
UBC MLRG (Winter 2020):
Tensor Basics

Material largely follows Kolda and Bader, 2009:
“Tensor Decompositions and Applications”

Figures are taken from there
Presenter: Mark Schmidt

Recommender System Motivation: Netflix Prize

• Netflix Prize:

– 100M ratings from 0.5M users on 18k movies.

– Grand prize was $1M for first team to reduce squared error by 10%.

– Started on October 2nd, 2006.

– Netflix’s system was first beat October 8th.

– 1% error reduction achieved on October 15th.

– Steady improvement after that.

• ML methods soon dominated.

• One of the reasons for explosion of interest in ML methods.

Lessons Learned from Netflix Prize

• Prize awarded in 2009:

– Ensemble method that averaged 107 models.

• Winning entry (and most entries) used collaborative filtering:

– Methods that only looks at ratings, not features of movies/users.

• A simple collaborative filtering method that does really well (7%):

– “Regularized matrix factorization”. Now adopted by many companies.

http://bits.blogs.nytimes.com/2009/09/21/netflix-awards-1-million-prize-and-starts-a-new-contest/?_r=0

Collaborative Filtering Problem

• Collaborative filtering is ‘filling in’ the user-item matrix:

• We have some ratings available with values {1,2,3,4,5}.

• We want to predict ratings “?” by looking at available ratings.

Collaborative Filtering Problem

• Collaborative filtering is ‘filling in’ the user-item matrix:

• What rating would “Ryan Reynolds” give to “Green Lantern”?

– Why is this not completely crazy? We may have similar users and movies.

Matrix Factorization for Collaborative Filtering

• The standard matrix factorization model for entries in matrix ‘X’:

• User ‘i’ has latent features zi.

• Movie ‘j’ has latent features wj.

• The standard loss function sums over available ratings ‘R’:

• And we add L2-regularization to both types of features.
– Basically, this is regularized PCA on the available entries of ‘X’.

– Typically fit with SGD.

• This simple method gives you a 7% improvement on the Netflix problem.

• Applications of Matrix Factorization :

– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.

Matrix Factorization Applications

• Applications of Matrix Factorization :

– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.

Matrix Factorization Applications

• Applications of Matrix Factorization :

– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.

Matrix Factorization Applications

https://monsterlegacy.net/2013/03/04/rancor-star-wars/

• Applications of Matrix Factorization :

– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.

Matrix Factorization Applications

https://monsterlegacy.net/2013/03/04/rancor-star-wars/

• Applications of Matrix Factorization :

– Data visualization: plot zi with k = 2 to visualize high-dimensional objects.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html

Matrix Factorization Applications

• Applications of Matrix Factorization :

– Data interpretation: we can try to assign meaning to latent factors wc.

• Hidden “factors” that influence all the variables.

https://new.edu/resources/big-5-personality-traits

Matrix Factorization Applications

"Most Personality Quizzes Are Junk Science. I Found One That Isn't."

https://fivethirtyeight.com/features/most-personality-quizzes-are-junk-science-i-found-one-that-isnt/

Matrix Factorization Applications

https://en.wikipedia.org/wiki/RGB_color_model

• Applications of Matrix Factorization : seeing colours.

Matrix Factorization Applications

• NBA shot charts:

• MF (non-negative w/ “KL divergence” with k=10 + smoothed data):

http://jmlr.org/proceedings/papers/v32/miller14.pdf

Matrix Factorization Applications

• What are common sets of mutations in different cancers?

– May lead to new treatment options.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3588146/

(pause)

Tensor Factorization

• Tensors are a generalization of matrices:

• Generalization of matrix factorization is tensor factorization:

• Useful if there are other relevant variables:
• Instead of ratings based on {user,movie}, ratings based on {user,movie,country}.

• Useful if you have groups of users, or if ratings change over time.

Tensor Order

• The order of a tensor is “how many indices” you have:
– A 1st-order tensor is a vector, T[i].
– A 2nd-order tensor is a matrix, T[i,j].
– A 3rd-order tensor has 3 indices, T[i,j,k].
– A 4th-order tensor has 4 indices, T[i,j,k,m].

• Other names for order:
– “Way” (as in 3-way tensor) and “modes” (as in mode-3 tensor).
– Linear algebra people generally don’t use “dimension”.

• Probably to avoid confusion with “dimension of subspace”.

• Applications:
– Psychometrics, chemometrics, signal processing, numerical analysis, computer

vision, machine learning, neuroscience, graph theory, and so on.

• To save space I use “tensor” in place of “3rd-order tensors” in examples.
– But higher-order tensor properties tend to be analogous.

Fibers and Slices

• Fiber: vector formed by fixing every index but one to a constant.

– Matrix has “columns” (mode-1 fibers) and “rows” (mode-2 fibers).

• Columns correspond to M[:,j] and rows correspond to M[i,:].

– Tensor has “columns” (mode-1), “rows” (mode-2), and “tubes” (mode-3).

• Columns are M[:,j,k], rows are M[i,:,k], and tubes are M[i,j,:].

• Notice you need to fix 2 indices for mode-3, three indices for mode-4, and so on.

