Most Tensor Problems are NP-Hard C. J. Hillar and L.-H. Lim

Betty Shea

UBC MLRG 2020 Winter Term 1

14-Oct-2020

UBC MLRG 2020 Winter Term 1

Most Tensor Problems are NP-Hard

14-Oct-2020 1/28

→ Ξ →

- 2 Tensor Approximation
- 3 Tensor Eigenvalues

→ ∃ →

< 行

Overview and Definitions

< □ > < □ > < □ > < □ > < □ >

• Second of two papers on the 'Tensor Basics' subsection

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Second of two papers on the 'Tensor Basics' subsection
- Mark's talk: tensor definitions, operations, concepts (e.g. rank, decomposition, etc.)

- Second of two papers on the 'Tensor Basics' subsection
- Mark's talk: tensor definitions, operations, concepts (e.g. rank, decomposition, etc.)
- Today: multilinear algebra complexity

< (日) × < 三 × <

- Second of two papers on the 'Tensor Basics' subsection
- Mark's talk: tensor definitions, operations, concepts (e.g. rank, decomposition, etc.)
- Today: multilinear algebra complexity
- Bahare's talk: Tensor factorization in graph representational learning

• • = • •

Theme of paper

The central message of our paper is that many problems in linear algebra that are efficiently solvable on a Turing machine become NP-hard in multilinear algebra.'

< □ > < 同 > < 回 > < 回 >

Theme of paper

- The central message of our paper is that many problems in linear algebra that are efficiently solvable on a Turing machine become NP-hard in multilinear algebra.
- As much about the 'tractability of a numerical computing problem using the rich collection of NP-complete combinatorial problems....'

< □ > < □ > < □ > < □ > < □ > < □ >

Everything is hard

Table I. Tractability of Tensor Problems

Problem	Complexity
Bivariate Matrix Functions over R, C	Undecidable (Proposition 12.2)
Bilinear System over ℝ, ℂ	NP-hard (Theorems 2.6, 3.7, 3.8)
Eigenvalue over ℝ	NP-hard (Theorem 1.3)
Approximating Eigenvector over R	NP-hard (Theorem 1.5)
Symmetric Eigenvalue over R	NP-hard (Theorem 9.3)
Approximating Symmetric Eigenvalue over ℝ	NP-hard (Theorem 9.6)
Singular Value over \mathbb{R} , \mathbb{C}	NP-hard (Theorem 1.7)
Symmetric Singular Value over R	NP-hard (Theorem 10.2)
Approximating Singular Vector over ℝ, ℂ	NP-hard (Theorem 6.3)
Spectral Norm over ℝ	NP-hard (Theorem 1.10)
Symmetric Spectral Norm over ℝ	NP-hard (Theorem 10.2)
Approximating Spectral Norm over \mathbb{R}	NP-hard (Theorem 1.11)
Nonnegative Definiteness	NP-hard (Theorem 11.2)
Best Rank-1 Approximation	NP-hard (Theorem 1.13)
Best Symmetric Rank-1 Approximation	NP-hard (Theorem 10.2)
Rank over \mathbb{R} or \mathbb{C}	NP-hard (Theorem 8.2)
Enumerating Eigenvectors over ℝ	#P-hard (Corollary 1.16)
Combinatorial Hyperdeterminant	NP-, #P-, VNP-hard (Theorems 4.1, 4.2, Corollary 4.3)
Geemetric Hyperdeterminant	Conjectures 1.9, 13.1
(Symmetric Rank)	Conjecture 13.2
Bilmea Programming	Conjecture 13.4
Bilinear Least Squares	Conjecture 13.5

Note: Except for positive definiteness and the combinatorial hyperdeterminant, which apply to 4-tensors, all problems refer to the 3-tensor case.

