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Why structured data?
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Many complex systems are structured
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Knowledge Graphs

e Knowledge in the form of a
graph!
o Nodes represent entities.

O Labelled edges represent relationships
between entities.

Friends

e Can be also represented as a set of
(subject, relation, object) triples:
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| Knowledge Graph Applications
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Problem Definition & Previous Work




Knowledge Graph (KG) Completion

» Formally:

o &:Aset of entities

o R:Aset of relations

o (:Set of all triples involving
entities from € and relations from
R that are facts

o Knowledge graph: G c ¢

o KG completion: Inferring { from G




Translational Models: Inspiration

» Observation from word embeddings:

Zryrance — Zparis

~y
~

ZGermany — ZBerlin

® |Idea:
o Model relations as translations from subject
entities to object entities.

Word Embeddings
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— Score

= Z,and Z, are matrices with learnable parameters.
= 1, and 1; are one hot encodings of node V and relation R.



TranskE: Example
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Transk and Symmetric Relations

.%)L. An entity who is married

-~
MC%‘O _ to Homer should be
mapped to a point close
to this point.

\
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Other iIssues with translational models

» FSTransE: A translational model that subsumed existing translational models at the time
o Score function: p(V,R,U) = —mcixn IPrzy + zg — aQrzyll,

" Theorem: FSTransE has the following restrictions on the types of relations it can
model:

o If arelation R is reflexive on A € &£, R must also be symmetric on A.
o If arelation R is reflexive on A € &£, R must also be transitive on A.

o If entity V; has relation R with every entity in A C £ and entity I/, has relation R
\ with a single entity in A, then V, must have relation R with every other entity in A./
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DistMult

Zly

Relation R —

Z.1p,

Zely
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zl, diag(zg)zy

— Score

= Z,and Z, are matrices with learnable parameters.
= 1, and 1; are one hot encodings of node V and relation R.
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Inspiration from matrix factorization

Let’s start with a simple case where there is only
one type of relationship
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Adjacency Matrix
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Matrix Factorization
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Matrix Factorization
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Matrix Factorization
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Training: Learn embedding parameters by minimizing the following loss function:

L(O) = z <L+(¢9(U, P)) + L= (e U, P'))>
(U,P)ETrain (U',P"YeNeg(U,P)
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Knowledge Graph Completion
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Adjacency Tensor
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MotherOf v

Livesin

Tensor Factorization
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Tensor Factorization

® Train: Learn the embedding parameters by minimizing the following loss
function:

L) = Z (L+(¢9(V, R,U)) +

(V,R,U)ETrain

L=(pp(V',R’, U’)))

(V',R",U")ENeg(V,R,U)



Tensor Factorization

® Train: Learn the embedding parameters by minimizing the following loss function:

L) = Z (‘108(059 (V,R,U)) +

(V,R,U)ETrain

—log(1—¢o(V',R’, U’)))
(V',R",U"ENeg(V,R,U)

4 z5 diag(zg) 2y
BoV,RU) = o(z diag(zy) z)) (T 1]

o /
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Tensor Factorization

® Train: Learn the embedding parameters by minimizing the following loss
function:

L(O) = Z <—108(¢9(V, R,U)) +

(V,R,U)ETrain

—log(1—¢e(V'", R, U'))>

(V',R",U")eENeg(V,R,U)

- z5 diag(zg) 2y
bpo(V,R,U) = J(zf',Tdiag(zR) zy) _
(o)
» Negative sampling based on local closed \_ Y

world assumption:
o Corrupting the subject: (V,R,U) - (V',R,U)

o Corruptingthe object: (V,R,U) - (V,R,U")
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Negative Example Generator

Train Data

(Michelle Obama, Studied, Princeton)
(Kevin Spacy, PlayedInMovie, House of Cards)

Negative Example Generator

+  (Michelle Obama, Studied, Princeton)
(Michelle Obama, Studied, UBC)
(Melania Trump, Studied, Princeton)

