Tensor Applications

Betty Shea

UBC MLRG 2020 Winter Term 1

30-Sept-2020

Today

(1) Introduction and Motivation

- What is a tensor?
- Examples
(2) MLRG
- Overview
- What this term's MLRG is and is not about
(3) Papers and Signup
- List of papers
- Acknowledgements and references

What is a tensor?

- Multi-dimensional array
- Linear operator
- Wikipedia: "an algebraic object that describes a relationship between sets of algebraic objects related to a vector space"

Where are tensors used: broad areas

- Statistics: Joint probability tensors
- Physics: Einstein field equations
- Material science: stress tensors, strain tensors and elasticity

Where are tensors used: machine learning

- Natural language processing: Topic models, n-grams
- Image processing: A colour image is three matrices of pixels corresponding to red, green and blue.

Example 1: Recommender systems

Very big and sparse matrix Y

- Netflix: rows are content viewers, columns are movies
- Amazon: rows are shoppers, columns are items for sale

Collaborative filtering

"Regularized PCA on the available entries of Y "
$Y \approx Z W$ where Z represents user features and W movie features
Matrix factorization produces a latent factor model of types of users and movies.

Collaborative filtering

"Regularized PCA on the available entries of Y "
$Y \approx Z W$ where Z represents user features and W movie features
Matrix factorization produces a latent factor model of types of users and movies.
Issues with matrix factorization

- Solutions are not unique
- Feedback from user may not just be a single number

Collaborative filtering

"Regularized PCA on the available entries of Y "
$Y \approx Z W$ where Z represents user features and W movie features
Matrix factorization produces a latent factor model of types of users and movies.
Issues with matrix factorization

- Solutions are not unique
- Feedback from user may not just be a single number

Why we may want to go to tensor factorization

- Tensor factorization often give unique solutions
- Can learn all dimensions of the feedback simultaneously

Collaborative filtering

"Regularized PCA on the available entries of Y "
$Y \approx Z W$ where Z represents user features and W movie features
Matrix factorization produces a latent factor model of types of users and movies.
Issues with matrix factorization

- Solutions are not unique
- Feedback from user may not just be a single number

Why we may want to go to tensor factorization

- Tensor factorization often give unique solutions
- Can learn all dimensions of the feedback simultaneously

Tensor factorization is NP-hard in general.

Example 2: The complexity of matrix multiplication

Consider multiplying two $n \times n$ matrices. Standard algorithm takes n^{3} multiplications.

Example 2: The complexity of matrix multiplication

Consider multiplying two $n \times n$ matrices. Standard algorithm takes n^{3} multiplications.
For example, there are 8 multiplications in the $n=2$ case

$$
C=A \times B=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

(1) $A_{11} \times B_{11}$
(2) $A_{12} \times B_{21}$
(3) $A_{21} \times B_{11}$
(4) $A_{22} \times B_{21}$
(5) $A_{11} \times B_{12}$
(6) $A_{12} \times B_{22}$
(7) $A_{21} \times B_{12}$
(8) $A_{22} \times B_{22}$

Example 2: The complexity of matrix multiplication

Consider multiplying two $n \times n$ matrices. Standard algorithm takes n^{3} multiplications.
For example, there are 8 multiplications in the $n=2$ case

$$
C=A \times B=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

(1) $A_{11} \times B_{11}$
(2) $A_{12} \times B_{21}$
(3) $A_{21} \times B_{11}$
(4) $A_{22} \times B_{21}$
(5) $A_{11} \times B_{12}$
(6) $A_{12} \times B_{22}$
(7) $A_{21} \times B_{12}$
(8) $A_{22} \times B_{22}$

From CPSC221, we know that it is possible to use 7 instead of 8 multiplications.