UBC MLRG 2020 Winter Term 1

イロト イヨト イヨト イヨト

Matrices

Matrix A over field $\mathbb F$ is a $m \times n$ array of elements of $\mathbb F$

$$A = [a_{ij}]_{i,j=1}^{m,n} \in \mathbb{F}^{m \times n}$$

< □ > < □ > < □ > < □ > < □ >

Matrices

Matrix A over field \mathbb{F} is a $m \times n$ array of elements of \mathbb{F}

$$A = [a_{ij}]_{i,j=1}^{m,n} \in \mathbb{F}^{m \times n}$$

Given standard basis e_1, \ldots, e_d in \mathbb{F}^d , matrices are also bilinear maps.

 $f: \mathbb{F}^m \times \mathbb{F}^n \to \mathbb{F}$ where $a_{ij} = f(e_i, e_j) \in \mathbb{F}$

By linearity, $f(u, v) = u^{\mathsf{T}} A v$.

A D N A B N A B N A B N

Matrices

Matrix A over field \mathbb{F} is a $m \times n$ array of elements of \mathbb{F}

$$A = [a_{ij}]_{i,j=1}^{m,n} \in \mathbb{F}^{m \times n}$$

Given standard basis e_1, \ldots, e_d in \mathbb{F}^d , matrices are also bilinear maps.

$$f: \mathbb{F}^m \times \mathbb{F}^n \to \mathbb{F}$$
 where $a_{ii} = f(e_i, e_i) \in \mathbb{F}$

By linearity, $f(u, v) = u^{\mathsf{T}} A v$.

If m = n, A is symmetric means that f is invariant under coordinate exchange:

$$f(u, v) = u^{\mathsf{T}} A v = (u^{\mathsf{T}} A v)^{\mathsf{T}} = v^{\mathsf{T}} A^{\mathsf{T}} u = v^{\mathsf{T}} A u = f(v, u)$$

where second to last equality made use of $A = A^{T}$.

イロト 不得 トイラト イラト 一日

3-Tensor

3-tensor A over field $\mathbb F$ is an $l \times m \times n$ array of elements of $\mathbb F$

$$A = [a_{ijk}]_{i,j,k=1}^{l,m,n} \in \mathbb{F}^{l \times m \times n}$$
(1)

< □ > < □ > < □ > < □ > < □ >

3-Tensor

3-tensor A over field $\mathbb F$ is an $l \times m \times n$ array of elements of $\mathbb F$

$$A = [a_{ijk}]_{i,j,k=1}^{l,m,n} \in \mathbb{F}^{l \times m \times n}$$

$$\tag{1}$$

Also a trilinear map

$$f: \mathbb{F}^{l} \times \mathbb{F}^{m} \times \mathbb{F}^{n} \to \mathbb{F}$$
 where $a_{ijk} = f(e_{i}, e_{j}, e_{k}) \in \mathbb{F}$

(日) (四) (日) (日) (日)

3-Tensor

3-tensor A over field $\mathbb F$ is an $l \times m \times n$ array of elements of $\mathbb F$

$$A = [a_{ijk}]_{i,j,k=1}^{l,m,n} \in \mathbb{F}^{l \times m \times n}$$

$$\tag{1}$$

Also a trilinear map

$$f: \mathbb{F}^{l} \times \mathbb{F}^{m} \times \mathbb{F}^{n} \to \mathbb{F}$$
 where $a_{ijk} = f(e_{i}, e_{j}, e_{k}) \in \mathbb{F}$

If l = m = n, A is (super-)symmetric means

$$a_{ijk} = a_{jik} = \cdots = a_{kji}$$

OR

$$f(u,v,w) = f(u,w,v) = \cdots = f(w,v,u)$$

(日) (四) (日) (日) (日)

