Most Tensor Problems are NP-Hard C. J. Hillar and L.-H. Lim

Betty Shea

UBC MLRG 2020 Winter Term 1

14-Oct-2020

Today

(1) Introduction
(2) Tensor Approximation
(3) Tensor Eigenvalues
(4) Conclusion

Overview and Definitions

Where we are

- Second of two papers on the 'Tensor Basics' subsection

Where we are

- Second of two papers on the 'Tensor Basics' subsection
- Mark's talk: tensor definitions, operations, concepts (e.g. rank, decomposition, etc.)

Where we are

- Second of two papers on the 'Tensor Basics' subsection
- Mark's talk: tensor definitions, operations, concepts (e.g. rank, decomposition, etc.)
- Today: multilinear algebra complexity

Where we are

- Second of two papers on the 'Tensor Basics' subsection
- Mark's talk: tensor definitions, operations, concepts (e.g. rank, decomposition, etc.)
- Today: multilinear algebra complexity
- Bahare's talk: Tensor factorization in graph representational learning

Theme of paper

(1) 'The central message of our paper is that many problems in linear algebra that are efficiently solvable on a Turing machine become NP-hard in multilinear algebra.'

Theme of paper

(1) 'The central message of our paper is that many problems in linear algebra that are efficiently solvable on a Turing machine become NP-hard in multilinear algebra.'
(2) As much about the 'tractability of a numerical computing problem using the rich collection of NP-complete combinatorial problems....'

Everything is hard

Table I. Tractability of Tensor Problems

Note: Except for positive definiteness and the combinatorial hyperdeterminant, which apply to 4-tensors, all problems refer to the 3 -tensor case.

Matrices

Matrix A over field \mathbb{F} is a $m \times n$ array of elements of \mathbb{F}

$$
A=\left[a_{i j}\right]_{i, j=1}^{m, n} \in \mathbb{F}^{m \times n}
$$

Matrices

Matrix A over field \mathbb{F} is a $m \times n$ array of elements of \mathbb{F}

$$
A=\left[a_{i j}\right]_{i, j=1}^{m, n} \in \mathbb{F}^{m \times n}
$$

Given standard basis e_{1}, \ldots, e_{d} in \mathbb{F}^{d}, matrices are also bilinear maps.

$$
f: \mathbb{F}^{m} \times \mathbb{F}^{n} \rightarrow \mathbb{F} \text { where } a_{i j}=f\left(e_{i}, e_{j}\right) \in \mathbb{F}
$$

By linearity, $f(u, v)=u^{\top} A v$.

Matrices

Matrix A over field \mathbb{F} is a $m \times n$ array of elements of \mathbb{F}

$$
A=\left[a_{i j}\right]_{i, j=1}^{m, n} \in \mathbb{F}^{m \times n}
$$

Given standard basis e_{1}, \ldots, e_{d} in \mathbb{F}^{d}, matrices are also bilinear maps.

$$
f: \mathbb{F}^{m} \times \mathbb{F}^{n} \rightarrow \mathbb{F} \text { where } a_{i j}=f\left(e_{i}, e_{j}\right) \in \mathbb{F}
$$

By linearity, $f(u, v)=u^{\top} A v$.
If $m=n, A$ is symmetric means that f is invariant under coordinate exchange:

$$
f(u, v)=u^{\top} A v=\left(u^{\top} A v\right)^{\top}=v^{\top} A^{\top} u=v^{\top} A u=f(v, u)
$$

where second to last equality made use of $A=A^{\top}$.