Strassen's algorithm

$$
C=A \times B=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Define 7 new quantities
(1) $M_{1}=\left(A_{11}+A_{22}\right) \times\left(B_{11}+B_{22}\right)$
(2) $M_{2}=\left(A_{21}+A_{22}\right) \times B_{11}$
(3) $M_{3}=A_{11} \times\left(B_{12}-B_{22}\right)$
(4) $M_{4}=A_{22} \times\left(B_{21}-B_{11}\right)$
(5) $M_{5}=\left(A_{11}+A_{12}\right) \times B_{22}$
(6) $M_{6}=\left(A_{21}-A_{11}\right) \times\left(B_{11}+B_{12}\right)$
(7) $M_{7}=\left(A_{12}-A_{22}\right) \times\left(B_{21}+B_{22}\right)$

And then these additions give you the answer
(1) $C_{11}=M_{1}+M_{4}-M_{5}+M_{7}$
(2) $C_{12}=M_{3}+M_{5}$
(3) $C_{21}=M_{2}+M_{4}$
(4) $C_{22}=M_{1}-M_{2}+M_{3}+M_{6}$

Strassen's algorithm

$$
C=A \times B=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Define 7 new quantities
(1) $M_{1}=\left(A_{11}+A_{22}\right) \times\left(B_{11}+B_{22}\right)$
(2) $M_{2}=\left(A_{21}+A_{22}\right) \times B_{11}$
(3) $M_{3}=A_{11} \times\left(B_{12}-B_{22}\right)$
(4) $M_{4}=A_{22} \times\left(B_{21}-B_{11}\right)$
(5) $M_{5}=\left(A_{11}+A_{12}\right) \times B_{22}$
(6) $M_{6}=\left(A_{21}-A_{11}\right) \times\left(B_{11}+B_{12}\right)$
(7) $M_{7}=\left(A_{12}-A_{22}\right) \times\left(B_{21}+B_{22}\right)$

And then these additions give you the answer
(1) $C_{11}=M_{1}+M_{4}-M_{5}+M_{7}$
(2) $C_{12}=M_{3}+M_{5}$
(3) $C_{21}=M_{2}+M_{4}$
(4) $C_{22}=M_{1}-M_{2}+M_{3}+M_{6}$

Also works if the entries are matrices instead of scalars.

Strassen's algorithm

$$
C=A \times B=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Define 7 new quantities
(1) $M_{1}=\left(A_{11}+A_{22}\right) \times\left(B_{11}+B_{22}\right)$
(2) $M_{2}=\left(A_{21}+A_{22}\right) \times B_{11}$
(3) $M_{3}=A_{11} \times\left(B_{12}-B_{22}\right)$
(4) $M_{4}=A_{22} \times\left(B_{21}-B_{11}\right)$
(5) $M_{5}=\left(A_{11}+A_{12}\right) \times B_{22}$
(6) $M_{6}=\left(A_{21}-A_{11}\right) \times\left(B_{11}+B_{12}\right)$
(7) $M_{7}=\left(A_{12}-A_{22}\right) \times\left(B_{21}+B_{22}\right)$

And then these additions give you the answer
(1) $C_{11}=M_{1}+M_{4}-M_{5}+M_{7}$
(2) $C_{12}=M_{3}+M_{5}$
(3) $C_{21}=M_{2}+M_{4}$
(4) $C_{22}=M_{1}-M_{2}+M_{3}+M_{6}$

Also works if the entries are matrices instead of scalars.
For the general $n \times n$ case, takes $n^{\log _{2} 7}$ multiplications.

Matrix multiplication exponent ω

The natural question is then can we do better than $n^{\log _{2} 7} \approx n^{2.81}$?

Matrix multiplication exponent ω

The natural question is then can we do better than $n^{\log _{2} 7} \approx n^{2.81}$?
The more interesting question is how much better can we do?

Matrix multiplication exponent ω

The natural question is then can we do better than $n^{\log _{2} 7} \approx n^{2.81}$?
The more interesting question is how much better can we do?
The exponent ω of matrix multiplication is the lowest real-valued h where two $n \times n$ matrices may be multiplied using $O\left(n^{h}\right)$ arithmetic operations.

Matrix multiplication exponent ω

The natural question is then can we do better than $n^{\log _{2} 7} \approx n^{2.81}$?
The more interesting question is how much better can we do?
The exponent ω of matrix multiplication is the lowest real-valued h where two $n \times n$ matrices may be multiplied using $O\left(n^{h}\right)$ arithmetic operations.

For Strassen's algorithm, $\omega=\log _{2} 7$.
Since then... (chart from Wikipedia)

Matrix multiplication exponent ω

Understanding the complexity of matrix multiplication has to do with understanding ω.

