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Overview and Definitions
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Where we are

Second of two papers on the ‘Tensor Basics’ subsection

Mark’s talk: tensor definitions, operations, concepts (e.g. rank, decomposition, etc.)

Today: multilinear algebra complexity

Bahare’s talk: Tensor factorization in graph representational learning
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Theme of paper

1 ’The central message of our paper is that many problems in linear algebra that are
efficiently solvable on a Turing machine become NP-hard in multilinear algebra.’

2 As much about the ‘tractability of a numerical computing problem using the rich
collection of NP-complete combinatorial problems....’
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Everything is hard
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Matrices

Matrix A over field F is a m × n array of elements of F

A = [aij ]
m,n
i,j=1 ∈ Fm×n

Given standard basis e1, . . . , ed in Fd , matrices are also bilinear maps.

f : Fm × Fn → F where aij = f (ei , ej ) ∈ F

By linearity, f (u, v) = uᵀAv .

If m = n, A is symmetric means that f is invariant under coordinate exchange:

f (u, v) = uᵀAv = (uᵀAv)ᵀ = vᵀAᵀu = vᵀAu = f (v , u)

where second to last equality made use of A = Aᵀ.
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3-Tensor

3-tensor A over field F is an l ×m × n array of elements of F

A = [aijk ]l,m,n
i,j,k=1 ∈ Fl×m×n (1)

Also a trilinear map

f : Fl × Fm × Fn → F where aijk = f (ei , ej , ek ) ∈ F

If l = m = n, A is (super-)symmetric means

aijk = ajik = · · · = akji

OR
f (u, v ,w) = f (u,w , v) = · · · = f (w , v , u)
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Cubic form

Given x ∈ Rn, A ∈ Rn×n, define

A(x , x) = xᵀAx =
n∑

i,j=1

aijxixj

Extended to 3-tensor A ∈ Rl×m×n when l = m = n, we get cubic form

A(x , x , x) :=
n∑

i,j,k=1

aijkxixjxk (2)

In general, the trilinear form is

A(x , y , z) :=

l,m,n∑
i,j,k=1

aijkxiyjzk (3)

where x ∈ Rl ,y ∈ Rm,z ∈ Rk
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Inner product, outer product

Let A = [aijk ]l,m,n
i,j,k=1, B = [bijk ]l,m,n

i,j,k=1 ∈ Rl×m×n

Inner product is defined as

〈A,B〉 :=

l,m,n∑
i,j,k=1

aijkbijk

Outer product of vectors x ∈ Fl , y ∈ Fm, z ∈ Fn, denoted x ⊗ y ⊗ z, gives 3-tensor A where

A = [aijk ]l,m,n
i,j,k=1 where aijk = xiyjzk

Note: 〈A, x ⊗ y ⊗ z〉 = A(x , y , z) which is in the trilinear form (3)
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Norms

Frobenius norm squared of 3-tensor A is defined as

‖A‖2
F :=

l,m,n∑
i,j,k=1

|aijk |2

Note: ‖A‖2
F = 〈A,A〉

Spectral norm of 3-tensor A is defined as

‖A‖2,2,2 := sup
x,y,z 6=0

A(x , y , z)

‖x‖2‖y‖2‖z‖2
(4)
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Computation model

Mostly follows Sipser 2012.

Computations on a Turing Machine. Inputs are rational numbers. Outputs are rational
vectors or Yes/No.

Decision problem: the solution is in the form of Yes or No.

A decision problem is decidable if there is a Turing machine that will output a Yes/No for
all allowable inputs in finitely many steps. Undecidable otherwise.

UBC MLRG 2020 Winter Term 1 Most Tensor Problems are NP-Hard 14-Oct-2020 12 / 28



Computation model

Mostly follows Sipser 2012.

Computations on a Turing Machine. Inputs are rational numbers. Outputs are rational
vectors or Yes/No.

Decision problem: the solution is in the form of Yes or No.

A decision problem is decidable if there is a Turing machine that will output a Yes/No for
all allowable inputs in finitely many steps. Undecidable otherwise.

UBC MLRG 2020 Winter Term 1 Most Tensor Problems are NP-Hard 14-Oct-2020 12 / 28



Computation model

Mostly follows Sipser 2012.

Computations on a Turing Machine. Inputs are rational numbers. Outputs are rational
vectors or Yes/No.

Decision problem: the solution is in the form of Yes or No.

A decision problem is decidable if there is a Turing machine that will output a Yes/No for
all allowable inputs in finitely many steps. Undecidable otherwise.

UBC MLRG 2020 Winter Term 1 Most Tensor Problems are NP-Hard 14-Oct-2020 12 / 28



Computation model

Mostly follows Sipser 2012.