Cubic form

Given $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, define

$$A(x,x) = x^{\mathsf{T}} A x = \sum_{i,j=1}^{n} a_{ij} x_i x_j$$

<ロト <問ト < 目と < 目と

Cubic form

Given $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, define

$$A(x,x) = x^{\mathsf{T}} A x = \sum_{i,j=1}^{n} a_{ij} x_i x_j$$

Extended to 3-tensor $A \in \mathbb{R}^{l \times m \times n}$ when l = m = n, we get cubic form

$$A(x,x,x) := \sum_{i,j,k=1}^{n} a_{ijk} x_i x_j x_k$$
⁽²⁾

イロト イヨト イヨト イヨト

Cubic form

Given $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, define

$$A(x,x) = x^{\mathsf{T}} A x = \sum_{i,j=1}^{n} a_{ij} x_i x_j$$

Extended to 3-tensor $A \in \mathbb{R}^{l \times m \times n}$ when l = m = n, we get cubic form

$$A(x,x,x) := \sum_{i,j,k=1}^{n} a_{ijk} x_i x_j x_k$$
⁽²⁾

In general, the trilinear form is

$$A(x, y, z) := \sum_{i, j, k=1}^{l, m, n} a_{ijk} x_i y_j z_k$$
(3)

・ロト ・四ト ・ヨト ・ヨト

where $x \in \mathbb{R}^{l}$, $y \in \mathbb{R}^{m}$, $z \in \mathbb{R}^{k}$

Inner product, outer product

Let
$$A = [a_{ijk}]_{i,j,k=1}^{l,m,n}$$
, $B = [b_{ijk}]_{i,j,k=1}^{l,m,n} \in \mathbb{R}^{l \times m \times n}$

Inner product is defined as

$$\langle A,B \rangle := \sum_{i,j,k=1}^{l,m,n} a_{ijk} b_{ijk}$$

Inner product, outer product

Let
$$A = [a_{ijk}]_{i,j,k=1}^{l,m,n}$$
, $B = [b_{ijk}]_{i,j,k=1}^{l,m,n} \in \mathbb{R}^{l \times m \times n}$

Inner product is defined as

$$\langle A,B
angle := \sum_{i,j,k=1}^{l,m,n} a_{ijk} b_{ijk}$$

Outer product of vectors $x \in \mathbb{F}', y \in \mathbb{F}^m, z \in \mathbb{F}^n$, denoted $x \otimes y \otimes z$, gives 3-tensor A where

$$A = [a_{ijk}]_{i,j,k=1}^{l,m,n}$$
 where $a_{ijk} = x_i y_j z_k$

Note: $\langle A, x \otimes y \otimes z \rangle = A(x, y, z)$ which is in the trilinear form (3)

A D N A B N A B N A B N

Norms

Frobenius norm squared of 3-tensor A is defined as

$$\|A\|_F^2 := \sum_{i,j,k=1}^{l,m,n} |a_{ijk}|^2$$

Note: $\|A\|_F^2 = \langle A, A \rangle$

▶ ▲ 王 ▶ 王 ∽ ९ ୯ 14-Oct-2020 11 / 28

< □ > < □ > < □ > < □ > < □ >

Norms

Frobenius norm squared of 3-tensor A is defined as

$$\|A\|_F^2 := \sum_{i,j,k=1}^{l,m,n} |a_{ijk}|^2$$

Note: $\|A\|_F^2 = \langle A, A \rangle$

Spectral norm of 3-tensor A is defined as

$$\|A\|_{2,2,2} := \sup_{\substack{x,y,z\neq 0 \\ ||x||_2 ||y||_2 ||z||_2}} \frac{A(x,y,z)}{\|x\|_2 \|y\|_2 \|z\|_2}$$
(4)

A D N A B N A B N A B N

• Mostly follows Sipser 2012.

< (日) × (日) × (1)

- Mostly follows Sipser 2012.
- Computations on a Turing Machine. Inputs are rational numbers. Outputs are rational vectors or Yes/No.

э

A (10) < A (10) < A (10) </p>

- Mostly follows Sipser 2012.
- Computations on a Turing Machine. Inputs are rational numbers. Outputs are rational vectors or Yes/No.
- Decision problem: the solution is in the form of Yes or No.