Matrix multiplication exponent ω

Understanding the complexity of matrix multiplication has to do with understanding ω. And tensors provide a way to understand ω.

Matrix multiplication exponent ω

Understanding the complexity of matrix multiplication has to do with understanding ω.
And tensors provide a way to understand ω.
Like matrices, tensors could also be viewed as both

- structures containing data, i.e. a d-way array and
- linear operators, i.e. can multiply vectors, matrices and tensors

Tensor rank and ω

Vector spaces A, B, and C with $a \in A, b \in B$ and $c \in C$.

- define $A^{*}=\{f: A \rightarrow \mathbb{R} \mid f$ is linear $\}$

Tensor rank and ω

Vector spaces A, B, and C with $a \in A, b \in B$ and $c \in C$.

- define $A^{*}=\{f: A \rightarrow \mathbb{R} \mid f$ is linear $\}$
- define a linear map $\alpha \otimes b: A \rightarrow B$ by

$$
a \mapsto \alpha(a) b \text { where } \alpha \in A^{*}
$$

(This is equivalently a matrix, e.g., permutation matrices, reflection matrices, etc.)

Tensor rank and ω

Vector spaces A, B, and C with $a \in A, b \in B$ and $c \in C$.

- define $A^{*}=\{f: A \rightarrow \mathbb{R} \mid f$ is linear $\}$
- define a linear map $\alpha \otimes b: A \rightarrow B$ by

$$
a \mapsto \alpha(a) b \text { where } \alpha \in A^{*}
$$

(This is equivalently a matrix, e.g., permutation matrices, reflection matrices, etc.)

- define a bilinear map $\alpha \otimes \beta \otimes c: A \times B \rightarrow C$ by

$$
(a, b) \mapsto \alpha(a) \beta(b) c \text { where } \alpha \in A^{*} \text { and } \beta \in B^{*}
$$

This is equivalently a tensor, which can be decomposed into a sum of rank 1 tensors.

Tensor rank and ω

Vector spaces A, B, and C with $a \in A, b \in B$ and $c \in C$.

- define $A^{*}=\{f: A \rightarrow \mathbb{R} \mid f$ is linear $\}$
- define a linear map $\alpha \otimes b: A \rightarrow B$ by

$$
a \mapsto \alpha(a) b \text { where } \alpha \in A^{*}
$$

(This is equivalently a matrix, e.g., permutation matrices, reflection matrices, etc.)

- define a bilinear map $\alpha \otimes \beta \otimes c: A \times B \rightarrow C$ by

$$
(a, b) \mapsto \alpha(a) \beta(b) c \text { where } \alpha \in A^{*} \text { and } \beta \in B^{*}
$$

This is equivalently a tensor, which can be decomposed into a sum of rank 1 tensors.

- So, we can write a bilinear map $T: A \times B \rightarrow C$ as

$$
T(a, b)=\sum_{i=1}^{r} \alpha^{i}(a) \beta^{i}(b) c_{i} \text { for some } r \text { where } \alpha^{i} \in A^{*}, \beta^{i} \in B^{*}, c_{i} \in C
$$

Tensor rank and ω

The rank of a bilinear map $T: A \times B \rightarrow C$, denoted $R(T)$, is the minimal number r over all possible ways of writing T in the form

$$
T(a, b)=\sum_{i=1}^{r} \alpha^{i}(a) \beta^{i}(b) c_{i}
$$

If T has rank r, its complexity in terms of multiplications is r.

Tensor rank and ω

- Matrix multiplication of square matrices is a bilinear map of the form

$$
M_{n, n, n}: \mathbb{R}^{n^{2}} \times \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}^{n^{2}}
$$

Tensor rank and ω

- Matrix multiplication of square matrices is a bilinear map of the form

$$
M_{n, n, n}: \mathbb{R}^{n^{2}} \times \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}^{n^{2}}
$$

- The smallest number of multiplications for multiplying two $n \times n$ matrices is given by $R\left(M_{n, n, n}\right)$. This is the minimum r over all possible ways to write $M_{n, n, n}$ as a sum of rank 1 tensors.

