Knowledge Graph Completion using Tensor Factorization Approaches

Bahare Fatemi

bfatemi@cs.ubc.ca

@BahareFatemi

Why structured data?

Many complex systems are structured

Knowledge Graphs

- Knowledge in the form of a graph!
 - Nodes represent entities.
 - Labelled edges represent relationships between entities.
- Can be also represented as a set of (subject, relation, object) triples:

Knowledge Graph Applications

Question Answering

Predicting the Election

Problem Definition & Previous Work

Knowledge Graph (KG) Completion

> Formally:

- \circ \mathcal{E} : A set of entities
- \circ \mathcal{R} : A set of relations
- \circ ζ : Set of all triples involving entities from $\mathcal E$ and relations from $\mathcal R$ that are facts
- Knowledge graph: $G \subset \zeta$
- \circ KG completion: Inferring ζ from G

Translational Models: Inspiration

➤ Observation from word embeddings:

$$egin{aligned} oldsymbol{z}_{France} - oldsymbol{z}_{Paris} \ & & \ oldsymbol{z}_{Germany} - oldsymbol{z}_{Berlin} \end{aligned}$$

- Idea:
 - Model relations as translations from subject entities to object entities.

TransE

- \mathbf{Z}_e and \mathbf{Z}_r are matrices with learnable parameters.
- $\mathbf{1}_V$ and $\mathbf{1}_R$ are one hot encodings of node V and relation R.

TransE: Example

TransE and Symmetric Relations

Other issues with translational models

> FSTransE: A translational model that subsumed existing translational models at the time

• Score function:
$$\phi(V, R, U) = -\min_{\alpha} \| \boldsymbol{P}_{R} \boldsymbol{z}_{V} + \boldsymbol{z}_{R} - \alpha \boldsymbol{Q}_{R} \boldsymbol{z}_{U} \|_{p}$$

Theorem: FSTransE has the following restrictions on the types of relations it can model:

- If a relation R is reflexive on $\Delta \subset \mathcal{E}$, R must also be symmetric on Δ .
- If a relation R is reflexive on $\Delta \subset \mathcal{E}$, R must also be transitive on Δ .
- o If entity V_1 has relation R with every entity in $\Delta \subset \mathcal{E}$ and entity V_2 has relation R with a single entity in Δ , then V_2 must have relation R with every other entity in Δ .

DistMult

- \mathbf{Z}_e and \mathbf{Z}_r are matrices with learnable parameters.
- $\mathbf{1}_V$ and $\mathbf{1}_R$ are one hot encodings of node V and relation R.

SimplE

Inspiration from matrix factorization

Let's start with a simple case where there is only one type of relationship

Adjacency Matrix

Matrix Factorization

Matrix Factorization

Training: Learn embedding parameters by minimizing the following loss function:

$$\mathcal{L}(\theta) = \sum_{(U,P) \in Train} \left(\mathcal{L}^+ (\phi_{\theta}(U,P)) + \sum_{(U',P') \in Neg(U,P)} \mathcal{L}^- (\phi_{\theta}(U',P')) \right)$$

Knowledge Graph Completion

Adjacency Tensor

 Train: Learn the embedding parameters by minimizing the following loss function:

$$\mathcal{L}(\theta) = \sum_{(V,R,U) \in Train} \left(\mathcal{L}^+ \left(\phi_{\theta}(V,R,U) \right) + \sum_{(V',R',U') \in Neg(V,R,U)} \mathcal{L}^- \left(\phi_{\theta}(V',R',U') \right) \right)$$

• **Train:** Learn the embedding parameters by minimizing the following loss function:

$$\mathcal{L}(\theta) = \sum_{(V,R,U) \in Train} \left(-\log(\phi_{\theta}(V,R,U)) + \sum_{(V',R',U') \in Neg(V,R,U)} -\log(1 - \phi_{\theta}(V',R',U')) \right)$$

$$\phi_{\theta}(V, R, U) = \sigma(\mathbf{z}_{V}^{s^{T}} diag(\mathbf{z}_{R}) \, \mathbf{z}_{U}^{o})$$

 Train: Learn the embedding parameters by minimizing the following loss function:

$$\mathcal{L}(\theta) = \sum_{(V,R,U) \in Train} \left(-\log(\phi_{\theta}(V,R,U)) + \sum_{(V',R',U') \in Neg(V,R,U)} -\log(1 - \phi_{\theta}(V',R',U')) \right)$$

$$\phi_{\theta}(V, R, U) = \sigma(\mathbf{z}_{V}^{s^{T}} diag(\mathbf{z}_{R}) \, \mathbf{z}_{U}^{o})$$

