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What is a tensor?

Multi-dimensional array

Linear operator

Wikipedia: “an algebraic object that describes a
relationship between sets of algebraic objects
related to a vector space”
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Where are tensors used: broad areas

Statistics: Joint probability tensors

Physics: Einstein field equations

Material science: stress tensors, strain tensors and elasticity
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Where are tensors used: machine learning

Natural language processing: Topic
models, n-grams

Image processing: A colour image is
three matrices of pixels corresponding
to red, green and blue.
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Example 1: Recommender systems

Very big and sparse matrix Y

Netflix: rows are content viewers, columns are movies

Amazon: rows are shoppers, columns are items for sale
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Collaborative filtering

“Regularized PCA on the available entries of Y ”

Y ≈ ZW where Z represents user features and W movie features

Matrix factorization produces a latent factor model of types of users and movies.

Issues with matrix factorization

Solutions are not unique

Feedback from user may not just be a single number

Why we may want to go to tensor factorization

Tensor factorization often give unique solutions

Can learn all dimensions of the feedback simultaneously

Tensor factorization is NP-hard in general.
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Example 2: The complexity of matrix multiplication

Consider multiplying two n × n matrices. Standard algorithm takes n3 multiplications.

For example, there are 8 multiplications in the n = 2 case

C = A× B =
[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
=

[
C11 C12
C21 C22

]

1 A11 × B11

3 A21 × B11

5 A11 × B12

7 A21 × B12

2 A12 × B21

4 A22 × B21

6 A12 × B22

8 A22 × B22

From CPSC221, we know that it is possible to use 7 instead of 8 multiplications.
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Strassen’s algorithm

C = A× B =
[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
=

[
C11 C12
C21 C22

]
Define 7 new quantities

1 M1 = (A11 + A22)× (B11 + B22)

3 M3 = A11 × (B12 − B22)

5 M5 = (A11 + A12)× B22

7 M7 = (A12 − A22)× (B21 + B22)

2 M2 = (A21 + A22)× B11

4 M4 = A22 × (B21 − B11)

6 M6 = (A21 − A11)× (B11 + B12)

And then these additions give you the answer

1 C11 = M1 + M4 −M5 + M7

3 C21 = M2 + M4

2 C12 = M3 + M5

4 C22 = M1 −M2 + M3 + M6

Also works if the entries are matrices instead of scalars.

For the general n × n case, takes nlog2 7 multiplications.
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Matrix multiplication exponent ω

The natural question is then can we do better than nlog2 7 ≈ n2.81?

The more interesting question is how much better can we do?

The exponent ω of matrix multiplication is the lowest real-valued h where two n × n matrices
may be multiplied using O(nh) arithmetic operations.

For Strassen’s algorithm, ω = log2 7.

Since then... (chart from Wikipedia)
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Matrix multiplication exponent ω

Understanding the complexity of matrix multiplication has to do with understanding ω.

And tensors provide a way to understand ω.

Like matrices, tensors could also be viewed as both

structures containing data, i.e. a d-way array and

linear operators, i.e. can multiply vectors, matrices and tensors
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Tensor rank and ω

Vector spaces A,B, and C with a ∈ A, b ∈ B and c ∈ C .

define A∗ = {f : A→ R|f is linear}

define a linear map α⊗ b : A→ B by

a 7→ α(a)b where α ∈ A∗

(This is equivalently a matrix, e.g., permutation matrices, reflection matrices, etc.)

define a bilinear map α⊗ β ⊗ c : A× B → C by

(a, b) 7→ α(a)β(b)c where α ∈ A∗ and β ∈ B∗

This is equivalently a tensor, which can be decomposed into a sum of rank 1 tensors.

So, we can write a bilinear map T : A× B → C as

T (a, b) =
r∑

i=1

αi (a)βi (b)ci for some r where αi ∈ A∗, βi ∈ B∗, ci ∈ C
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Tensor rank and ω

The rank of a bilinear map T : A× B → C , denoted R(T ), is the minimal number r over all
possible ways of writing T in the form

T (a, b) =
r∑

i=1

αi (a)βi (b)ci

If T has rank r , its complexity in terms of multiplications is r .
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Tensor rank and ω

Matrix multiplication of square matrices is a bilinear map of the form

Mn,n,n : Rn2
× Rn2

→ Rn2

The smallest number of multiplications for multiplying two n × n matrices is given by
R(Mn,n,n). This is the minimum r over all possible ways to write Mn,n,n as a sum of rank
1 tensors.

The lowest achievable matrix multiplication exponent is in fact the rank of a bilinear map

ω = lim inf
n→∞

logn (R(Mn,n,n))

And the complexity of matrix multiplication is determined by our ability to find explicit

equations for the set of tensors in Rn2 ⊗ Rn2 ⊗ Rn2
of rank at most r .
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MLRG
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Main themes, structure and schedule

Anticipated to run between 30-Sep to 9-Dec

10 papers

I Two papers on tensor basics, definitions, operations, theory, complexity
I A paper on link prediction and knowledge graphs that uses tensor factorization
I Two papers on latent models
I Three papers on higher order optimization methods
I A paper each on on tensors in deep neural networks and in visual data
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Things that are relevant to this MLRG

Read papers that use tensors in one form or another.

Understanding when it makes sense to increase the complexity of our models and methods.