Tensor rank and ω

- Matrix multiplication of square matrices is a bilinear map of the form

$$
M_{n, n, n}: \mathbb{R}^{n^{2}} \times \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}^{n^{2}}
$$

- The smallest number of multiplications for multiplying two $n \times n$ matrices is given by $R\left(M_{n, n, n}\right)$. This is the minimum r over all possible ways to write $M_{n, n, n}$ as a sum of rank 1 tensors.
- The lowest achievable matrix multiplication exponent is in fact the rank of a bilinear map

$$
\omega=\liminf _{n \rightarrow \infty} \log _{n}\left(R\left(M_{n, n, n}\right)\right)
$$

Tensor rank and ω

- Matrix multiplication of square matrices is a bilinear map of the form

$$
M_{n, n, n}: \mathbb{R}^{n^{2}} \times \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}^{n^{2}}
$$

- The smallest number of multiplications for multiplying two $n \times n$ matrices is given by $R\left(M_{n, n, n}\right)$. This is the minimum r over all possible ways to write $M_{n, n, n}$ as a sum of rank 1 tensors.
- The lowest achievable matrix multiplication exponent is in fact the rank of a bilinear map

$$
\omega=\liminf _{n \rightarrow \infty} \log _{n}\left(R\left(M_{n, n, n}\right)\right)
$$

- And the complexity of matrix multiplication is determined by our ability to find explicit equations for the set of tensors in $\mathbb{R}^{n^{2}} \otimes \mathbb{R}^{n^{2}} \otimes \mathbb{R}^{n^{2}}$ of rank at most r.

MLRG

Main themes, structure and schedule

- Anticipated to run between 30-Sep to 9-Dec

Main themes, structure and schedule

- Anticipated to run between 30-Sep to 9-Dec
- 10 papers
- Two papers on tensor basics, definitions, operations, theory, complexity
- A paper on link prediction and knowledge graphs that uses tensor factorization
- Two papers on latent models
- Three papers on higher order optimization methods
- A paper each on on tensors in deep neural networks and in visual data

Things that are relevant to this MLRG

- Read papers that use tensors in one form or another.
- Understanding when it makes sense to increase the complexity of our models and methods.
- Matrices \rightarrow tensors
- First-order methods \rightarrow higher-order methods
- Understanding the hidden assumptions in our simpler methods that no longer apply.
- Generalization.

Things that are not the main focus

- A thorough and rigorous understanding of tensors and tensor decompositions.

Elina Robeva's MATH 605D would be much better for this.

Papers and Signup

Papers 1 and 2: Background

1. Kolda and Bader (2009) Tensor decompositions and applications

- http://www.kolda.net/publication/TensorReview.pdf
- Sections 1 to 3.3 (and more if you feel like it)

Additional resources:

- Ankur Moitra. (2014) Algorithmic Aspects of Machine Learning, sections 3.1-3.2 http: //people. csail. mit. edu/moitra/docs/bookex.pdf
- Previous MLRG talks: https://www. cs.ubc.ca/labs/lci/mlrg/slides/Spectral_Methods.pdf, https://www. cs.ubc.ca/labs/lci/mlrg/slides/MLRG_Tensor_Talk.pdf
- Survey paper: https://ieeexplore. ieee. org/stamp/stamp. jsp? tp= Garnumber=7891546

2. Hillar and Lim (2013) Most tensor problems are NP-hard

- https://arxiv.org/abs/0911.1393

Papers 3: Knowledge graphs

3. Kazemi and Poole (2018) SimpIE embedding for link prediction in knowledge graphs

- https://papers.nips.cc/paper/

7682-simple-embedding-for-link-prediction-in-knowledge-graphs.pdf

Papers 4 and 5: Latent models

4. Hsu and Kakade. (2013) Learning mixtures of spherical Gaussians: moment methods and spectral decompositions

- https://arxiv.org/pdf/1206.5766.pdf

Additional resources:

- Anandkumar et al. (2014) Tensor decompositions for learning latent variable models https: // arxiv. org/pdf/1210. 7559. pdf
- MLSS slides : http://newport. eecs. uci. edu/anandkumar/pubs/MLSS-part1.pdf
- 540 slides: https://www. cs.ubc.ca/~schmidtm/Courses/540-W20/L7. pdf

