMM used to extract the parameters

from estimates of M2 and M3 include:

• Simultaneous diagonalization techniques

(Bunse-Gerstner et al., 1993)

• Orthogonal tensor decompositions (Anandkumar et al.,

2012a)

These alternative methods are more robust to sampling error.
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Independent Component Analysis

ICA Overview

• h ∈ Rk be some random vector with independent entries

(unobserved signal)

• h ∈ Rk be Multivariate Gaussian (noise)

• We observe x := Ah + z for some A ∈ Rk×k and h / z

are independent

• Given a set of {xi , i = 1, 2, ...m}, we want to recover h

This means that we can use this third order moment

matching scheme to solve ICA problems
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Independent Component Analysis

Formal Result

Theorem 4 lets us estimate the columns of A up to scaling,

which in turn lets us estimate h.
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Review

What did we talk about today?

• Gaussian Mixture Models (GMM)

• Method of Moments Estimators

• How to use Method of Moments to estimate parameters

in GMM

• Sample complexity of such an algorithm

• How it can be extended to ICA like algorithms

for more recent work in this area see:

http://proceedings.mlr.press/v65/li17a/li17a.pdf
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Sources

Recommended Reading

• https://www.cs.ubc.ca/~jnutini/documents/

mlrg_pca.pdf

• https://www.cs.columbia.edu/~djhsu/papers/

mog-slides.pdf

• https://arxiv.org/pdf/1206.5766.pdf

• https://www.cse.wustl.edu/~bjuba/cse519t/

f19/papers/Li17a.pdf
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