• • = • • =

- Mostly follows Sipser 2012.
- Computations on a Turing Machine. Inputs are rational numbers. Outputs are rational vectors or Yes/No.
- Decision problem: the solution is in the form of Yes or No.
- A decision problem is decidable if there is a Turing machine that will output a Yes/No for all allowable inputs in finitely many steps. Undecidable otherwise.

・ 何 ト ・ ヨ ト ・ ヨ ト

Time complexity measured in units of bit operations, i.e. the number of tape-level instructions on bits. (Input size is also specified in terms of number of bits.)

A D N A B N A B N A B N

Time complexity measured in units of bit operations, i.e. the number of tape-level instructions on bits. (Input size is also specified in terms of number of bits.)

Measuring whether problems are equivalently difficult.

- Reducibility in the Cook-Karp-Levin sense.
- Very informally, problem P_1 polynomially reduces to P_2 if there is a way to solve P_1 by first solving P_2 and then translating the P_2 -solution into a P_1 -solution deterministically and in polynomial-time. P_2 is at least as hard as P_1 .

< □ > < □ > < □ > < □ > < □ > < □ >

Time complexity measured in units of bit operations, i.e. the number of tape-level instructions on bits. (Input size is also specified in terms of number of bits.)

Measuring whether problems are equivalently difficult.

- Reducibility in the Cook-Karp-Levin sense.
- Very informally, problem P_1 polynomially reduces to P_2 if there is a way to solve P_1 by first solving P_2 and then translating the P_2 -solution into a P_1 -solution deterministically and in polynomial-time. P_2 is at least as hard as P_1 .
- NP: Problems where solutions could be certified in polynomial time.

< □ > < □ > < □ > < □ > < □ > < □ >

Time complexity measured in units of bit operations, i.e. the number of tape-level instructions on bits. (Input size is also specified in terms of number of bits.)

Measuring whether problems are equivalently difficult.

- Reducibility in the Cook-Karp-Levin sense.
- Very informally, problem P_1 polynomially reduces to P_2 if there is a way to solve P_1 by first solving P_2 and then translating the P_2 -solution into a P_1 -solution deterministically and in polynomial-time. P_2 is at least as hard as P_1 .
- NP: Problems where solutions could be certified in polynomial time.
- NP-complete: If one can polynomially reduce any particular NP-complete problem P1 to a problem P2, then all NP-complete problems are so reducible to P2. (Cook-Levin Theorem)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Tensor Approximation

Recall, the rank of a tensor $A = [a_{ijk}]_{i,j,k=1}^{l,m,n} \in \mathbb{F}^{l \times m \times n}$ is the minimum r for which A is a sum of r rank-1 tensors.

$$\operatorname{rank}(A) := \min\left\{r : A = \sum_{i=1}^r \lambda_i x_i \otimes y_i \otimes z_i\right\}$$

where $\lambda_i \in \mathbb{F}$, $x_i \in \mathbb{F}^l$, $y_i \in \mathbb{F}^m$, and $z_i \in \mathbb{F}^n$.

A D N A B N A B N A B N

- 31

15 / 28

Recall, the rank of a tensor $A = [a_{ijk}]_{i,j,k=1}^{l,m,n} \in \mathbb{F}^{l \times m \times n}$ is the minimum r for which A is a sum of r rank-1 tensors.

$$\operatorname{rank}(A) := \min\left\{r : A = \sum_{i=1}^r \lambda_i x_i \otimes y_i \otimes z_i\right\}$$

where $\lambda_i \in \mathbb{F}$, $x_i \in \mathbb{F}^{I}$, $y_i \in \mathbb{F}^{m}$, and $z_i \in \mathbb{F}^{n}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall, the rank of a tensor $A = [a_{ijk}]_{i,j,k=1}^{l,m,n} \in \mathbb{F}^{l \times m \times n}$ is the minimum r for which A is a sum of r rank-1 tensors.

$$\operatorname{rank}(A) := \min\left\{r : A = \sum_{i=1}^r \lambda_i x_i \otimes y_i \otimes z_i\right\}$$

where $\lambda_i \in \mathbb{F}$, $x_i \in \mathbb{F}^{I}$, $y_i \in \mathbb{F}^{m}$, and $z_i \in \mathbb{F}^{n}$.