3-Tensor

3-tensor A over field \mathbb{F} is an $I \times m \times n$ array of elements of \mathbb{F}

$$
\begin{equation*}
A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n} \in \mathbb{F}^{\prime \times m \times n} \tag{1}
\end{equation*}
$$

3-Tensor

3-tensor A over field \mathbb{F} is an $I \times m \times n$ array of elements of \mathbb{F}

$$
\begin{equation*}
A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n} \in \mathbb{F}^{\prime \times m \times n} \tag{1}
\end{equation*}
$$

Also a trilinear map

$$
f: \mathbb{F}^{\prime} \times \mathbb{F}^{m} \times \mathbb{F}^{n} \rightarrow \mathbb{F} \text { where } a_{i j k}=f\left(e_{i}, e_{j}, e_{k}\right) \in \mathbb{F}
$$

3-Tensor

3-tensor A over field \mathbb{F} is an $I \times m \times n$ array of elements of \mathbb{F}

$$
\begin{equation*}
A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n} \in \mathbb{F}^{1 \times m \times n} \tag{1}
\end{equation*}
$$

Also a trilinear map

$$
f: \mathbb{F}^{\prime} \times \mathbb{F}^{m} \times \mathbb{F}^{n} \rightarrow \mathbb{F} \text { where } a_{i j k}=f\left(e_{i}, e_{j}, e_{k}\right) \in \mathbb{F}
$$

If $I=m=n, A$ is (super-)symmetric means

$$
a_{i j k}=a_{j i k}=\cdots=a_{k j i}
$$

OR

$$
f(u, v, w)=f(u, w, v)=\cdots=f(w, v, u)
$$

Cubic form

Given $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$, define

$$
A(x, x)=x^{\top} A x=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}
$$

Cubic form

Given $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$, define

$$
A(x, x)=x^{\top} A x=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}
$$

Extended to 3-tensor $A \in \mathbb{R}^{I \times m \times n}$ when $I=m=n$, we get cubic form

$$
\begin{equation*}
A(x, x, x):=\sum_{i, j, k=1}^{n} a_{i j k} x_{i} x_{j} x_{k} \tag{2}
\end{equation*}
$$

Cubic form

Given $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$, define

$$
A(x, x)=x^{\top} A x=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}
$$

Extended to 3-tensor $A \in \mathbb{R}^{I \times m \times n}$ when $I=m=n$, we get cubic form

$$
\begin{equation*}
A(x, x, x):=\sum_{i, j, k=1}^{n} a_{i j k} x_{i} x_{j} x_{k} \tag{2}
\end{equation*}
$$

In general, the trilinear form is

$$
\begin{equation*}
A(x, y, z):=\sum_{i, j, k=1}^{I, m, n} a_{i j k} x_{i} y_{j} z_{k} \tag{3}
\end{equation*}
$$

where $x \in \mathbb{R}^{\prime}, y \in \mathbb{R}^{m}, z \in \mathbb{R}^{k}$

Inner product, outer product

Let $A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n}, B=\left[b_{i j k}\right]_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{I \times m \times n}$

Inner product is defined as

$$
\langle A, B\rangle:=\sum_{i, j, k=1}^{I, m, n} a_{i j k} b_{i j k}
$$

Inner product, outer product

Let $A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n}, B=\left[b_{i j k}\right]_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{1 \times m \times n}$
Inner product is defined as

$$
\langle A, B\rangle:=\sum_{i, j, k=1}^{I, m, n} a_{i j k} b_{i j k}
$$

Outer product of vectors $x \in \mathbb{F}^{\prime}, y \in \mathbb{F}^{m}, z \in \mathbb{F}^{n}$, denoted $x \otimes y \otimes z$, gives 3-tensor A where

$$
A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n} \text { where } a_{i j k}=x_{i} y_{j} z_{k}
$$

Note: $\langle A, x \otimes y \otimes z\rangle=A(x, y, z)$ which is in the trilinear form (3)

Norms

Frobenius norm squared of 3 -tensor A is defined as

$$
\|A\|_{F}^{2}:=\sum_{i, j, k=1}^{I, m, n}\left|a_{i j k}\right|^{2}
$$

Note: $\|A\|_{F}^{2}=\langle A, A\rangle$

Norms

Frobenius norm squared of 3 -tensor A is defined as

$$
\|A\|_{F}^{2}:=\sum_{i, j, k=1}^{I, m, n}\left|a_{i j k}\right|^{2}
$$

Note: $\|A\|_{F}^{2}=\langle A, A\rangle$
Spectral norm of 3-tensor A is defined as

$$
\begin{equation*}
\|A\|_{2,2,2}:=\sup _{x, y, z \neq 0} \frac{A(x, y, z)}{\|x\|_{2}\|y\|_{2}\|z\|_{2}} \tag{4}
\end{equation*}
$$

Computation model

- Mostly follows Sipser 2012.