I Matrices → tensors
I First-order methods → higher-order methods

Understanding the hidden assumptions in our simpler methods that no longer apply.

Generalization.
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Things that are not the main focus

A thorough and rigorous understanding of tensors and tensor decompositions.

Elina Robeva’s MATH 605D would be much better for this.
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Papers and Signup
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Papers 1 and 2: Background

1. Kolda and Bader (2009) Tensor decompositions and applications

http://www.kolda.net/publication/TensorReview.pdf

Sections 1 to 3.3 (and more if you feel like it)

Additional resources:

Ankur Moitra. (2014) Algorithmic Aspects of Machine Learning, sections 3.1-3.2

http: // people. csail. mit. edu/ moitra/ docs/ bookex. pdf

Previous MLRG talks: https: // www. cs. ubc. ca/ labs/ lci/ mlrg/ slides/ Spectral_ Methods. pdf ,

https: // www. cs. ubc. ca/ labs/ lci/ mlrg/ slides/ MLRG_ Tensor_ Talk. pdf

Survey paper: https: // ieeexplore. ieee. org/ stamp/ stamp. jsp? tp= &arnumber= 7891546

2. Hillar and Lim (2013) Most tensor problems are NP-hard

https://arxiv.org/abs/0911.1393
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Papers 3: Knowledge graphs

3. Kazemi and Poole (2018) SimplE embedding for link prediction in knowledge graphs

https://papers.nips.cc/paper/
7682-simple-embedding-for-link-prediction-in-knowledge-graphs.pdf
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Papers 4 and 5: Latent models

4. Hsu and Kakade. (2013) Learning mixtures of spherical Gaussians: moment methods and
spectral decompositions

https://arxiv.org/pdf/1206.5766.pdf

Additional resources:

Anandkumar et al. (2014) Tensor decompositions for learning latent variable models

https: // arxiv. org/ pdf/ 1210. 7559. pdf

MLSS slides : http: // newport. eecs. uci. edu/ anandkumar/ pubs/ MLSS-part1. pdf

540 slides: https: // www. cs. ubc. ca/ ~ schmidtm/ Courses/ 540-W20/ L7. pdf

5. Anandkumar et al. (2012) A spectral algorithm for latent Dirichlet allocation

https://papers.nips.cc/paper/
4637-a-spectral-algorithm-for-latent-dirichlet-allocation

Additional resources:

Anandkumar et al. (2014) Tensor decompositions for learning latent variable models

https: // arxiv. org/ pdf/ 1210. 7559. pdf

MLSS slides: http: // newport. eecs. uci. edu/ anandkumar/ pubs/ MLSS-part2. pdf

540 slides: https: // www. cs. ubc. ca/ ~ schmidtm/ Courses/ 540-W20/ L29. pdf

Ankur Moitra. (2014) Algorithmic Aspects of Machine Learning, section 3.5

http: // people. csail. mit. edu/ moitra/ docs/ bookex. pdf
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Papers 6 to 8: Higher order methods

6. Baes, Michel. (2009) Estimate sequence methods: extensions and approximations

http://www.optimization-online.org/DB_FILE/2009/08/2372.pdf

“the modern view on what can be gained by higher-order methods”

7. Nesterov, Yurii. (2020) Inexact accelerated high-order proximal-point methods

https://dial.uclouvain.be/pr/boreal/object/boreal:227219

Bi-level Unconstrained Minimization framework, pth-order proximal point operation

8. Cartis et al. (2018) Sharp worst-case evaluation complexity bounds for arbitrary-order
nonconvex optimization with inexpensive constraints

https://arxiv.org/abs/1811.01220

ARqp framework, e-approximate q order necessary minimizers for p order problems. Upper
bounding the complexity of the tensor step in the previous paper.
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Papers 9 and 10: Neural networks and visual data

9. Novikov et al. (2015) Tensorizing Neural Networks

https://papers.nips.cc/paper/5787-tensorizing-neural-networks

Tensors in deep neural networks

10. Liu et al. (2012) Tensor completion for estimating missing values in visual data

https://www.cs.rochester.edu/u/jliu/paper/Ji-ICCV09.pdf
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Signup sheet
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Acknowledgements

I used the first few lectures from Elina Robeva’s MATH 605D Fall 2020 Tensor
decompositions and their applications

https://sites.google.com/view/ubc-math-605d/class-overview

The collaborative filtering example is taken from Mark Schmidt’s CPSC 340 slides
https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/L30.pdf

The Strassen’s algorithm example is taken from Landsberg’s book Tensors: Geometry and
Applications
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References

Landsberg, J.M. Tensors: Geometry and Applications

The introduction chapter is available here.

Robeva, Elina. MATH605D Fall 2020 Tensor decomposition and their applications

https://sites.google.com/view/ubc-math-605d/class-overview

Strang, G. Linear Algebra and Learning From Data
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Thank you
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Bonus

“The workhorse of scientific computation is matrix multiplication.”

– J.M. Landsberg, Tensors: Geometry and Applications

It’s been shown that R(M2,2,2) is exactly 7 but not much else is known about R(Mn,n,n) except
that

R(M3,3,3) is somewhere between 19 and 23.

Best asymptotic lower bound: 5
2
n2 − 3n ≤ R(Mn,n,n)
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