- Rank-1 tensors are tensors that could be expressed as an outer product of vectors.
- Ø More than one definition of tensor 'rank': e.g. symmetric rank, border rank.

イロト 不得下 イヨト イヨト 二日

Recall, the rank of a tensor $A = [a_{ijk}]_{i,j,k=1}^{l,m,n} \in \mathbb{F}^{l \times m \times n}$ is the minimum r for which A is a sum of r rank-1 tensors.

$$\operatorname{rank}(A) := \min\left\{r : A = \sum_{i=1}^r \lambda_i x_i \otimes y_i \otimes z_i\right\}$$

where $\lambda_i \in \mathbb{F}$, $x_i \in \mathbb{F}^l$, $y_i \in \mathbb{F}^m$, and $z_i \in \mathbb{F}^n$.

- Rank-1 tensors are tensors that could be expressed as an outer product of vectors.
- Ø More than one definition of tensor 'rank': e.g. symmetric rank, border rank.
- Unlike matrices, rank of a tensor changes over changing fields.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Last week: Recommender systems with large matrix A of rank r. Netflix competition: best rank k < r matrix that approximates A.

(日) (四) (日) (日) (日)

- Last week: Recommender systems with large matrix A of rank r. Netflix competition: best rank k < r matrix that approximates A.
- Singular value decomposition gives a sum of rank-1 matrices

$$A = \sum_{i=1}^{r} \sigma_{i} u_{i} \otimes v_{i} \text{ where singular values } \sigma_{1} \geq \cdots \geq \sigma_{r}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

- Last week: Recommender systems with large matrix A of rank r. Netflix competition: best rank k < r matrix that approximates A.
- Singular value decomposition gives a sum of rank-1 matrices

$$A = \sum_{i=1}^{r} \sigma_{i} u_{i} \otimes v_{i} \text{ where singular values } \sigma_{1} \geq \cdots \geq \sigma_{r}$$

• Define $A_k = \sum_{i=1}^k \sigma_i u_i \otimes v_i$, k < r.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Last week: Recommender systems with large matrix A of rank r. Netflix competition: best rank k < r matrix that approximates A.
- Singular value decomposition gives a sum of rank-1 matrices

$$A = \sum_{i=1}^{r} \sigma_{i} u_{i} \otimes v_{i} \text{ where singular values } \sigma_{1} \geq \cdots \geq \sigma_{r}$$

- Define $A_k = \sum_{i=1}^k \sigma_i u_i \otimes v_i$, k < r.
- Eckart-Young: If matrix B has rank k, then $||A B||_F \ge ||A A_k||_F$. (Works also with $||\cdot||_2 = \sigma_1$ and $||\cdot||_* = \sigma_1 + \cdots + \sigma_r$)

(日) (四) (日) (日) (日)

 $\mathsf{Fix}\;\mathbb{F}=\mathbb{R}$

• Rank-r tensor approximation of tensor $A = [a_{ijk}]_{i,j,k=1}^{l,m,n}$ solves the problem

$$\min_{x_i,y_i,z_i} \|A - \lambda_1 x_1 \otimes y_1 \otimes z_1 - \dots - \lambda_r x_r \otimes y_r \otimes z_r\|_F$$

(日) (四) (日) (日) (日)

 $\mathsf{Fix}\;\mathbb{F}=\mathbb{R}$

• Rank-r tensor approximation of tensor $A = [a_{ijk}]_{i,j,k=1}^{l,m,n}$ solves the problem

$$\min_{x_i, y_i, z_i} \|A - \lambda_1 x_1 \otimes y_1 \otimes z_1 - \dots - \lambda_r x_r \otimes y_r \otimes z_r\|_F$$

• Generally unsolvable when r > 1 because the set $\{A : \operatorname{rank}_{\mathbb{R}}(A) \le r\}$ is not closed when r > 1. (Details for this in Silva and Lim 2008.)