Computation model

- Mostly follows Sipser 2012.
- Computations on a Turing Machine. Inputs are rational numbers. Outputs are rational vectors or Yes/No.

Computation model

- Mostly follows Sipser 2012.
- Computations on a Turing Machine. Inputs are rational numbers. Outputs are rational vectors or Yes/No.
- Decision problem: the solution is in the form of Yes or No.

Computation model

- Mostly follows Sipser 2012.
- Computations on a Turing Machine. Inputs are rational numbers. Outputs are rational vectors or Yes/No.
- Decision problem: the solution is in the form of Yes or No.
- A decision problem is decidable if there is a Turing machine that will output a Yes/No for all allowable inputs in finitely many steps. Undecidable otherwise.

Complexity

Time complexity measured in units of bit operations, i.e. the number of tape-level instructions on bits. (Input size is also specified in terms of number of bits.)

Complexity

Time complexity measured in units of bit operations, i.e. the number of tape-level instructions on bits. (Input size is also specified in terms of number of bits.)

Measuring whether problems are equivalently difficult.

- Reducibility in the Cook-Karp-Levin sense.
- Very informally, problem P_{1} polynomially reduces to P_{2} if there is a way to solve P_{1} by first solving P_{2} and then translating the P_{2}-solution into a P_{1}-solution deterministically and in polynomial-time. P_{2} is at least as hard as P_{1}.

Complexity

Time complexity measured in units of bit operations, i.e. the number of tape-level instructions on bits. (Input size is also specified in terms of number of bits.)

Measuring whether problems are equivalently difficult.

- Reducibility in the Cook-Karp-Levin sense.
- Very informally, problem P_{1} polynomially reduces to P_{2} if there is a way to solve P_{1} by first solving P_{2} and then translating the P_{2}-solution into a P_{1}-solution deterministically and in polynomial-time. P_{2} is at least as hard as P_{1}.
- NP: Problems where solutions could be certified in polynomial time.

Complexity

Time complexity measured in units of bit operations, i.e. the number of tape-level instructions on bits. (Input size is also specified in terms of number of bits.)

Measuring whether problems are equivalently difficult.

- Reducibility in the Cook-Karp-Levin sense.
- Very informally, problem P_{1} polynomially reduces to P_{2} if there is a way to solve P_{1} by first solving P_{2} and then translating the P_{2}-solution into a P_{1}-solution deterministically and in polynomial-time. P_{2} is at least as hard as P_{1}.
- NP: Problems where solutions could be certified in polynomial time.
- NP-complete: If one can polynomially reduce any particular NP-complete problem P_{1} to a problem P_{2}, then all NP-complete problems are so reducible to P_{2}. (Cook-Levin Theorem)

Tensor Approximation

Tensor rank

Recall, the rank of a tensor $A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n} \in \mathbb{F}^{\prime \times m \times n}$ is the minimum r for which A is a sum of r rank-1 tensors.

$$
\operatorname{rank}(A):=\min \left\{r: A=\sum_{i=1}^{r} \lambda_{i} x_{i} \otimes y_{i} \otimes z_{i}\right\}
$$

where $\lambda_{i} \in \mathbb{F}, x_{i} \in \mathbb{F}^{\prime}, y_{i} \in \mathbb{F}^{m}$, and $z_{i} \in \mathbb{F}^{n}$.

Tensor rank

Recall, the rank of a tensor $A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n} \in \mathbb{F}^{\prime \times m \times n}$ is the minimum r for which A is a sum of r rank-1 tensors.

$$
\operatorname{rank}(A):=\min \left\{r: A=\sum_{i=1}^{r} \lambda_{i} x_{i} \otimes y_{i} \otimes z_{i}\right\}
$$

where $\lambda_{i} \in \mathbb{F}, x_{i} \in \mathbb{F}^{\prime}, y_{i} \in \mathbb{F}^{m}$, and $z_{i} \in \mathbb{F}^{n}$.
(1) Rank-1 tensors are tensors that could be expressed as an outer product of vectors.