Computations on a Turing Machine. Inputs are rational numbers. Outputs are rational
vectors or Yes/No.

Decision problem: the solution is in the form of Yes or No.

A decision problem is decidable if there is a Turing machine that will output a Yes/No for
all allowable inputs in finitely many steps. Undecidable otherwise.

UBC MLRG 2020 Winter Term 1 Most Tensor Problems are NP-Hard 14-Oct-2020 12 / 28



Complexity

Time complexity measured in units of bit operations, i.e. the number of tape-level instructions
on bits. (Input size is also specified in terms of number of bits.)

Measuring whether problems are equivalently difficult.

Reducibility in the Cook-Karp-Levin sense.

Very informally, problem P1 polynomially reduces to P2 if there is a way to solve P1 by
first solving P2 and then translating the P2-solution into a P1-solution deterministically
and in polynomial-time. P2 is at least as hard as P1.

NP: Problems where solutions could be certified in polynomial time.

NP-complete: If one can polynomially reduce any particular NP-complete problem P1 to a
problem P2, then all NP-complete problems are so reducible to P2. (Cook–Levin Theorem)
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Tensor Approximation
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Tensor rank

Recall, the rank of a tensor A = [aijk ]l,m,n
i,j,k=1 ∈ Fl×m×n is the minimum r for which A is a sum of

r rank-1 tensors.

rank(A) := min

{
r : A =

r∑
i=1

λixi ⊗ yi ⊗ zi

}

where λi ∈ F, xi ∈ Fl , yi ∈ Fm, and zi ∈ Fn.

1 Rank-1 tensors are tensors that could be expressed as an outer product of vectors.

2 More than one definition of tensor ‘rank’: e.g. symmetric rank, border rank.

3 Unlike matrices, rank of a tensor changes over changing fields.

UBC MLRG 2020 Winter Term 1 Most Tensor Problems are NP-Hard 14-Oct-2020 15 / 28



Tensor rank

Recall, the rank of a tensor A = [aijk ]l,m,n
i,j,k=1 ∈ Fl×m×n is the minimum r for which A is a sum of

r rank-1 tensors.

rank(A) := min

{
r : A =

r∑
i=1

λixi ⊗ yi ⊗ zi

}

where λi ∈ F, xi ∈ Fl , yi ∈ Fm, and zi ∈ Fn.

1 Rank-1 tensors are tensors that could be expressed as an outer product of vectors.

2 More than one definition of tensor ‘rank’: e.g. symmetric rank, border rank.

3 Unlike matrices, rank of a tensor changes over changing fields.

UBC MLRG 2020 Winter Term 1 Most Tensor Problems are NP-Hard 14-Oct-2020 15 / 28



Tensor rank

Recall, the rank of a tensor A = [aijk ]l,m,n
i,j,k=1 ∈ Fl×m×n is the minimum r for which A is a sum of

r rank-1 tensors.

rank(A) := min

{
r : A =

r∑
i=1

λixi ⊗ yi ⊗ zi

}

where λi ∈ F, xi ∈ Fl , yi ∈ Fm, and zi ∈ Fn.

1 Rank-1 tensors are tensors that could be expressed as an outer product of vectors.

2 More than one definition of tensor ‘rank’: e.g. symmetric rank, border rank.

3 Unlike matrices, rank of a tensor changes over changing fields.

UBC MLRG 2020 Winter Term 1 Most Tensor Problems are NP-Hard 14-Oct-2020 15 / 28



Tensor rank

Recall, the rank of a tensor A = [aijk ]l,m,n
i,j,k=1 ∈ Fl×m×n is the minimum r for which A is a sum of

r rank-1 tensors.

rank(A) := min

{
r : A =

r∑
i=1

λixi ⊗ yi ⊗ zi

}

where λi ∈ F, xi ∈ Fl , yi ∈ Fm, and zi ∈ Fn.

1 Rank-1 tensors are tensors that could be expressed as an outer product of vectors.

2 More than one definition of tensor ‘rank’: e.g. symmetric rank, border rank.

3 Unlike matrices, rank of a tensor changes over changing fields.

UBC MLRG 2020 Winter Term 1 Most Tensor Problems are NP-Hard 14-Oct-2020 15 / 28



Matrix approximation

Last week: Recommender systems with large matrix A of rank r . Netflix competition:
best rank k < r matrix that approximates A.

Singular value decomposition gives a sum of rank-1 matrices

A =
r∑

i=1

σiui ⊗ vi where singular values σ1 ≥ · · · ≥ σr

Define Ak =
∑k

i=1 σiui ⊗ vi , k < r .