- \circ Corrupting the subject: $(V, R, U) \rightarrow (V', R, U)$
- Corrupting the object: $(V, R, U) \rightarrow (V, R, U')$

 $diag(\mathbf{z}_R)$

Negative Example Generator

Train Data

(Michelle Obama, Studied, Princeton) (Kevin Spacy, PlayedInMovie, House of Cards)

Negative Example Generator

- + (Michelle Obama, Studied, Princeton)
- (Michelle Obama, Studied, UBC)
- (Melania Trump, Studied, Princeton)

...

Softmax Loss

$$\mathcal{L}(\{\mathbf{r}\}, \{\mathbf{e}\}) = \sum_{x' \in \tau'_{train}} -log\left(\frac{e^{\phi(x')}}{\sum_{x \in T_{train}} e^{\phi(x)} + e^{\phi(x')}}\right)$$

Analysis of CP Decomposition

Observations (train set):

```
o ( 🧖 , WifeOf , 👰 )
```

o (🢆 , MotherOf, 👻)

Analysis of CP Decomposition

Observations (train set):

```
o ( 💆 , WifeOf , 👰 )
```

- o (🢆 , MotherOf, 👻)
- Query (test set):
 - o (🧸 , FatherOf, 👸)

Analysis of CP Decomposition

Observations (train set):

```
o ( 🢆 , WifeOf , 👰 )
```


• Query (test set):

The information does not flow well between the two entity embeddings

Solving the Information Flow Problem

Solving the Information Flow Problem

Solving the Information Flow Problem

Decompose both tensors Use shared entity embeddings Take the average of the two scores

Simple (Simple Embedding)

Previous Example Revisited

> Observations (train set):

- (📴 , WifeOf , 👺)
- \circ (\bigcirc , $WifeOf^{-1}$, \bigcirc)

Empirical & Theoretical Results

Evaluation Protocol

Test Triple
(Paris, CapitalOf, France)

Query (Q)

(Paris, CapitalOf, ?)

Sorted Scores

Rank ($rank_Q$)

(Paris, CapitalOf, Germany): 0.9

(Paris, CapitalOf, France): 0.8

(Paris, CapitalOf, Canada): 0.1

. . .

$$\begin{aligned} \textit{Mean Reciprocal Rank (MRR)} &= \frac{1}{|Q|} \sum_{Q} \frac{1}{rank_Q} \\ \\ \textit{Hit@k} &= \frac{1}{|Q|} \sum_{Q} \mathbb{I}_{rank_Q \leq k} \end{aligned}$$

SimplE Results on FB15k

Theorem: SimplE is Fully Expressive

Given any ground truth adjacency tensor,

 E_N E_2 R_1 E_1 E_2 R_2 R_{M} E_N

there exists an instantiation of SimplE that correctly separates the 0s and 1s of the tensor.

Incorporating background knowledge into the embeddings

- \triangleright If R_i is known to be symmetric:
 - \circ Tie \boldsymbol{z}_{R_i} to $\boldsymbol{z}_{R_i^{-1}}$
- \triangleright If R_i is known to be anti-symmetric:
 - \circ Tie \mathbf{z}_{R_i} to $-\mathbf{z}_{R_i^{-1}}$
- \triangleright If R_i is known to be the inverse of R_i :
 - \circ Tie \boldsymbol{z}_{R_i} to $\boldsymbol{z}_{R_i^{-1}}$
 - \circ Tie $oldsymbol{z}_{R_j}$ to $oldsymbol{z}_{R_i^{-1}}$

Experiment

Dataset: WN18

Setting: Remove any triple from the train set if it can be inferred from the background knowledge and the other triples in the train set

SimplE from an Encoder-Decoder Point-of-View

Other Applications of Tensors in Knowledge Graphs

TuckER: Tensor Factorization for Knowledge Graph Completion using TuckER Decomposition

Intuition: Rather than learning distinct relation specific matrices, learning a core tensor W containing a shared pool of "prototype" relation matrices.

Binary vs. Beyond Binary Relations

Flies(Airline, Departure city, Arrival city)

Knowledge Hypergraph as Tuples

Flies(Air Canada, Montreal, Los Angeles)
Flies(Air Canada, New York, Vancouver)
Flies(United airline, New York, Los Angeles)

Relation(entity 0, entity 1, ..., entity n)

Knowledge Hypergraph

Question?