Tensor rank

Recall, the rank of a tensor $A=\left[a_{i j k}\right]_{i, j, k=1}^{1, m, n} \in \mathbb{F}^{\prime \times m \times n}$ is the minimum r for which A is a sum of r rank-1 tensors.

$$
\operatorname{rank}(A):=\min \left\{r: A=\sum_{i=1}^{r} \lambda_{i} x_{i} \otimes y_{i} \otimes z_{i}\right\}
$$

where $\lambda_{i} \in \mathbb{F}, x_{i} \in \mathbb{F}^{\prime}, y_{i} \in \mathbb{F}^{m}$, and $z_{i} \in \mathbb{F}^{n}$.
(1) Rank-1 tensors are tensors that could be expressed as an outer product of vectors.
(2) More than one definition of tensor 'rank': e.g. symmetric rank, border rank.

Tensor rank

Recall, the rank of a tensor $A=\left[a_{i j k}\right]_{i, j, k=1}^{1, m, n} \in \mathbb{F}^{\prime \times m \times n}$ is the minimum r for which A is a sum of r rank-1 tensors.

$$
\operatorname{rank}(A):=\min \left\{r: A=\sum_{i=1}^{r} \lambda_{i} x_{i} \otimes y_{i} \otimes z_{i}\right\}
$$

where $\lambda_{i} \in \mathbb{F}, x_{i} \in \mathbb{F}^{\prime}, y_{i} \in \mathbb{F}^{m}$, and $z_{i} \in \mathbb{F}^{n}$.
(1) Rank-1 tensors are tensors that could be expressed as an outer product of vectors.
(2) More than one definition of tensor 'rank': e.g. symmetric rank, border rank.
(3) Unlike matrices, rank of a tensor changes over changing fields.

Matrix approximation

- Last week: Recommender systems with large matrix A of rank r. Netflix competition: best rank $k<r$ matrix that approximates A.

Matrix approximation

- Last week: Recommender systems with large matrix A of rank r. Netflix competition: best rank $k<r$ matrix that approximates A.
- Singular value decomposition gives a sum of rank-1 matrices

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} \otimes v_{i} \text { where singular values } \sigma_{1} \geq \cdots \geq \sigma_{r}
$$

Matrix approximation

- Last week: Recommender systems with large matrix A of rank r. Netflix competition: best rank $k<r$ matrix that approximates A.
- Singular value decomposition gives a sum of rank-1 matrices

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} \otimes v_{i} \text { where singular values } \sigma_{1} \geq \cdots \geq \sigma_{r}
$$

- Define $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} \otimes v_{i}, k<r$.

Matrix approximation

- Last week: Recommender systems with large matrix A of rank r. Netflix competition: best rank $k<r$ matrix that approximates A.
- Singular value decomposition gives a sum of rank-1 matrices

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} \otimes v_{i} \text { where singular values } \sigma_{1} \geq \cdots \geq \sigma_{r}
$$

- Define $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} \otimes v_{i}, k<r$.
- Eckart-Young: If matrix B has rank k, then $\|A-B\|_{F} \geq\left\|A-A_{k}\right\|_{F}$. (Works also with $\|\cdot\|_{2}=\sigma_{1}$ and $\|\cdot\|_{*}=\sigma_{1}+\cdots+\sigma_{r}$)

Rank-r tensor approximation

Fix $\mathbb{F}=\mathbb{R}$

- Rank-r tensor approximation of tensor $A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n}$ solves the problem

$$
\min _{x_{i}, y_{i}, z_{i}}\left\|A-\lambda_{1} x_{1} \otimes y_{1} \otimes z_{1}-\cdots-\lambda_{r} x_{r} \otimes y_{r} \otimes z_{r}\right\|_{F}
$$