5. Anandkumar et al. (2012) A spectral algorithm for latent Dirichlet allocation

- https://papers.nips.cc/paper/ 4637-a-spectral-algorithm-for-latent-dirichlet-allocation
Additional resources:
- Anandkumar et al. (2014) Tensor decompositions for learning latent variable models https: // arxiv. org/pdf/1210. 7559. pdf
- MLSS slides: http://newport. eecs. uci. edu/anandkumar/pubs/MLSS-part2. pdf
- 540 slides: https://www.cs.ubc.ca/~schmidtm/Courses/540-W20/L29.pdf
- Ankur Moitra. (2014) Algorithmic Aspects of Machine Learning, section 3.5 http: //people. csail. mit. edu/moitra/docs/bookex. pdf

Papers 6 to 8: Higher order methods

6. Baes, Michel. (2009) Estimate sequence methods: extensions and approximations

- http://www.optimization-online.org/DB_FILE/2009/08/2372.pdf
- "the modern view on what can be gained by higher-order methods"

7. Nesterov, Yurii. (2020) Inexact accelerated high-order proximal-point methods

- https://dial.uclouvain.be/pr/boreal/object/boreal:227219
- Bi-level Unconstrained Minimization framework, pth-order proximal point operation

8. Cartis et al. (2018) Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints

- https://arxiv.org/abs/1811.01220
- ARqp framework, e-approximate q order necessary minimizers for p order problems. Upper bounding the complexity of the tensor step in the previous paper.

Papers 9 and 10: Neural networks and visual data

9. Novikov et al. (2015) Tensorizing Neural Networks

- https://papers.nips.cc/paper/5787-tensorizing-neural-networks
- Tensors in deep neural networks

10. Liu et al. (2012) Tensor completion for estimating missing values in visual data

- https://www.cs.rochester.edu/u/jliu/paper/Ji-ICCV09.pdf

Signup sheet

Winter term $\mathbf{1 2 0 2 0}$ - Tensor basics and applications	Every Wednesday at 1:00 PM Online	
Date	Presenter	Topic
Sep 30	Betty	Motivation
Oct 7		Tensor basics: Notation, operations, etc. (Kolda and Bader 2009)
Oct 14		Tensor basics: Complexity (arXiv ID: 0911.1393)
Oct 21	Bahare	Tensor factorization: Knowledge graphs (Kazemi and Poole 2018)
Oct 28		Latent models: Gaussian mixture models (arXiv ID: 1206.5766)
Nov 4		Latent models: Topic models (arXiv ID: 1204.6703)
Nov 11		Higher order methods: Estimate sequence methods (Baes 2009)
Nov 18		Higher order methods: Bi-level unconstrained minimization (Nesterov 2020)
Nov 25		Other appl: Tensors in deep neural networks (arXiv ID: 1509.06569)
Dec 2		Other appl: Tensor completion in visual data (Liu et al. 2013)
Dec 9		

Acknowledgements

- I used the first few lectures from Elina Robeva's MATH 605D Fall 2020 Tensor decompositions and their applications
https://sites.google.com/view/ubc-math-605d/class-overview
- The collaborative filtering example is taken from Mark Schmidt's CPSC 340 slides https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/L30.pdf
- The Strassen's algorithm example is taken from Landsberg's book Tensors: Geometry and Applications

References

- Landsberg, J.M. Tensors: Geometry and Applications The introduction chapter is available here.
- Robeva, Elina. MATH605D Fall 2020 Tensor decomposition and their applications https://sites.google.com/view/ubc-math-605d/class-overview
- Strang, G. Linear Algebra and Learning From Data

Thank you

Bonus

"The workhorse of scientific computation is matrix multiplication."

- J.M. Landsberg, Tensors: Geometry and Applications

It's been shown that $R\left(M_{2,2,2}\right)$ is exactly 7 but not much else is known about $R\left(M_{n, n, n}\right)$ except that

- $R\left(M_{3,3,3}\right)$ is somewhere between 19 and 23 .
- Best asymptotic lower bound: $\frac{5}{2} n^{2}-3 n \leq R\left(M_{n, n, n}\right)$

