Combining Optimal Control and Learning for Visual Navigation in Novel Environments

Bansal, Tolani et al.

Dylan Green August 26, 2020

Introduction

MLRG Summer 2020: Optimal Control

• So far...

- Fundamentals Engineering Perpsective (Cathy)
- Fundamentals Optimization Perspective (Ben)
- Iterative LQR and Guided Policy Search (Betty)
- Sample Complexity of LQR (Joey)
- Model Predictive Control and Safe RL (Fred)

MLRG Summer 2020: Optimal Control

• So far...

- Fundamentals Engineering Perpsective (Cathy)
- Fundamentals Optimization Perspective (Ben)
- Iterative LQR and Guided Policy Search (Betty)
- Sample Complexity of LQR (Joey)
- Model Predictive Control and Safe RL (Fred)
- Today...
 - Robots 🕾

• Autonomous, vision-based navigation in cluttered indoor environments

- Autonomous, vision-based navigation in cluttered indoor environments
- Factorized approach: learning is used to make high level navigational decisions, optimal control used to produce smooth trajectories

Approach

- Notation and Terminology:
 - State: $z_t = (x_t, y_t, \phi_t)$

- Notation and Terminology:
 - State: $z_t = (x_t, y_t, \phi_t)$
 - Position: $p_t = (x_t, y_t)$

- Notation and Terminology:
 - State: $z_t = (x_t, y_t, \phi_t)$
 - Position: $p_t = (x_t, y_t)$
 - Goal position: $p^* = (x^*, y^*)$

- Notation and Terminology:
 - State: $z_t = (x_t, y_t, \phi_t)$
 - Position: $p_t = (x_t, y_t)$
 - Goal position: $p^* = (x^*, y^*)$
 - Control input: $u_t = (v_t, w_t)$

- Notation and Terminology:
 - State: $z_t = (x_t, y_t, \phi_t)$
 - Position: $p_t = (x_t, y_t)$
 - Goal position: $p^* = (x^*, y^*)$
 - Control input: $u_t = (v_t, w_t)$
- Assumed dynamics:

- Notation and Terminology:
 - State: $z_t = (x_t, y_t, \phi_t)$
 - Position: $p_t = (x_t, y_t)$
 - Goal position: $p^* = (x^*, y^*)$
 - Control input: $u_t = (v_t, w_t)$
- Assumed dynamics:
 - $\dot{x} = v \cos \phi$, $\dot{y} = v \sin \phi$, $\dot{\phi} = \omega$

- Notation and Terminology:
 - State: $z_t = (x_t, y_t, \phi_t)$
 - Position: $p_t = (x_t, y_t)$
 - Goal position: $p^* = (x^*, y^*)$
 - Control input: $u_t = (v_t, w_t)$
- Assumed dynamics:
 - $\dot{x} = v \cos \phi$, $\dot{y} = v \sin \phi$, $\dot{\phi} = \omega$
 - $v \in [0, \bar{v}], \quad \omega \in [-\bar{\omega}, \bar{\omega}]$

Perception Module

A CNN which takes as input

- A 224 × 224 pixel RGB image
- The target position p_t^*
- The robots current linear and angular speed *u*_t

and outputs a waypoint $\hat{w}_t := (\hat{x}_t, \hat{y}_t, \hat{\phi}_t) = \psi(I_t, u_t, p_t^*)$

Planning and Control Module

• Given a waypoint \hat{w}_t and the current linear and angular speed u_t , the planning module designs a smooth trajectory (in terms of both position and speed) from the current position to the waypoint.

Planning and Control Module

- Given a waypoint ŵ_t and the current linear and angular speed u_t, the planning module designs a smooth trajectory (in terms of both position and speed) from the current position to the waypoint.
- A spline-based planner provides desired state and control trajectories

$$\{z^*, u^*\}_{t:t+H} = FitSpline(\hat{w}_t, u_t).$$

Planning and Control Module

- Given a waypoint ŵ_t and the current linear and angular speed u_t, the planning module designs a smooth trajectory (in terms of both position and speed) from the current position to the waypoint.
- A spline-based planner provides desired state and control trajectories

$$\{z^*, u^*\}_{t:t+H} = FitSpline(\hat{w}_t, u_t).$$

An LQR-based feedback controller

$$\{k, K\}_{t:t+H} = LQR(z^*_{t:t+H}, u^*_{t:t+H})$$

tracks the generated trajectory.

• A Model Predictive Control (MPC) scheme is used to generate expert supervision for training the perception module.

- A Model Predictive Control (MPC) scheme is used to generate expert supervision for training the perception module.
- Output is a sequence of dynamically feasible waypoints and corresponding spline trajectories.

- A Model Predictive Control (MPC) scheme is used to generate expert supervision for training the perception module.
- Output is a sequence of dynamically feasible waypoints and corresponding spline trajectories.
- Optimal trajectories can be found in the training phase as this process is done in simulation with perfect knowledge of the environment.