Eckart-Young: If matrix B has rank k, then ‖A− B‖F ≥ ‖A− Ak‖F .
(Works also with ‖ · ‖2 = σ1 and ‖ · ‖∗ = σ1 + · · ·+ σr )
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Rank-r tensor approximation

Fix F = R
Rank-r tensor approximation of tensor A = [aijk ]l,m,n

i,j,k=1 solves the problem

min
xi ,yi ,zi

‖A− λ1x1 ⊗ y1 ⊗ z1 − · · · − λrxr ⊗ yr ⊗ zr‖F

Generally unsolvable when r > 1 because the set {A : rankR(A) ≤ r} is not closed when
r > 1. (Details for this in Silva and Lim 2008.)

Where r = 1, however, this set is closed. So consider the smaller problem of rank-1 tensor
approximation.

Problem simplifies to
min
x,y,z
‖A− x ⊗ y ⊗ z‖F (5)
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Rank-1 tensor approximation

Introduce σ where x ⊗ y ⊗ z = σu ⊗ v ⊗ w and ‖u‖2 = ‖v‖2 = ‖w‖2 = 1.

Problem becomes
min
u,v,w

‖A− σu ⊗ v ⊗ w‖F

= ‖A‖2
F − 2σ〈A, u ⊗ v ⊗ w〉+ σ2‖u ⊗ v ⊗ w‖2

F = ‖A‖2
F − 2σ〈A, u ⊗ v ⊗ w〉

Above minimized when σ

σ = max
‖u‖2=‖v‖2=‖w‖2=1

〈A, u ⊗ v ⊗ w〉

Because 〈A, u ⊗ v ⊗ w〉 = A(u, v ,w), can rewrite this as finding the spectral norm (4)

σ = ‖A‖2,2,2
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Rank-1 tensor approximation

Deciding whether σ is the spectral norm of a tensor is shown in another section of the
paper to be NP-hard.

Say we can solve the rank-1 approximation problem (5) efficiently and we get solution
(x , y , z). Then we can also find the spectral norm σ by setting

σ = ‖σu ⊗ v ⊗ w‖F = ‖x‖2‖y‖2‖z‖2

Finding the spectral norm is reducible to best rank-1 approximation.

So, best rank-1 approximation is also NP-hard.
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Tensor Eigenvalues
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Eigenpairs for matrices

Also fix F = R.

Given symmetric A ∈ Rn×n, eigenvalues and eigenvectors are stationary values and points
of

R(x) =
xᵀAx

xᵀx

Equivalently, constrained maximization max‖x‖2
2=1 x

ᵀAx with Lagrangian

L(x , λ) = xᵀAx − λ
(
‖x‖2

2 − 1
)

The solution give the eigenvalue equation

Ax = λx
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Eigenpairs for 3-tensor

Conceptually, for tensor A ∈ Rn×n×n, find the stationary values and points of cubic form (2)

A(x , x , x) :=
n∑

i,j,k=1

aijkxixjxk

with some generalization of the unit constraint.

Which generalization?

‖x‖3
3 = 1?

‖x‖2
2 = 1?

x3
1 + · · ·+ x3

n = 1?
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Eigenpairs for 3-tensor

Formally, fix F = R or C.

‖x‖2
2 = 1: The number λ ∈ F is called an l2-eigenvalue of the tensor A ∈ Fn×n×n and

0 6= x ∈ Fn its corresponding l2-eigenvector if

n∑
i,j=1

aijkxixj = λxk k = 1, . . . , n holds

‖x‖3
3 = 1: The number λ ∈ F is called an l3-eigenvalue of the tensor A ∈ Fn×n×n and

0 6= x ∈ Fn its corresponding l3-eigenvector if

n∑
i,j=1

aijkxixj = λx2
k k = 1, . . . , n holds
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Tensor eigenvalue over R is NP-hard

Theorem 1.3 Graph 3-colorability is polynomially reducible to tensor 0-eigenvalue over R. Thus,
deciding tensor eigenvalue over R is NP-hard.

Proof outline

Restrict ourselves to the λ = 0 case. Both l2- and l3-eigenpair equations reduce to

n∑
i,j=1

aijkxixj = 0 k = 1, . . . , n holds

The above becomes the square quadratic feasibility problem, which is deciding whether there is
a 0 6= x ∈ Rn solution to a system of equations {xᵀAix = 0}mi=1.

By a previous result, graph 3-colorability is polynomially reducible to quadratic feasibility.
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Conclusion
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Hard equals interesting

‘Bernd Sturmfels once made the remark to us that “All interesting problems are NP-hard.” In
light of this, we would like to view our article as evidence that most tensor problems are
interesting.’
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Thank you

UBC MLRG 2020 Winter Term 1 Most Tensor Problems are NP-Hard 14-Oct-2020 28 / 28


	Introduction
	Tensor Approximation
	Tensor Eigenvalues
	Conclusion