< □ > < □ > < □ > < □ > < □ > < □ >

 $\mathsf{Fix}\;\mathbb{F}=\mathbb{R}$

• Rank-r tensor approximation of tensor $A = [a_{ijk}]_{i,j,k=1}^{l,m,n}$ solves the problem

$$\min_{x_i, y_i, z_i} \|A - \lambda_1 x_1 \otimes y_1 \otimes z_1 - \dots - \lambda_r x_r \otimes y_r \otimes z_r\|_F$$

- Generally unsolvable when r > 1 because the set $\{A : \operatorname{rank}_{\mathbb{R}}(A) \le r\}$ is not closed when r > 1. (Details for this in Silva and Lim 2008.)
- Where r = 1, however, this set is closed. So consider the smaller problem of rank-1 tensor approximation.

イロト イポト イヨト イヨト

 $\mathsf{Fix}\;\mathbb{F}=\mathbb{R}$

• Rank-r tensor approximation of tensor $A = [a_{ijk}]_{i,j,k=1}^{l,m,n}$ solves the problem

$$\min_{x_i, y_i, z_i} \|A - \lambda_1 x_1 \otimes y_1 \otimes z_1 - \dots - \lambda_r x_r \otimes y_r \otimes z_r\|_F$$

- Generally unsolvable when r > 1 because the set $\{A : \operatorname{rank}_{\mathbb{R}}(A) \leq r\}$ is not closed when r > 1. (Details for this in Silva and Lim 2008.)
- Where r = 1, however, this set is closed. So consider the smaller problem of rank-1 tensor approximation.
- Problem simplifies to

$$\min_{x,y,z} \|A - x \otimes y \otimes z\|_F \tag{5}$$

< □ > < □ > < □ > < □ > < □ > < □ >

• Introduce σ where $x \otimes y \otimes z = \sigma u \otimes v \otimes w$ and $||u||_2 = ||v||_2 = ||w||_2 = 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Introduce σ where $x \otimes y \otimes z = \sigma u \otimes v \otimes w$ and $||u||_2 = ||v||_2 = ||w||_2 = 1$.
- Problem becomes

$$\min_{u,v,w} \|A - \sigma u \otimes v \otimes w\|_F$$

 $= \|A\|_F^2 - 2\sigma \langle A, u \otimes v \otimes w \rangle + \sigma^2 \|u \otimes v \otimes w\|_F^2 = \|A\|_F^2 - 2\sigma \langle A, u \otimes v \otimes w \rangle$

(日) (四) (日) (日) (日)

- Introduce σ where $x \otimes y \otimes z = \sigma u \otimes v \otimes w$ and $||u||_2 = ||v||_2 = ||w||_2 = 1$.
- Problem becomes $\min_{u,v,w} \|A \sigma u \otimes v \otimes w\|_F$

 $= \|A\|_{F}^{2} - 2\sigma\langle A, u \otimes v \otimes w \rangle + \sigma^{2} \|u \otimes v \otimes w\|_{F}^{2} = \|A\|_{F}^{2} - 2\sigma\langle A, u \otimes v \otimes w \rangle$

• Above minimized when σ

$$\sigma = \max_{\|u\|_2 = \|v\|_2 = \|w\|_2 = 1} \langle A, u \otimes v \otimes w \rangle$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- 31

18 / 28

- Introduce σ where $x \otimes y \otimes z = \sigma u \otimes v \otimes w$ and $||u||_2 = ||v||_2 = ||w||_2 = 1$.
- Problem becomes $\min_{u,v,w} \|A \sigma u \otimes v \otimes w\|_F$

$$= \|A\|_F^2 - 2\sigma \langle A, u \otimes v \otimes w \rangle + \sigma^2 \|u \otimes v \otimes w\|_F^2 = \|A\|_F^2 - 2\sigma \langle A, u \otimes v \otimes w \rangle$$

