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What is a tensor?

@ Wikipedia: “an algebraic object that describes a
relationship between sets of algebraic objects
related to a vector space”

@ Multi-dimensional array

@ Linear operator
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Where are tensors used: broad areas

@ Statistics: Joint probability tensors

@ Physics: Einstein field equations

@ Material science: stress tensors, strain tensors and elasticity
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Where are tensors used: machine learning

N =1 :fTrisfisfgsertence] e

. — this is,
N =2 :[Thisfisa]sentence sgame: =2

N = 3 :[This[is a]sentence toams: 3% e @ Natural language processing: Topic
— models, n-grams

@ Image processing: A colour image is
three matrices of pixels corresponding
to red, green and blue.
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Example 1: Recommender systems

Very big and sparse matrix Y

@ Netflix: rows are content viewers, columns are movies
@ Amazon: rows are shoppers, columns are items for sale
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Collaborative filtering

“Regularized PCA on the available entries of Y
Y = ZW where Z represents user features and W movie features

Matrix factorization produces a latent factor model of types of users and movies.
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Collaborative filtering

“Regularized PCA on the available entries of Y
Y = ZW where Z represents user features and W movie features
Matrix factorization produces a latent factor model of types of users and movies.

Issues with matrix factorization
@ Solutions are not unique
@ Feedback from user may not just be a single number
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“Regularized PCA on the available entries of Y

Y = ZW where Z represents user features and W movie features
Matrix factorization produces a latent factor model of types of users and movies.

Issues with matrix factorization
@ Solutions are not unique
@ Feedback from user may not just be a single number

Why we may want to go to tensor factorization
@ Tensor factorization often give unique solutions
@ Can learn all dimensions of the feedback simultaneously
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Collaborative filtering

“Regularized PCA on the available entries of Y

Y = ZW where Z represents user features and W movie features

Matrix factorization produces a latent factor model of types of users and movies.
Issues with matrix factorization

@ Solutions are not unique
@ Feedback from user may not just be a single number

Why we may want to go to tensor factorization
@ Tensor factorization often give unique solutions
@ Can learn all dimensions of the feedback simultaneously

Tensor factorization is NP-hard in general.
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Example 2: The complexity of matrix multiplication

Consider multiplying two n x n matrices. Standard algorithm takes n® multiplications.
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Example 2: The complexity of matrix multiplication

Consider multiplying two n x n matrices. Standard algorithm takes n® multiplications.

For example, there are 8 multiplications in the n = 2 case

c-axe=[a Aillen 8i-[ar &

Q Aux B Q A x B
© Ax x B Q Ax x B
@ A x B Q A x By
Q@ Ax x B Q Ax x Bx
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Example 2: The complexity of matrix multiplication

Consider multiplying two n x n matrices. Standard algorithm takes n3 multiplications.
For example, there are 8 multiplications in the n = 2 case

c-axe=[a Aillen 8i-[ar &

Q Aux B Q A x B
© Ax x B Q Ax x B
@ A x B Q A x By
Q@ Ax x B Q Ax x Bx

From CPSC221, we know that it is possible to use 7 instead of 8 multiplications.
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Strassen's algorithm

_ _[An A
C_AXB_[AH A

Define 7 new quantities

Q My = (A1 + Ax) X (B + Bxn)
@ Ms = A1 x (Biz — B)
Q Ms = (A1 + A2) X B
@ M7 = (A2 — An) X (Boa1 + B22)

And then these additions give you the answer

Q Cii=M+ My— Ms+ M
Q Gi=M+ M,
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G

Q My = (Ax + Ax) x Biy
Q My =Axn x (Bx — Biu)
Q Ms = (A — A1) X (Bu1 + Br2)

Q Co=M;+Ms
Q Co=M — M+ Mz + Mg
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Strassen's algorithm

c-axe=[a azl[er &l-[a &

Define 7 new quantities

Q My = (A1 + Ax) X (B + Bxn) Q My = (Ax + Ax) x Biy
© M3 = An x (B2 — Bx) Q My =Axn x (Bx — Biu)
Q Ms = (A1 + A2) X B Q Ms = (A — A1) X (Bu1 + Br2)