Fibers and Slices

• Slice: matrix formed by fixing every index but two to a constant.

– Matrix only has itself as a slice, M[:,:].

– Tensor has “horizontal slices”, “vertical slices”, and “frontal slices”.

– In medicine these are called “axial”, “saggital”, and “coronal”.

https://sites.google.com/site/postgraduatetraining/image-acquisition/the-basics

Inner Product and Norm

• Euclidean-norm of a vector:

• Frobenius-norm of a matrix:

• 3rd-order tensor norm:

– I wish these were all called
“Euclidean”

• Inner-product between vectors:

• Inner-product between matrices:

• Inner-product between tensors:

Symmetry and Super-Symmetry

• A matrix is square if #rows = #columns.

• A tensor is cubical if #rows = #columns = #tubes.

– Same size along each index.

• A matrix is symmetric if xij = xji for all ‘i’ and ‘j’.

• A tensor is symmetric in modes 1 and 2 if xijk = xjik for all ‘i’, ‘j’, and ‘k’.

– Slices X(:,:,k) = X(:,:,k)T for all ‘k’.

– Can be symmetric in any two are more modes.

• A tensor is super-symmetric if it’s symmetric in all modes:

– Permuting any indices does not change value.

Diagonal Tensors

• A matrix is diagonal if xij ≠ 0 only when i=j.

– “All non-zeroes are along diagonal”.

• A tensor is diagonal if xijk ≠ 0 only when i=j=k.

– “All non-zeros are along super-diagional”.

Matricization

• Vectorization:

– Convert matrix to vector by stacking columns.

– Can also vectorize tensors by putting all elements in vector.

• Matricization (also known as “flattening” or “unfolding”):

– Convert tensor to matrix by arranging mode-n fibers to be columns.

– Isn’t a standard “ordering” to do this.

(we’re now going to get back to the tensor
factorizations used in recommender systems)

Outer Product and Rank-1

• Outer product between two vectors gives (“rank-1”) matrix:

• Outer product between three vectors gives (“rank-1”) tensor:

• These “rank-1” tensors are the ingredients behind CP factorizations.

CP Factorization

• SVD factorization approximates matrices as sum of rank-1 matrices.
• CP factorization approximates tensor as sum of rank-1 tensors:

• Mathematically, we are using the approximation:

• Has been re-invented under several names:
– CANDECOMP (C), PARAFAC (P), polyadic form, topographic components.

Tensor Rank

• Matrix rank:

– Minimum number of rank-1 matrices needed to decompose matrix.

• It can be at most min{nRows,nCols}.

• Tensor rank:

– Minimum number of rank-1 tensors needed to decompose tensor.

• It can be at most min{nRows*nCols, nRows*nTubes, nCols*nTubes}.

• Notable differences with matrices: hard to determine tensor rank!

– There are 9 x 9 x 9 tensors whose rank is unknown.

– Even ranks of random tensors are weird (many basic results unknown).

– Practice: upper-bound by trying to fit CR factorization with different ranks.

CP Uniqueness + Low-Rank Approximation

• SVD of matrix is non-unique.

– In addition to permutation/scaling, can always rotate factors.
• If X = ZW, then X = (ZRT)(RW) for any orthogonal matrix ‘R’ (since RTR = I).

• Many not-ridiculous assumptions exist under which CP is unique.

– Only one way to write tensor as sum of rank 1, up to permutation/scaling.

• Matrices: best rank-r approximation includes best rank-(r-1) approx.

– So you can find the rank-1 matrices sequentially.

• Tensors: not true!

– E.g., best rank-1 approximation may not be part of best rank-2 approximation.

Border Rank

• Even weirder:
– Some tensors can be approximated arbitrarily by a lower-rank tensor.

• Weights go to ∞ with opposite signs.
• Called a “degenerate” tensor.

• “Border” rank:
– Minimum number of rank-1 tensors

to arbitrarily approximate tensor.
– For matrices, rank == border rank.

• For any type of tensor (border rank) ≤ rank.

• Matrix multiplication:
– 2x2 case: 4x4x4 tensor w/ rank and border rank = 7 (Strassen).
– 3x3 case: 9x9x9 tensor w/ rank in [19-23] and border rank in [14,21].

CP Factorization: Computation

• Pick a rank ‘r’, initialize randomly (to avoid starting at saddle point):
– Alternating minimization:

• Fix two of the components (e.g., all ar and br) and solve for the third (all cr).
– Equivalent to a least squares problem.
– Repeat, cycling through the components.

– Stochastic gradient descent:
• Sample a random ‘i’ and ‘j’ and ‘k’, then update ai and bj and ck based on xijk.
• O(k*nRows + k*nCols + k*nTubes) storage and O(k)-time updates.

• Not guaranteed to find optimal rank-r approximation.
– Some global methods exist for special cases of rank-3 tensors.

• E.g., can formulate as generalized eigenvalue problem if assume first two factors are full-rank.

• For ML problems, probably also want to add regularization.

Preview: Tucker Factorization

• CP factorization is one generalization of SVD to tensors:

• Tucker factorization is another generalization of SVD to tensors:

• Other generalizations also exist!