Rank-r tensor approximation

Fix $\mathbb{F}=\mathbb{R}$

- Rank-r tensor approximation of tensor $A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n}$ solves the problem

$$
\min _{x_{i}, y_{i}, z_{i}}\left\|A-\lambda_{1} x_{1} \otimes y_{1} \otimes z_{1}-\cdots-\lambda_{r} x_{r} \otimes y_{r} \otimes z_{r}\right\|_{F}
$$

- Generally unsolvable when $r>1$ because the set $\left\{A: \operatorname{rank}_{\mathbb{R}}(A) \leq r\right\}$ is not closed when $r>1$. (Details for this in Silva and Lim 2008.)

Rank-r tensor approximation

Fix $\mathbb{F}=\mathbb{R}$

- Rank-r tensor approximation of tensor $A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n}$ solves the problem

$$
\min _{x_{i}, y_{i}, z_{i}}\left\|A-\lambda_{1} x_{1} \otimes y_{1} \otimes z_{1}-\cdots-\lambda_{r} x_{r} \otimes y_{r} \otimes z_{r}\right\|_{F}
$$

- Generally unsolvable when $r>1$ because the set $\left\{A: \operatorname{rank}_{\mathbb{R}}(A) \leq r\right\}$ is not closed when $r>1$. (Details for this in Silva and Lim 2008.)
- Where $r=1$, however, this set is closed. So consider the smaller problem of rank-1 tensor approximation.

Rank-r tensor approximation

Fix $\mathbb{F}=\mathbb{R}$

- Rank-r tensor approximation of tensor $A=\left[a_{i j k}\right]_{i, j, k=1}^{l, m, n}$ solves the problem

$$
\min _{x_{i}, y_{i}, z_{i}}\left\|A-\lambda_{1} x_{1} \otimes y_{1} \otimes z_{1}-\cdots-\lambda_{r} x_{r} \otimes y_{r} \otimes z_{r}\right\|_{F}
$$

- Generally unsolvable when $r>1$ because the set $\left\{A: \operatorname{rank}_{\mathbb{R}}(A) \leq r\right\}$ is not closed when $r>1$. (Details for this in Silva and Lim 2008.)
- Where $r=1$, however, this set is closed. So consider the smaller problem of rank-1 tensor approximation.
- Problem simplifies to

$$
\begin{equation*}
\min _{x, y, z}\|A-x \otimes y \otimes z\|_{F} \tag{5}
\end{equation*}
$$

Rank-1 tensor approximation

- Introduce σ where $x \otimes y \otimes z=\sigma u \otimes v \otimes w$ and $\|u\|_{2}=\|v\|_{2}=\|w\|_{2}=1$.

Rank-1 tensor approximation

- Introduce σ where $x \otimes y \otimes z=\sigma u \otimes v \otimes w$ and $\|u\|_{2}=\|v\|_{2}=\|w\|_{2}=1$.
- Problem becomes

$$
\begin{gathered}
\min _{u, v, w}\|A-\sigma u \otimes v \otimes w\|_{F} \\
=\|A\|_{F}^{2}-2 \sigma\langle A, u \otimes v \otimes w\rangle+\sigma^{2}\|u \otimes v \otimes w\|_{F}^{2}=\|A\|_{F}^{2}-2 \sigma\langle A, u \otimes v \otimes w\rangle
\end{gathered}
$$

Rank-1 tensor approximation

- Introduce σ where $x \otimes y \otimes z=\sigma u \otimes v \otimes w$ and $\|u\|_{2}=\|v\|_{2}=\|w\|_{2}=1$.
- Problem becomes

$$
\begin{gathered}
\min _{u, v, w}\|A-\sigma u \otimes v \otimes w\|_{F} \\
=\|A\|_{F}^{2}-2 \sigma\langle A, u \otimes v \otimes w\rangle+\sigma^{2}\|u \otimes v \otimes w\|_{F}^{2}=\|A\|_{F}^{2}-2 \sigma\langle A, u \otimes v \otimes w\rangle
\end{gathered}
$$

