
Combining Optimal Control and Learning for

Visual Navigation in Novel Environments

Bansal, Tolani et al.

Dylan Green

August 26, 2020

1



Introduction



MLRG Summer 2020: Optimal Control

• So far...

• Fundamentals - Engineering Perpsective (Cathy)

• Fundamentals - Optimization Perspective (Ben)

• Iterative LQR and Guided Policy Search (Betty)

• Sample Complexity of LQR (Joey)

• Model Predictive Control and Safe RL (Fred)

• Today...

• Robots

2



MLRG Summer 2020: Optimal Control

• So far...

• Fundamentals - Engineering Perpsective (Cathy)

• Fundamentals - Optimization Perspective (Ben)

• Iterative LQR and Guided Policy Search (Betty)

• Sample Complexity of LQR (Joey)

• Model Predictive Control and Safe RL (Fred)

• Today...

• Robots

2



Goal

• Autonomous, vision-based navigation in cluttered indoor

environments

• Factorized approach: learning is used to make high level

navigational decisions, optimal control used to produce

smooth trajectories

3



Goal

• Autonomous, vision-based navigation in cluttered indoor

environments

• Factorized approach: learning is used to make high level

navigational decisions, optimal control used to produce

smooth trajectories

3



Goal

4



Approach



System Diagram

5



Problem Setup

• Notation and Terminology:

• State: zt = (xt , yt , φt)

• Position: pt = (xt , yt)

• Goal position: p∗ = (x∗, y∗)

• Control input: ut = (vt ,wt)

• Assumed dynamics:

• ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω

• v ∈ [0, v̄ ], ω ∈ [−ω̄, ω̄]

6



Problem Setup

• Notation and Terminology:

• State: zt = (xt , yt , φt)

• Position: pt = (xt , yt)

• Goal position: p∗ = (x∗, y∗)

• Control input: ut = (vt ,wt)

• Assumed dynamics:

• ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω

• v ∈ [0, v̄ ], ω ∈ [−ω̄, ω̄]

6



Problem Setup

• Notation and Terminology:

• State: zt = (xt , yt , φt)

• Position: pt = (xt , yt)

• Goal position: p∗ = (x∗, y∗)

• Control input: ut = (vt ,wt)

• Assumed dynamics:

• ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω

• v ∈ [0, v̄ ], ω ∈ [−ω̄, ω̄]

6



Problem Setup

• Notation and Terminology:

• State: zt = (xt , yt , φt)

• Position: pt = (xt , yt)

• Goal position: p∗ = (x∗, y∗)

• Control input: ut = (vt ,wt)

• Assumed dynamics:

• ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω

• v ∈ [0, v̄ ], ω ∈ [−ω̄, ω̄]

6



Problem Setup

• Notation and Terminology:

• State: zt = (xt , yt , φt)

• Position: pt = (xt , yt)

• Goal position: p∗ = (x∗, y∗)

• Control input: ut = (vt ,wt)

• Assumed dynamics:

• ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω

• v ∈ [0, v̄ ], ω ∈ [−ω̄, ω̄]

6



Problem Setup

• Notation and Terminology:

• State: zt = (xt , yt , φt)

• Position: pt = (xt , yt)

• Goal position: p∗ = (x∗, y∗)

• Control input: ut = (vt ,wt)

• Assumed dynamics:

• ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω

• v ∈ [0, v̄ ], ω ∈ [−ω̄, ω̄]

6



Problem Setup

• Notation and Terminology:

• State: zt = (xt , yt , φt)

• Position: pt = (xt , yt)

• Goal position: p∗ = (x∗, y∗)

• Control input: ut = (vt ,wt)

• Assumed dynamics:

• ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω

• v ∈ [0, v̄ ], ω ∈ [−ω̄, ω̄]

6



Perception Module

A CNN which takes as input

• A 224 × 224 pixel RGB

image

• The target position p∗t

• The robots current linear

and angular speed ut

and outputs a waypoint

ŵt := (x̂t , ŷt , φ̂t) = ψ(It , ut , p
∗
t )

7



Planning and Control Module

• Given a waypoint ŵt and the current linear and angular speed

ut , the planning module designs a smooth trajectory (in terms

of both position and speed) from the current position to the

waypoint.

• A spline-based planner provides desired state and control

trajectories

{z∗, u∗}t:t+H = FitSpline(ŵt , ut).

• An LQR-based feedback controller

{k ,K}t:t+H = LQR(z∗t:t+H , u
∗
t:t+H)

tracks the generated trajectory.