@ M7 = (A2 — An) X (Boa1 + B22)
And then these additions give you the answer

Q Ci=M+ Ms— Ms+ My Q Co=Ms+ Ms
Q@ Ca=M+M, Q Coo=M — My + Mz + Ms

Also works if the entries are matrices instead of scalars.
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Strassen's algorithm

c-axe=[a azl[er &l-[a &

Define 7 new quantities

Q My = (A1 + Ax) X (B + Bxn) Q My = (Ax + Ax) x Biy
© M3 = An x (B2 — Bx) Q My =Axn x (Bx — Biu)
Q Ms = (A1 + A2) X B Q Ms = (A — A1) X (Bu1 + Br2)

@ M7 = (A2 — An) X (Boa1 + B22)
And then these additions give you the answer

Q Ci=M+ Ms— Ms+ My Q Co=Ms+ Ms
Q@ Ca=M+M, Q Coo=M — My + Mz + Ms

Also works if the entries are matrices instead of scalars.

For the general n X n case, takes nlog2 7 multiplications.
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Matrix multiplication exponent w

The natural question is then can we do better than n'°827 ~

n2-817
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Matrix multiplication exponent w

The natural question is then can we do better than n'°827 ~ 2817

The more interesting question is how much better can we do?
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Matrix multiplication exponent w
The natural question is then can we do better than n'°827 ~ 2817
The more interesting question is how much better can we do?

The exponent w of matrix multiplication is the lowest real-valued h where two n X n matrices
may be multiplied using O(nh) arithmetic operations.
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Matrix multiplication exponent w

The natural question is then can we do better than n'°827 ~ 2817

The more interesting question is how much better can we do?

The exponent w of matrix multiplication is the lowest real-valued h where two n X n matrices
may be multiplied using O(nh) arithmetic operations.

For Strassen’s algorithm, w = log, 7.

Since then... (chart from Wikipedia)

Bini ¢t al.

Schinhage | poo

Coppersmith, Winograc Strbmmen

Coppersmith, Winograd Stothers L Gall

Williams

L Yeur
1950 1960 1970 1930

1990 2000 010 015
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Matrix multiplication exponent w

Understanding the complexity of matrix multiplication has to do with understanding w.
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Matrix multiplication exponent w

Understanding the complexity of matrix multiplication has to do with understanding w.

And tensors provide a way to understand w.
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Matrix multiplication exponent w

Understanding the complexity of matrix multiplication has to do with understanding w.

And tensors provide a way to understand w.

Like matrices, tensors could also be viewed as both

@ structures containing data, i.e. a d-way array and

@ linear operators, i.e. can multiply vectors, matrices and tensors
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Tensor rank and w

Vector spaces A, B, and C with a€ A, be Band c e C.

@ define A* = {f : A — R|f is linear}
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Tensor rank and w
Vector spaces A, B, and C with a€ A, be Band c e C.

@ define A* = {f : A — R|f is linear}
@ define a linear map a ® b: A — B by

a— a(a)b where a € A*

(This is equivalently a matrix, e.g., permutation matrices, reflection matrices, etc.)

UBC MLRG 2020 Winter Term 1 Tensor Applications 30-Sept-2020 12/29



Tensor rank and w
Vector spaces A, B, and C with a€ A, be Band c e C.

@ define A* = {f : A — R|f is linear}
@ define a linear map a ® b: A — B by

a— a(a)b where a € A*

(This is equivalently a matrix, e.g., permutation matrices, reflection matrices, etc.)
@ define a bilinear map a @ R c: Ax B — C by

(a, b) — a(a)B(b)c where o € A* and 8 € B*

This is equivalently a tensor, which can be decomposed into a sum of rank 1 tensors.
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Tensor rank and w
Vector spaces A, B, and C with a€ A, be Band c e C.

@ define A* = {f : A — R|f is linear}
@ define a linear map a ® b: A — B by

a— a(a)b where a € A*

(This is equivalently a matrix, e.g., permutation matrices, reflection matrices, etc.)
@ define a bilinear map a @ R c: Ax B — C by

(a, b) — a(a)B(b)c where o € A* and 8 € B*

This is equivalently a tensor, which can be decomposed into a sum of rank 1 tensors.
@ So, we can write a bilinear map T: Ax B — C as

T(a, b) = Zai(a)ﬁi(b)c; for some r where o/ € A*, 8" € B*,¢; € C
i=1
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Tensor rank and w

The rank of a bilinear map T : A x B — C, denoted R(T), is the minimal number r over all
possible ways of writing T in the form

T(a, b) = Z a'(a)pi(b)c;

i=1

If T has rank r, its complexity in terms of multiplications is r.
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Tensor rank and w