- Above minimized when σ

$$
\sigma=\max _{\|u\|_{2}=\|v\|_{2}=\|w\|_{2}=1}\langle A, u \otimes v \otimes w\rangle
$$

Rank-1 tensor approximation

- Introduce σ where $x \otimes y \otimes z=\sigma u \otimes v \otimes w$ and $\|u\|_{2}=\|v\|_{2}=\|w\|_{2}=1$.
- Problem becomes

$$
\begin{gathered}
\min _{u, v, w}\|A-\sigma u \otimes v \otimes w\|_{F} \\
=\|A\|_{F}^{2}-2 \sigma\langle A, u \otimes v \otimes w\rangle+\sigma^{2}\|u \otimes v \otimes w\|_{F}^{2}=\|A\|_{F}^{2}-2 \sigma\langle A, u \otimes v \otimes w\rangle
\end{gathered}
$$

- Above minimized when σ

$$
\sigma=\max _{\|u\|_{2}=\|v\|_{2}=\|w\|_{2}=1}\langle A, u \otimes v \otimes w\rangle
$$

- Because $\langle A, u \otimes v \otimes w\rangle=A(u, v, w)$, can rewrite this as finding the spectral norm (4)

$$
\sigma=\|A\|_{2,2,2}
$$

Rank-1 tensor approximation

- Deciding whether σ is the spectral norm of a tensor is shown in another section of the paper to be NP-hard.

Rank-1 tensor approximation

- Deciding whether σ is the spectral norm of a tensor is shown in another section of the paper to be NP-hard.
- Say we can solve the rank-1 approximation problem (5) efficiently and we get solution (x, y, z). Then we can also find the spectral norm σ by setting

$$
\sigma=\|\sigma u \otimes v \otimes w\|_{F}=\|x\|_{2}\|y\|_{2}\|z\|_{2}
$$

Rank-1 tensor approximation

- Deciding whether σ is the spectral norm of a tensor is shown in another section of the paper to be NP-hard.
- Say we can solve the rank-1 approximation problem (5) efficiently and we get solution (x, y, z). Then we can also find the spectral norm σ by setting

$$
\sigma=\|\sigma u \otimes v \otimes w\|_{F}=\|x\|_{2}\|y\|_{2}\|z\|_{2}
$$

- Finding the spectral norm is reducible to best rank-1 approximation.

Rank-1 tensor approximation

- Deciding whether σ is the spectral norm of a tensor is shown in another section of the paper to be NP-hard.
- Say we can solve the rank-1 approximation problem (5) efficiently and we get solution (x, y, z). Then we can also find the spectral norm σ by setting

$$
\sigma=\|\sigma u \otimes v \otimes w\|_{F}=\|x\|_{2}\|y\|_{2}\|z\|_{2}
$$

- Finding the spectral norm is reducible to best rank-1 approximation.
- So, best rank-1 approximation is also NP-hard.

Tensor Eigenvalues

Eigenpairs for matrices

Also fix $\mathbb{F}=\mathbb{R}$.

- Given symmetric $A \in \mathbb{R}^{n \times n}$, eigenvalues and eigenvectors are stationary values and points of

$$
R(x)=\frac{x^{\top} A x}{x^{\top} x}
$$

Eigenpairs for matrices

Also fix $\mathbb{F}=\mathbb{R}$.

- Given symmetric $A \in \mathbb{R}^{n \times n}$, eigenvalues and eigenvectors are stationary values and points of

$$
R(x)=\frac{x^{\top} A x}{x^{\top} x}
$$

- Equivalently, constrained maximization $\max _{\|x\|_{2}^{2}=1} x^{\top} A x$ with Lagrangian

$$
L(x, \lambda)=x^{\top} A x-\lambda\left(\|x\|_{2}^{2}-1\right)
$$

Eigenpairs for matrices

Also fix $\mathbb{F}=\mathbb{R}$.