8



Planning and Control Module

• Given a waypoint ŵt and the current linear and angular speed

ut , the planning module designs a smooth trajectory (in terms

of both position and speed) from the current position to the

waypoint.

• A spline-based planner provides desired state and control

trajectories

{z∗, u∗}t:t+H = FitSpline(ŵt , ut).

• An LQR-based feedback controller

{k ,K}t:t+H = LQR(z∗t:t+H , u
∗
t:t+H)

tracks the generated trajectory.

8



Planning and Control Module

• Given a waypoint ŵt and the current linear and angular speed

ut , the planning module designs a smooth trajectory (in terms

of both position and speed) from the current position to the

waypoint.

• A spline-based planner provides desired state and control

trajectories

{z∗, u∗}t:t+H = FitSpline(ŵt , ut).

• An LQR-based feedback controller

{k ,K}t:t+H = LQR(z∗t:t+H , u
∗
t:t+H)

tracks the generated trajectory.

8



Expert Supervision

• A Model Predictive Control (MPC) scheme is used to generate

expert supervision for training the perception module.

• Output is a sequence of dynamically feasible waypoints and

corresponding spline trajectories.

• Optimal trajectories can be found in the training phase as this

process is done in simulation with perfect knowledge of the

environment.

9



Expert Supervision

• A Model Predictive Control (MPC) scheme is used to generate

expert supervision for training the perception module.

• Output is a sequence of dynamically feasible waypoints and

corresponding spline trajectories.

• Optimal trajectories can be found in the training phase as this

process is done in simulation with perfect knowledge of the

environment.

9



Expert Supervision

• A Model Predictive Control (MPC) scheme is used to generate

expert supervision for training the perception module.

• Output is a sequence of dynamically feasible waypoints and

corresponding spline trajectories.

• Optimal trajectories can be found in the training phase as this

process is done in simulation with perfect knowledge of the

environment.

9



Cost Function

Cost function for trajectory is

J(z,u) =
T∑
i=0

Ji (zi , ui )

where

Ji (zi , ui ) :=
(

max
{

0, λ1 − dobs (xi , yi )
})3

+ λ2

(
dgoal(xi , yi )

)2
and

• dobs (xi , yi ) is the distance to the nearest obstacle at time i

• dgoal(xi , yi )) is the minimum collision-free distance to the goal

position

• λ1 is the minimum allowable distance to an obstacle

10



MPC Problem

Given the cost function in the last slide, the MPC problem is

min
z,u

J(z,u)

subject to constraints

xi+1 = xi+∆Tvi cosφi , yi+1 = yi+∆Tvi sinφi , φi+1 = φi+∆Tωi

vi ∈ [0, v̄ ], ωi ∈ [−ω̄, ω̄]

z0 = (0, 0, 0), u0 = (0, 0)

11



MPC Problem

Starting from i = 0, we solve the optimization problem on the last

slide in a receding horizon fashion. That is, for a timestep i = t we

solve

min
ŵt

t+H∑
i=t

Ji (zi , ui )

subject to

{z , u}t:t+H = FitSpline (ŵt , ut) ,

zt , ut − Given

where

• ŵt = (x̂t , ŷt , φ̂t) is the waypoint

• {z , u}t:t+H is the corresponding trajectory

12



Solving MPC

Solved approximately using sampling-based approach. Specifically,

• Sample waypoints within ground-projected field-of-view.

• Apply optimal control sequence u∗ for time horizon [t, t + H]

to obtain state z∗t+H

• Compute cost of sequence {z , u}t:t+H

• Choose lowest cost sample ŵ∗
t

• Repeat starting from time t + H

13



Solving MPC

Solved approximately using sampling-based approach. Specifically,

• Sample waypoints within ground-projected field-of-view.

• Apply optimal control sequence u∗ for time horizon [t, t + H]

to obtain state z∗t+H

• Compute cost of sequence {z , u}t:t+H

• Choose lowest cost sample ŵ∗
t

• Repeat starting from time t + H

13



Solving MPC

Solved approximately using sampling-based approach. Specifically,

• Sample waypoints within ground-projected field-of-view.

• Apply optimal control sequence u∗ for time horizon [t, t + H]

to obtain state z∗t+H

• Compute cost of sequence {z , u}t:t+H

• Choose lowest cost sample ŵ∗
t

• Repeat starting from time t + H

13



Solving MPC

Solved approximately using sampling-based approach. Specifically,

• Sample waypoints within ground-projected field-of-view.