@ Matrix multiplication of square matrices is a bilinear map of the form

2 2 2
Mpnn:R" X R" — R”
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Tensor rank and w

@ Matrix multiplication of square matrices is a bilinear map of the form
2 2 2
Mpnn: RT xR" — R"

@ The smallest number of multiplications for multiplying two n X n matrices is given by
R(Mn,n,n). This is the minimum r over all possible ways to write My, n » as a sum of rank
1 tensors.
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Tensor rank and w

@ Matrix multiplication of square matrices is a bilinear map of the form
2 2 2
Mpnn: RT xR" — R"

@ The smallest number of multiplications for multiplying two n X n matrices is given by
R(Mn,n,n). This is the minimum r over all possible ways to write My, n » as a sum of rank
1 tensors.

@ The lowest achievable matrix multiplication exponent is in fact the rank of a bilinear map

w= |i1"j>i£)f log, (R(Mn,n,n))
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Tensor rank and w

@ Matrix multiplication of square matrices is a bilinear map of the form

2 2 2
Mpnn: RT xR" — R"

@ The smallest number of multiplications for multiplying two n X n matrices is given by
R(Mn,n,n). This is the minimum r over all possible ways to write My, n » as a sum of rank
1 tensors.

@ The lowest achievable matrix multiplication exponent is in fact the rank of a bilinear map

w= |L’1L’lf log, (R(Mn,n,n))

@ And the complexity of matrix multiplication is determined by our ability to find explicit
. . 2 2 2
equations for the set of tensors in R” @ R” ® R™ of rank at most r.
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MLRG
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Main themes, structure and schedule

@ Anticipated to run between 30-Sep to 9-Dec
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Main themes, structure and schedule

@ Anticipated to run between 30-Sep to 9-Dec

@ 10 papers
> Two papers on tensor basics, definitions, operations, theory, complexity
A paper on link prediction and knowledge graphs that uses tensor factorization

Three papers on higher order optimization methods

| 3

» Two papers on latent models

>

> A paper each on on tensors in deep neural networks and in visual data
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Things that are relevant to this MLRG

@ Read papers that use tensors in one form or another.

@ Understanding when it makes sense to increase the complexity of our models and methods.

> Matrices — tensors
> First-order methods — higher-order methods

Understanding the hidden assumptions in our simpler methods that no longer apply.

Generalization.
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Things that are not the main focus

@ A thorough and rigorous understanding of tensors and tensor decompositions.

Elina Robeva’s MATH 605D would be much better for this.
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Papers and Signup
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Papers 1 and 2: Background

1. Kolda and Bader (2009) Tensor decompositions and applications
@ http://www.kolda.net/publication/TensorReview.pdf
@ Sections 1 to 3.3 (and more if you feel like it)

Additional resources:
@ Ankur Moitra. (2014) Algorithmic Aspects of Machine Learning, sections 3.1-3.2

http://people. csail. mit. edu/moitra/docs/bookex. pdf

@ Previous MLRG talks: https: //www. cs. ubc. ca/labs/ lci/mirg/ slides/ Spectral_Methods. pdf,
https: //www. cs. ubc. ca/ labs/ lci/mirg/ slides/MLRG_ Tensor_ Talk. pdf

o Survey paper: htips: //ieeezplore. ieee. org/ stamp/ stamp. jsp? tp=Earnumber= 7891546

2. Hillar and Lim (2013) Most tensor problems are NP-hard
@ https://arxiv.org/abs/0911.1393
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https://www.cs.ubc.ca/labs/lci/mlrg/slides/MLRG_Tensor_Talk.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7891546
https://arxiv.org/abs/0911.1393

Papers 3: Knowledge graphs

3. Kazemi and Poole (2018) SimplE embedding for link prediction in knowledge graphs

@ https://papers.nips.cc/paper/
7682-simple-embedding-for-link-prediction-in-knowledge-graphs.pdf
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Papers 4 and 5: Latent models

4. Hsu and Kakade. (2013) Learning mixtures of spherical Gaussians: moment methods and
spectral decompositions

@ https://arxiv.org/pdf/1206.5766.pdf

Additional resources:

@ Anandkumar et al. (2014) Tensor decompositions for learning latent variable models
https: // arziv. org/pdf/ 1210. 7559. pdf