Softmax Loss

(@)
£({r}, fe}) = —wg( , )
x’ETZ’ Z e¢(w) + eﬁb(w )

train
BE T ey (0]




Analysis of CP Decomposition

Observations (train set):

o (€, wifeof, &

o | , MotherOf, %
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Analysis of CP Decomposition

Observations (train set):

o ( B, wifeof, 3 )

o | % , MotherOf,
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Query (test set):
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Analysis of CP Decomposition

Observations (train set):

Query (test set):

o ( %, FatherOf,

The information does not flow well
between the two entity embeddings
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Solving the Information Flow Problem

e .8 .1 B S .8 .. 1«
% MotherOf % MotherOf =1
% Livesin % LivesIn~—1

: Transpose
Likes P Likes™1




Solving the Information Flow Problem
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Solving the Information Flow Problem
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Decompose both tensors
Use shared entity embeddings
Take the average of the two scores
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SimplE (Simple Embedding)

¢(V,R,U)
z[S,Tdiag(zR)z?, + zf,Tdiag(zR—l)z?,
2
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Previous Example Revisited

» Observations (train set):

o ( B ,wireof, ) §ﬁ

o (0, wifeort, B) .
&

i+l




Empirical & Theoretical Results




Evaluation Protocol

Test Triple Query (Q) Sorted Scores Rank (rank)
(Paris, CapitalOf, France) (Paris, CapitalOf, ?) (Paris, CapitalOf, Germany): 0.9 2
(Paris, CapitalOf, France): 0.8

(Paris, CapitalOf, Canada): 0.1

Mean Reciprocal Rank (MRR) =

1

Q] rank

. 1
Hit@k = 7 rankgs<k

D
3
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SimplE Results on FB15k

MRR on FB15k Hit@1 on FB15k

0.727

TransE DistMult  ComplEx SimplE TransE DistMult  ComplEx SimplE
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Theorem: SImplE is Fully Expressive

Given any ground truth adjacency tensor, there exists an instantiation of SimplE that

E,E E, correctly separates the Os and 1s of the tensor.
. R, E, E, Ey
E, R,
Ry =
0 0 1 E,
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Incorporating background knowledge into the embeddings

Experiment
> If R; is known to be symmetric: Dataset: WN18
o Tie zg, to Zp-—1 Setting: Remove any triple from the
train set if it can be inferred from the
» If R; is known to be anti-symmetric: background knowledge and the other
o Tie zg, t0 —Zp1 triples in the train set

» If R; is known to be the inverse of R;:
o Tiezp, to sz-1

o Tie Zp; tozp-1
A

SimplE Original SimplE with tied
embeddings
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SimplE from an Encoder-Decoder Point-of-View

Decoder

Entity
Encoder

Relation R —

Relation
Encoder

Entity
Encoder

Zy
/AK"
\.ZIS;'
Zr
/.
Zp-1 i
\\\. =
—0

0 (2} diag(z) 7§

+2z§ diag(zp-1) 22))

— Score
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Other Applications of Tensors in

Knowledge Graphs




TuckER: Tensor Factorization for Knowledge Graph Completion
using TuckER Decomposition

Intuition: Rather than learning distinct relation
specific matrices, learning a core tensor W
containing a shared pool of “prototype” relation
matrices.

dr% T

EMNLP-IJCNLP2019: TuckER: Tensor Factorization for Knowledge Graph Completion

de
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| Binary vs. Beyond Binary Relations

CapitalOf

United
airline

I I Flies(Airline, Departure city, Arrival city)



| Knowledge Hypergraph as Tuples

Flies(Air Canada, Montreal, Los Angeles)
Flies(Air Canada, New York, Vancouver)
Flies(United airline, New York, Los Angeles)

Relation(entity 0, entity 1, ..., entity n)

United
airline




| Knowledge Hypergraph

United United
airline Airline

Hypergraph Reification Star to Clique



Question?
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