Cost Function

Cost function for trajectory is

$$J(\mathbf{z},\mathbf{u}) = \sum_{i=0}^{T} J_i(z_i,u_i)$$

where

$$J_i(z_i, u_i) := \left(\max\left\{ 0, \lambda_1 - d^{obs}(x_i, y_i) \right\} \right)^3 + \lambda_2 \left(d^{goal}(x_i, y_i) \right)^2$$

and

- $d^{obs}(x_i, y_i)$ is the distance to the nearest obstacle at time *i*
- d^{goal}(x_i, y_i)) is the minimum collision-free distance to the goal position
- λ_1 is the minimum allowable distance to an obstacle

Given the cost function in the last slide, the MPC problem is

 $\min_{\mathbf{z},\mathbf{u}} J(\mathbf{z},\mathbf{u})$

subject to constraints

 $\begin{aligned} x_{i+1} &= x_i + \Delta T v_i \cos \phi_i, \quad y_{i+1} &= y_i + \Delta T v_i \sin \phi_i, \quad \phi_{i+1} &= \phi_i + \Delta T \omega_i \\ v_i &\in [0, \bar{v}], \quad \omega_i \in [-\bar{\omega}, \bar{\omega}] \\ z_0 &= (0, 0, 0), \quad u_0 = (0, 0) \end{aligned}$

MPC Problem

Starting from i = 0, we solve the optimization problem on the last slide in a receding horizon fashion. That is, for a timestep i = t we solve

$$\min_{\hat{w}_t}\sum_{i=t}^{t+H}J_i(z_i,u_i)$$

subject to

$$\{z, u\}_{t:t+H} = \mathsf{FitSpline}(\hat{w}_t, u_t),$$
$$z_t, u_t - \text{ Given}$$

where

•
$$\hat{w}_t = (\hat{x}_t, \hat{y}_t, \hat{\phi}_t)$$
 is the waypoint

• $\{z, u\}_{t:t+H}$ is the corresponding trajectory

• Sample waypoints within ground-projected field-of-view.

- Sample waypoints within ground-projected field-of-view.
- Apply optimal control sequence u* for time horizon [t, t + H] to obtain state z^*_{t+H}

- Sample waypoints within ground-projected field-of-view.
- Apply optimal control sequence u* for time horizon [t, t + H] to obtain state z^{*}_{t+H}
- Compute cost of sequence $\{z, u\}_{t:t+H}$

- Sample waypoints within ground-projected field-of-view.
- Apply optimal control sequence u* for time horizon [t, t + H] to obtain state z^{*}_{t+H}
- Compute cost of sequence $\{z, u\}_{t:t+H}$
- Choose lowest cost sample \hat{w}_t^*

- Sample waypoints within ground-projected field-of-view.
- Apply optimal control sequence u* for time horizon [t, t + H] to obtain state z^{*}_{t+H}
- Compute cost of sequence $\{z, u\}_{t:t+H}$
- Choose lowest cost sample \hat{w}_t^*
- Repeat starting from time t + H

The solution to each instance of this optimization problem gives a training example comprised of:

- The image obtained at state z_t^* , I_t
- The relative goal position p_t^*
- The speed of the robot, u_t^*
- The optimal waypoint \hat{w}_t^*

Algorithm 1 Model-based Navigation via Learned Waypoint Prediction

Require: $p^* := (x^*, y^*)$ ▷ Goal location 1: for t = 0 to \hat{T} do 2: $z_t := (x_t, y_t, \phi_t); \quad u_t := (v_t, \omega_t) \qquad \triangleright$ Measured robot pose, and linear and angular speed 3: Every H steps do \triangleright Replan every H steps 4: $p_t^* := (x_t^*, y_t^*)$ Goal location in the robot's coordinate frame $\hat{w}_t = \psi(I_t, u_t, p_t^*)$ 5: ▷ Predict next waypoint $\{z^*, u^*\}_{t:t+H} = FitSpline(\hat{w}_t, u_t)$ 6: Plan spline-based smooth trajectory $\{k, K\}_{t:t+H} = LQR(z^*_{t:t+H}, u^*_{t:t+H})$ 7: ▷ Tracking controller $u_{t+1} = K_t(z_t - z_t^*) + k_t$ 8: ▷ Apply control 9: end for

Experiments

- End-to-End Learning
 - A CNN which directly outputs velocity commands corresponding to the optimal trajectories output by the spine based planner.

- End-to-End Learning
 - A CNN which directly outputs velocity commands corresponding to the optimal trajectories output by the spine based planner.
 - Does not explicitly use any system knowledge at test time.