@ MLSS slides : http: //newport. eecs. uci. edu/ anandkumar/ pubs/MLSS-partl. pdf
@ 540 slides: https: //www. cs. ubc. ca/ ~schmidtm/ Courses/540-W20/L7. pdf

5. Anandkumar et al. (2012) A spectral algorithm for latent Dirichlet allocation

@ https://papers.nips.cc/paper/
4637-a-spectral-algorithm-for-latent-dirichlet-allocation

Additional resources:

@ Anandkumar et al. (2014) Tensor decompositions for learning latent variable models
https: // arziv. org/pdf/ 1210. 7559. pdf

@ MLSS slides: http: //newport. eecs. uci. edu/ anandkumar/ pubs/MLSS-part2. pdf

540 slides: https: //www. cs. ubc. ca/ ~schmidtm/ Courses/540-W20/L29. pdf

@ Ankur Moitra. (2014) Algorithmic Aspects of Machine Learning, section 3.5
http: //people. csail. mit. edu/moitra/docs/bookex. pdf
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Papers 6 to 8: Higher order methods

6. Baes, Michel. (2009) Estimate sequence methods: extensions and approximations
@ http://www.optimization-online.org/DB_FILE/2009/08/2372.pdf
@ “the modern view on what can be gained by higher-order methods”

7. Nesterov, Yurii. (2020) Inexact accelerated high-order proximal-point methods
@ https://dial.uclouvain.be/pr/boreal/object/boreal:227219
@ Bi-level Unconstrained Minimization framework, pth-order proximal point operation

8. Cartis et al. (2018) Sharp worst-case evaluation complexity bounds for arbitrary-order
nonconvex optimization with inexpensive constraints

@ https://arxiv.org/abs/1811.01220

@ ARgp framework, e-approximate q order necessary minimizers for p order problems. Upper
bounding the complexity of the tensor step in the previous paper.
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Papers 9 and 10: Neural networks and visual data

9. Novikov et al. (2015) Tensorizing Neural Networks
@ https://papers.nips.cc/paper/5787-tensorizing-neural-networks
@ Tensors in deep neural networks

10. Liu et al. (2012) Tensor completion for estimating missing values in visual data
@ https://wuw.cs.rochester.edu/u/jliu/paper/Ji-ICCV09.pdf
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Signup sheet

Oct 7

Oct 14

Oct 21

Oct 28

Nov 4

Nov 11

Nov 18

Nov 25

Dec 2

Dec 9

term 1 2020 - Tensor basics and applications Every Wednesday at

Betty

Bahare

PM Online

Motivation

Tensor basics: Notation, operations, etc. (Kolda and Bader 2009)

Tensor basics: Complexity (arXiv ID: 0911.1393)

Tensor factorization: Knowledge graphs (Kazemi and Poole 2018)

Latent models: Gaussian mixture models (arXiv ID: 1206.5766)

Latent models: Topic models (arXiv ID: 1204.6703)

Higher order methods: Estimate sequence methods (Baes 2009)

Higher order methods: Bi-level unconstrained minimization (Nesterov 2020)
Higher order methods: ARqp framework (arXiv ID: 1811.01220)

Other appl: Tensors in deep neural networks (arXiv ID: 1509.06569)

Other appl: Tensor completion in visual data (Liu et al. 2013)
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Acknowledgements

@ | used the first few lectures from Elina Robeva’s MATH 605D Fall 2020 Tensor
decompositions and their applications
https://sites.google.com/view/ubc-math-605d/class-overview

@ The collaborative filtering example is taken from Mark Schmidt's CPSC 340 slides
https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/L30.pdf

@ The Strassen's algorithm example is taken from Landsberg's book Tensors: Geometry and
Applications
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References

@ Landsberg, J.M. Tensors: Geometry and Applications
The introduction chapter is available here.

@ Robeva, Elina. MATH605D Fall 2020 Tensor decomposition and their applications
https://sites.google.com/view/ubc-math-605d/class-overview

@ Strang, G. Linear Algebra and Learning From Data
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Thank you
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Bonus

“The workhorse of scientific computation is matrix multiplication.”

— J.M. Landsberg, Tensors: Geometry and Applications

It's been shown that R(M> > 2) is exactly 7 but not much else is known about R(M;,n,n) except
that

@ R(Ms3y3,3) is somewhere between 19 and 23.
@ Best asymptotic lower bound: gn2 —3n < R(Mn,n,n)
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