• Apply optimal control sequence u∗ for time horizon [t, t + H]

to obtain state z∗t+H

• Compute cost of sequence {z , u}t:t+H

• Choose lowest cost sample ŵ∗
t

• Repeat starting from time t + H

13



Solving MPC

Solved approximately using sampling-based approach. Specifically,

• Sample waypoints within ground-projected field-of-view.

• Apply optimal control sequence u∗ for time horizon [t, t + H]

to obtain state z∗t+H

• Compute cost of sequence {z , u}t:t+H

• Choose lowest cost sample ŵ∗
t

• Repeat starting from time t + H

13



Training Data for Perception Module

The solution to each instance of this optimization problem gives a

training example comprised of:

• The image obtained at state z∗t , It

• The relative goal position p∗t

• The speed of the robot, u∗t

• The optimal waypoint ŵ∗
t

14



Algorithm

15



Experiments



Alternative Approaches

• End-to-End Learning

• A CNN which directly outputs velocity commands

corresponding to the optimal trajectories output by the spine

based planner.

• Does not explicitly use any system knowledge at test time.

• Geometric Mapping and Planning

• Learning free, purely geometric

• Simulation: ideal depth images are provided

• Hardware: RGB-D images processed by RTAB-Map package

• Memory vs. Memoryless

• Uses the same spline-based planner

16



Alternative Approaches

• End-to-End Learning

• A CNN which directly outputs velocity commands

corresponding to the optimal trajectories output by the spine

based planner.

• Does not explicitly use any system knowledge at test time.

• Geometric Mapping and Planning

• Learning free, purely geometric

• Simulation: ideal depth images are provided

• Hardware: RGB-D images processed by RTAB-Map package

• Memory vs. Memoryless

• Uses the same spline-based planner

16



Alternative Approaches

• End-to-End Learning

• A CNN which directly outputs velocity commands

corresponding to the optimal trajectories output by the spine

based planner.

• Does not explicitly use any system knowledge at test time.

• Geometric Mapping and Planning

• Learning free, purely geometric

• Simulation: ideal depth images are provided

• Hardware: RGB-D images processed by RTAB-Map package

• Memory vs. Memoryless

• Uses the same spline-based planner

16



Alternative Approaches

• End-to-End Learning

• A CNN which directly outputs velocity commands

corresponding to the optimal trajectories output by the spine

based planner.

• Does not explicitly use any system knowledge at test time.

• Geometric Mapping and Planning

• Learning free, purely geometric

• Simulation: ideal depth images are provided

• Hardware: RGB-D images processed by RTAB-Map package

• Memory vs. Memoryless

• Uses the same spline-based planner

16



Alternative Approaches

• End-to-End Learning

• A CNN which directly outputs velocity commands

corresponding to the optimal trajectories output by the spine

based planner.

• Does not explicitly use any system knowledge at test time.

• Geometric Mapping and Planning

• Learning free, purely geometric

• Simulation: ideal depth images are provided

• Hardware: RGB-D images processed by RTAB-Map package

• Memory vs. Memoryless

• Uses the same spline-based planner

16



Alternative Approaches

• End-to-End Learning

• A CNN which directly outputs velocity commands

corresponding to the optimal trajectories output by the spine

based planner.

• Does not explicitly use any system knowledge at test time.

• Geometric Mapping and Planning

• Learning free, purely geometric

• Simulation: ideal depth images are provided

• Hardware: RGB-D images processed by RTAB-Map package

• Memory vs. Memoryless

• Uses the same spline-based planner

16



Alternative Approaches

• End-to-End Learning

• A CNN which directly outputs velocity commands

corresponding to the optimal trajectories output by the spine

based planner.

• Does not explicitly use any system knowledge at test time.

• Geometric Mapping and Planning

• Learning free, purely geometric

• Simulation: ideal depth images are provided

• Hardware: RGB-D images processed by RTAB-Map package

• Memory vs. Memoryless

• Uses the same spline-based planner

16



Alternative Approaches

• End-to-End Learning

• A CNN which directly outputs velocity commands

corresponding to the optimal trajectories output by the spine

based planner.

• Does not explicitly use any system knowledge at test time.

• Geometric Mapping and Planning

• Learning free, purely geometric

• Simulation: ideal depth images are provided

• Hardware: RGB-D images processed by RTAB-Map package

• Memory vs. Memoryless

• Uses the same spline-based planner

16



Alternative Approaches

• End-to-End Learning

• A CNN which directly outputs velocity commands

corresponding to the optimal trajectories output by the spine

based planner.

• Does not explicitly use any system knowledge at test time.