• Above minimized when σ

$$\sigma = \max_{\|u\|_2 = \|v\|_2 = \|w\|_2 = 1} \langle A, u \otimes v \otimes w \rangle$$

• Because $\langle A, u \otimes v \otimes w \rangle = A(u, v, w)$, can rewrite this as finding the spectral norm (4)

$$\sigma = \|A\|_{2,2,2}$$

UBC MLRG 2020 Winter Term 1 Most

イロト イボト イヨト イヨト

• Deciding whether σ is the spectral norm of a tensor is shown in another section of the paper to be NP-hard.

(日) (四) (日) (日) (日)

- Deciding whether σ is the spectral norm of a tensor is shown in another section of the paper to be NP-hard.
- Say we can solve the rank-1 approximation problem (5) efficiently and we get solution (x, y, z). Then we can also find the spectral norm σ by setting

 $\sigma = \|\sigma u \otimes v \otimes w\|_F = \|x\|_2 \|y\|_2 \|z\|_2$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Deciding whether σ is the spectral norm of a tensor is shown in another section of the paper to be NP-hard.
- Say we can solve the rank-1 approximation problem (5) efficiently and we get solution (x, y, z). Then we can also find the spectral norm σ by setting

$$\sigma = \|\sigma u \otimes v \otimes w\|_F = \|x\|_2 \|y\|_2 \|z\|_2$$

• Finding the spectral norm is reducible to best rank-1 approximation.

・ 何 ト ・ ヨ ト ・ ヨ ト

- Deciding whether σ is the spectral norm of a tensor is shown in another section of the paper to be NP-hard.
- Say we can solve the rank-1 approximation problem (5) efficiently and we get solution (x, y, z). Then we can also find the spectral norm σ by setting

$$\sigma = \|\sigma u \otimes v \otimes w\|_F = \|x\|_2 \|y\|_2 \|z\|_2$$

- Finding the spectral norm is reducible to best rank-1 approximation.
- So, best rank-1 approximation is also NP-hard.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Tensor Eigenvalues

Eigenpairs for matrices

Also fix $\mathbb{F} = \mathbb{R}$.

Given symmetric A ∈ ℝ^{n×n}, eigenvalues and eigenvectors are stationary values and points of

$$R(x) = \frac{x^{\mathsf{T}} A x}{x^{\mathsf{T}} x}$$

A (1) > A (2) > A

Eigenpairs for matrices

Also fix $\mathbb{F} = \mathbb{R}$.

Given symmetric A ∈ ℝ^{n×n}, eigenvalues and eigenvectors are stationary values and points of

$$R(x) = \frac{x^{\mathsf{T}} A x}{x^{\mathsf{T}} x}$$

• Equivalently, constrained maximization $\max_{\|x\|_2^2=1} x^T A x$ with Lagrangian

$$L(x,\lambda) = x^{\mathsf{T}}Ax - \lambda \left(\|x\|_2^2 - 1 \right)$$

A (10) < A (10) < A (10) </p>

Eigenpairs for matrices

Also fix $\mathbb{F} = \mathbb{R}$.

Given symmetric A ∈ ℝ^{n×n}, eigenvalues and eigenvectors are stationary values and points of

$$R(x) = \frac{x^{\mathsf{T}} A x}{x^{\mathsf{T}} x}$$

• Equivalently, constrained maximization $\max_{\|x\|_2^2=1} x^T A x$ with Lagrangian

$$L(x,\lambda) = x^{\mathsf{T}}Ax - \lambda \left(\|x\|_2^2 - 1 \right)$$

• The solution give the eigenvalue equation

 $Ax = \lambda x$

・ 何 ト ・ ヨ ト ・ ヨ ト

Eigenpairs for 3-tensor

Conceptually, for tensor $A \in \mathbb{R}^{n \times n \times n}$, find the stationary values and points of cubic form (2)

$$A(x,x,x) := \sum_{i,j,k=1}^{n} a_{ijk} x_i x_j x_k$$

with some generalization of the unit constraint.