- A CNN which directly outputs velocity commands corresponding to the optimal trajectories output by the spine based planner.
- Does not explicitly use any system knowledge at test time.
- Geometric Mapping and Planning

- A CNN which directly outputs velocity commands corresponding to the optimal trajectories output by the spine based planner.
- Does not explicitly use any system knowledge at test time.
- Geometric Mapping and Planning
 - Learning free, purely geometric

- A CNN which directly outputs velocity commands corresponding to the optimal trajectories output by the spine based planner.
- Does not explicitly use any system knowledge at test time.
- Geometric Mapping and Planning
 - Learning free, purely geometric
 - Simulation: ideal depth images are provided

- A CNN which directly outputs velocity commands corresponding to the optimal trajectories output by the spine based planner.
- Does not explicitly use any system knowledge at test time.
- Geometric Mapping and Planning
 - Learning free, purely geometric
 - Simulation: ideal depth images are provided
 - Hardware: RGB-D images processed by RTAB-Map package

- A CNN which directly outputs velocity commands corresponding to the optimal trajectories output by the spine based planner.
- Does not explicitly use any system knowledge at test time.
- Geometric Mapping and Planning
 - Learning free, purely geometric
 - Simulation: ideal depth images are provided
 - Hardware: RGB-D images processed by RTAB-Map package
 - Memory vs. Memoryless

- A CNN which directly outputs velocity commands corresponding to the optimal trajectories output by the spine based planner.
- Does not explicitly use any system knowledge at test time.
- Geometric Mapping and Planning
 - Learning free, purely geometric
 - Simulation: ideal depth images are provided
 - Hardware: RGB-D images processed by RTAB-Map package
 - Memory vs. Memoryless
 - Uses the same spline-based planner

• Experiments conducted in environments derived from 3D scans of real world buildings.

- Experiments conducted in environments derived from 3D scans of real world buildings.
- Scans from two buildings used for training

- Experiments conducted in environments derived from 3D scans of real world buildings.
- Scans from two buildings used for training
- 185 test episodes from a third, held-out building used for testing

- Experiments conducted in environments derived from 3D scans of real world buildings.
- Scans from two buildings used for training
- 185 test episodes from a third, held-out building used for testing
- Test episodes sampled to include scenarios such as: avoiding obstacles, leaving/entering rooms, using hallways, etc.

- Experiments conducted in environments derived from 3D scans of real world buildings.
- Scans from two buildings used for training
- 185 test episodes from a third, held-out building used for testing
- Test episodes sampled to include scenarios such as: avoiding obstacles, leaving/entering rooms, using hallways, etc.
- Metrics: success rate, average time to reach goal, average acceleration and jerk

Agent	Input	Success (%)	Time taken (s)	Acceleration (m/s^2)	Jerk (m/s^3)
Expert	Full map	100	10.78 ± 2.64	0.11 ±0.03	0.36 ± 0.14
LB-WayPtNav (our)	RGB	80.65	11.52 ±3.00	0.10 ± 0.04	0.39 ±0.16
End To End	RGB	58.06	19.16 ± 10.45	0.23 ± 0.02	8.07 ±0.94
Mapping (memoryless)	Depth	86.56	10.96 ±2.74	0.11 ± 0.03	0.36 ± 0.14
Mapping	Depth + Spatial Memory	97.85	10.95 ± 2.75	0.11 ±0.03	0.36 ±0.14

Simulation - Qualitative Results

Simulation - Qualitative Results

• Network trained in simulation is deployed directly on hardware testbed with no additional training.

- Network trained in simulation is deployed directly on hardware testbed with no additional training.
- Testing took place in two different buildings, neither of which is in the training dataset.

- Network trained in simulation is deployed directly on hardware testbed with no additional training.
- Testing took place in two different buildings, neither of which is in the training dataset.
- On-board odometry is used for state measurement.

- Network trained in simulation is deployed directly on hardware testbed with no additional training.
- Testing took place in two different buildings, neither of which is in the training dataset.
- On-board odometry is used for state measurement.
- 4 different experiments, each repeated 5 times for each method.

Hardware - Experiments

Hardware - Example

Video

Agent	Input	Success (%)	Time taken (s)	Acceleration (m/s^2)	Jerk (m/s^3)
LB-WayPtNav (our)	RGB	95	22.93 ± 2.38	0.09 ± 0.01	3.01 ± 0.38
End To End	RGB	50	33.88 ±3.01	0.19 ±0.01	6.12 ±0.18
Mapping (memoryless)	RGB-D	0	N/A	N/A	N/A
Mapping	RGB-D + Spatial Memory	40	22.13 ±0.54	0.11 ±0.01	3.44 ± 0.21

• Combining learning and optimal control gets the best of both worlds; semantic understanding of navigational cues and smooth, robust trajectories

- Combining learning and optimal control gets the best of both worlds; semantic understanding of navigational cues and smooth, robust trajectories
- More reliable and efficient at reaching goals than comparable methods

- Combining learning and optimal control gets the best of both worlds; semantic understanding of navigational cues and smooth, robust trajectories
- More reliable and efficient at reaching goals than comparable methods
- Can be directly transferred from simulation to hardware in previously unseen environments

Dynamic Environments

Video

Questions/Discussion

Appendix

The choice of $\hat{\phi}$ in \hat{w} provides an additional degree of freedom, allowing the robot to select collision free trajectories.

Training vs. Test Areas

(a) Training

(b) Test

Data Augmentation

(b) Adding superpixels

(c) Adding Gaussian blur

(d) Adding motion blur

(e) Image sharpening

(f) Adding Gaussian noise (g) Changing brightness

(i) Changing saturation

(j) Changing contrast

(k) Changing field-of-view (l) Changing camera tilt