• Geometric Mapping and Planning

• Learning free, purely geometric

• Simulation: ideal depth images are provided

• Hardware: RGB-D images processed by RTAB-Map package

• Memory vs. Memoryless

• Uses the same spline-based planner

16



Simulation - Setup

• Experiments conducted in environments derived from 3D

scans of real world buildings.

• Scans from two buildings used for training

• 185 test episodes from a third, held-out building used for

testing

• Test episodes sampled to include scenarios such as: avoiding

obstacles, leaving/entering rooms, using hallways, etc.

• Metrics: success rate, average time to reach goal, average

acceleration and jerk

17



Simulation - Setup

• Experiments conducted in environments derived from 3D

scans of real world buildings.

• Scans from two buildings used for training

• 185 test episodes from a third, held-out building used for

testing

• Test episodes sampled to include scenarios such as: avoiding

obstacles, leaving/entering rooms, using hallways, etc.

• Metrics: success rate, average time to reach goal, average

acceleration and jerk

17



Simulation - Setup

• Experiments conducted in environments derived from 3D

scans of real world buildings.

• Scans from two buildings used for training

• 185 test episodes from a third, held-out building used for

testing

• Test episodes sampled to include scenarios such as: avoiding

obstacles, leaving/entering rooms, using hallways, etc.

• Metrics: success rate, average time to reach goal, average

acceleration and jerk

17



Simulation - Setup

• Experiments conducted in environments derived from 3D

scans of real world buildings.

• Scans from two buildings used for training

• 185 test episodes from a third, held-out building used for

testing

• Test episodes sampled to include scenarios such as: avoiding

obstacles, leaving/entering rooms, using hallways, etc.

• Metrics: success rate, average time to reach goal, average

acceleration and jerk

17



Simulation - Setup

• Experiments conducted in environments derived from 3D

scans of real world buildings.

• Scans from two buildings used for training

• 185 test episodes from a third, held-out building used for

testing

• Test episodes sampled to include scenarios such as: avoiding

obstacles, leaving/entering rooms, using hallways, etc.

• Metrics: success rate, average time to reach goal, average

acceleration and jerk

17



Simulation - Quantitative Results

18



Simulation - Qualitative Results

19



Simulation - Qualitative Results

20



Hardware - Setup

• Network trained in simulation is deployed directly on hardware

testbed with no additional training.

• Testing took place in two different buildings, neither of which

is in the training dataset.

• On-board odometry is used for state measurement.

• 4 different experiments, each repeated 5 times for each

method.

21



Hardware - Setup

• Network trained in simulation is deployed directly on hardware

testbed with no additional training.

• Testing took place in two different buildings, neither of which

is in the training dataset.

• On-board odometry is used for state measurement.

• 4 different experiments, each repeated 5 times for each

method.

21



Hardware - Setup

• Network trained in simulation is deployed directly on hardware

testbed with no additional training.

• Testing took place in two different buildings, neither of which

is in the training dataset.

• On-board odometry is used for state measurement.

• 4 different experiments, each repeated 5 times for each

method.

21



Hardware - Setup

• Network trained in simulation is deployed directly on hardware

testbed with no additional training.

• Testing took place in two different buildings, neither of which

is in the training dataset.

• On-board odometry is used for state measurement.

• 4 different experiments, each repeated 5 times for each

method.

21



Hardware - Experiments

22



Hardware - Example

Video

23

https://www.youtube.com/watch?v=7c_c1DE_78M&feature=emb_title


Hardware - Quantitative Results

24



Summary of Results

• Combining learning and optimal control gets the best of both

worlds; semantic understanding of navigational cues and

smooth, robust trajectories

• More reliable and efficient at reaching goals than comparable

methods

• Can be directly transferred from simulation to hardware in

previously unseen environments

25



Summary of Results

• Combining learning and optimal control gets the best of both

worlds; semantic understanding of navigational cues and

smooth, robust trajectories

• More reliable and efficient at reaching goals than comparable

methods

• Can be directly transferred from simulation to hardware in

previously unseen environments

25



Summary of Results

• Combining learning and optimal control gets the best of both

worlds; semantic understanding of navigational cues and

smooth, robust trajectories

• More reliable and efficient at reaching goals than comparable

methods

• Can be directly transferred from simulation to hardware in

previously unseen environments

25



Dynamic Environments

Video

26

https://www.youtube.com/watch?v=zyI-SW2KxLU&feature=emb_title


Questions/Discussion

27



Appendix



Splines

The choice of φ̂ in ŵ provides an additional degree of freedom,

allowing the robot to select collision free trajectories.

28



Training vs. Test Areas

29



Data Augmentation

30


	Introduction
	Approach
	Experiments
	Appendix