A D N A B N A B N A B N

Eigenpairs for 3-tensor

Conceptually, for tensor $A \in \mathbb{R}^{n \times n \times n}$, find the stationary values and points of cubic form (2)

$$A(x,x,x) := \sum_{i,j,k=1}^{n} a_{ijk} x_i x_j x_k$$

with some generalization of the unit constraint.

Which generalization?

•
$$||x||_3^3 = 1?$$

• $||x||_2^2 = 1?$
• $x_1^3 + \dots + x_n^3 = 1?$

(日) (四) (日) (日) (日)

Eigenpairs for 3-tensor

Formally, fix $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

 $\|x\|_2^2 = 1$: The number $\lambda \in \mathbb{F}$ is called an l^2 -eigenvalue of the tensor $A \in \mathbb{F}^{n \times n \times n}$ and $0 \neq x \in \mathbb{F}^n$ its corresponding l^2 -eigenvector if

$$\sum_{i,j=1}^{n} a_{ijk} x_i x_j = \lambda x_k \qquad k = 1, \dots, n \text{ holds}$$

 $\|x\|_3^3 = 1$: The number $\lambda \in \mathbb{F}$ is called an I^3 -eigenvalue of the tensor $A \in \mathbb{F}^{n \times n \times n}$ and $0 \neq x \in \mathbb{F}^n$ its corresponding I^3 -eigenvector if

$$\sum_{i,j=1}^{n} \mathsf{a}_{ijk} \mathsf{x}_i \mathsf{x}_j = \lambda \mathsf{x}_k^2 \qquad k = 1, \dots, n \text{ holds}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Tensor eigenvalue over \mathbb{R} is NP-hard

<u>Theorem 1.3</u> Graph 3-colorability is polynomially reducible to tensor 0-eigenvalue over \mathbb{R} . Thus, deciding tensor eigenvalue over \mathbb{R} is NP-hard.

Proof outline

Restrict ourselves to the $\lambda = 0$ case. Both l^2 - and l^3 -eigenpair equations reduce to

$$\sum_{i,j=1}^{n} a_{ijk} x_i x_j = 0 \qquad k = 1, \dots, n \text{ holds}$$

The above becomes the square quadratic feasibility problem, which is deciding whether there is a $0 \neq x \in \mathbb{R}^n$ solution to a system of equations $\{x^T A_i x = 0\}_{i=1}^m$.

By a previous result, graph 3-colorability is polynomially reducible to quadratic feasibility.

イロト 不得 トイラト イラト 一日

Conclusion

イロト イヨト イヨト イヨト

Hard equals interesting

'Bernd Sturmfels once made the remark to us that "All interesting problems are NP-hard." In light of this, we would like to view our article as evidence that most tensor problems are interesting.'

- 4 回 ト 4 ヨ ト 4 ヨ ト

References

De Silva, V. & Lim, L.-H. Tensor rank and the ill-posedness of the best low-rank approximation problem. *SIAM J. Matrix Anal. Appl.*, **30(3)**: 1084-1127, 2008

Hillar, C.J. & Lim, L.-H.. Most tensor problems are NP-hard. J. ACM, 60(6):45:1-45:39, 2013.

Robeva, Elina. MATH605D Fall 2020 Tensor decomposition and their applications https://sites.google.com/view/ubc-math-605d/class-overview

Sipser, M. Introduction to the Theory of Computation, 3rd Ed., 2012.

Strang, G. Linear Algebra and Learning From Data, 2019.

< □ > < □ > < □ > < □ > < □ > < □ >

Thank you

イロト イヨト イヨト イヨト