- Given symmetric $A \in \mathbb{R}^{n \times n}$, eigenvalues and eigenvectors are stationary values and points of

$$
R(x)=\frac{x^{\top} A x}{x^{\top} x}
$$

- Equivalently, constrained maximization $\max _{\|x\|_{2}^{2}=1} x^{\top} A x$ with Lagrangian

$$
L(x, \lambda)=x^{\top} A x-\lambda\left(\|x\|_{2}^{2}-1\right)
$$

- The solution give the eigenvalue equation

$$
A x=\lambda x
$$

Eigenpairs for 3-tensor

Conceptually, for tensor $A \in \mathbb{R}^{n \times n \times n}$, find the stationary values and points of cubic form (2)

$$
A(x, x, x):=\sum_{i, j, k=1}^{n} a_{i j k} x_{i} x_{j} x_{k}
$$

with some generalization of the unit constraint.

Eigenpairs for 3-tensor

Conceptually, for tensor $A \in \mathbb{R}^{n \times n \times n}$, find the stationary values and points of cubic form (2)

$$
A(x, x, x):=\sum_{i, j, k=1}^{n} a_{i j k} x_{i} x_{j} x_{k}
$$

with some generalization of the unit constraint.
Which generalization?

- $\|x\|_{3}^{3}=1$?
- $\|x\|_{2}^{2}=1$?
- $x_{1}^{3}+\cdots+x_{n}^{3}=1$?

Eigenpairs for 3-tensor

Formally, fix $\mathbb{F}=\mathbb{R}$ or \mathbb{C}.
$\|x\|_{2}^{2}=1$: The number $\lambda \in \mathbb{F}$ is called an I^{2}-eigenvalue of the tensor $A \in \mathbb{F}^{n \times n \times n}$ and $0 \neq x \in \mathbb{F}^{n}$ its corresponding I^{2}-eigenvector if

$$
\sum_{i, j=1}^{n} a_{i j k} x_{i} x_{j}=\lambda x_{k} \quad k=1, \ldots, n \text { holds }
$$

$\|x\|_{3}^{3}=1$: The number $\lambda \in \mathbb{F}$ is called an l^{3}-eigenvalue of the tensor $A \in \mathbb{F}^{n \times n \times n}$ and $0 \neq x \in \mathbb{F}^{n}$ its corresponding l^{3}-eigenvector if

$$
\sum_{i, j=1}^{n} a_{i j k} x_{i} x_{j}=\lambda x_{k}^{2} \quad k=1, \ldots, n \text { holds }
$$

Tensor eigenvalue over \mathbb{R} is NP-hard

Theorem 1.3 Graph 3 -colorability is polynomially reducible to tensor 0 -eigenvalue over \mathbb{R}. Thus, deciding tensor eigenvalue over \mathbb{R} is NP-hard.

Proof outline

Restrict ourselves to the $\lambda=0$ case. Both I^{2} - and I^{3}-eigenpair equations reduce to

$$
\sum_{i, j=1}^{n} a_{i j k} x_{i} x_{j}=0 \quad k=1, \ldots, n \text { holds }
$$

The above becomes the square quadratic feasibility problem, which is deciding whether there is a $0 \neq x \in \mathbb{R}^{n}$ solution to a system of equations $\left\{x^{\top} A_{i} x=0\right\}_{i=1}^{m}$.

By a previous result, graph 3-colorability is polynomially reducible to quadratic feasibility.

Conclusion

Hard equals interesting

'Bernd Sturmfels once made the remark to us that "All interesting problems are NP-hard." In light of this, we would like to view our article as evidence that most tensor problems are interesting.'

References

De Silva, V. \& Lim, L.-H. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl., 30(3): 1084-1127, 2008

Hillar, C.J. \& Lim, L.-H.. Most tensor problems are NP-hard. J. ACM, 60(6):45:1-45:39, 2013.
Robeva, Elina. MATH605D Fall 2020 Tensor decomposition and their applications https://sites.google.com/view/ubc-math-605d/class-overview

Sipser, M. Introduction to the Theory of Computation, 3rd Ed., 2012.
Strang, G. Linear Algebra and Learning From Data, 2019.

Thank you

