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Introduction



MLRG Summer 2020: Optimal Control

• So far...

• Fundamentals - Engineering Perpsective (Cathy)

• Fundamentals - Optimization Perspective (Ben)

• Iterative LQR and Guided Policy Search (Betty)

• Sample Complexity of LQR (Joey)

• Model Predictive Control and Safe RL (Fred)

• Today...

• Robots
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Goal

• Autonomous, vision-based navigation in cluttered indoor

environments

• Factorized approach: learning is used to make high level

navigational decisions, optimal control used to produce

smooth trajectories
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Goal
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Approach



System Diagram
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Problem Setup

• Notation and Terminology:

• State: zt = (xt , yt , φt)

• Position: pt = (xt , yt)

• Goal position: p∗ = (x∗, y∗)

• Control input: ut = (vt ,wt)

• Assumed dynamics:

• ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω

• v ∈ [0, v̄ ], ω ∈ [−ω̄, ω̄]
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Perception Module

A CNN which takes as input

• A 224 × 224 pixel RGB

image

• The target position p∗t

• The robots current linear

and angular speed ut

and outputs a waypoint

ŵt := (x̂t , ŷt , φ̂t) = ψ(It , ut , p
∗
t )
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Planning and Control Module

• Given a waypoint ŵt and the current linear and angular speed

ut , the planning module designs a smooth trajectory (in terms

of both position and speed) from the current position to the

waypoint.

• A spline-based planner provides desired state and control

trajectories

{z∗, u∗}t:t+H = FitSpline(ŵt , ut).

• An LQR-based feedback controller

{k ,K}t:t+H = LQR(z∗t:t+H , u
∗
t:t+H)

tracks the generated trajectory.
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Expert Supervision

• A Model Predictive Control (MPC) scheme is used to generate

expert supervision for training the perception module.

• Output is a sequence of dynamically feasible waypoints and

corresponding spline trajectories.

• Optimal trajectories can be found in the training phase as this

process is done in simulation with perfect knowledge of the

environment.
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Cost Function

Cost function for trajectory is

J(z,u) =
T∑
i=0

Ji (zi , ui )

where

Ji (zi , ui ) :=
(

max
{

0, λ1 − dobs (xi , yi )
})3

+ λ2

(
dgoal(xi , yi )

)2
and

• dobs (xi , yi ) is the distance to the nearest obstacle at time i

• dgoal(xi , yi )) is the minimum collision-free distance to the goal

position

• λ1 is the minimum allowable distance to an obstacle
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MPC Problem

Given the cost function in the last slide, the MPC problem is

min
z,u

J(z,u)

subject to constraints

xi+1 = xi+∆Tvi cosφi , yi+1 = yi+∆Tvi sinφi , φi+1 = φi+∆Tωi

vi ∈ [0, v̄ ], ωi ∈ [−ω̄, ω̄]

z0 = (0, 0, 0), u0 = (0, 0)
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MPC Problem

Starting from i = 0, we solve the optimization problem on the last

slide in a receding horizon fashion. That is, for a timestep i = t we

solve

min
ŵt

t+H∑
i=t

Ji (zi , ui )

subject to

{z , u}t:t+H = FitSpline (ŵt , ut) ,

zt , ut − Given

where

• ŵt = (x̂t , ŷt , φ̂t) is the waypoint

• {z , u}t:t+H is the corresponding trajectory
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Solving MPC

Solved approximately using sampling-based approach. Specifically,

• Sample waypoints within ground-projected field-of-view.

• Apply optimal control sequence u∗ for time horizon [t, t + H]

to obtain state z∗t+H

• Compute cost of sequence {z , u}t:t+H

• Choose lowest cost sample ŵ∗
t

• Repeat starting from time t + H
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Training Data for Perception Module

The solution to each instance of this optimization problem gives a

training example comprised of:

• The image obtained at state z∗t , It

• The relative goal position p∗t

• The speed of the robot, u∗t

• The optimal waypoint ŵ∗
t
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Algorithm
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Experiments



Alternative Approaches

• End-to-End Learning

• A CNN which directly outputs velocity commands

corresponding to the optimal trajectories output by the spine

based planner.

• Does not explicitly use any system knowledge at test time.

• Geometric Mapping and Planning

• Learning free, purely geometric

• Simulation: ideal depth images are provided

• Hardware: RGB-D images processed by RTAB-Map package

• Memory vs. Memoryless

• Uses the same spline-based planner
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Simulation - Setup

• Experiments conducted in environments derived from 3D

scans of real world buildings.

• Scans from two buildings used for training

• 185 test episodes from a third, held-out building used for

testing

• Test episodes sampled to include scenarios such as: avoiding

obstacles, leaving/entering rooms, using hallways, etc.

• Metrics: success rate, average time to reach goal, average

acceleration and jerk
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Simulation - Quantitative Results
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Simulation - Qualitative Results
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Simulation - Qualitative Results
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Hardware - Setup

• Network trained in simulation is deployed directly on hardware

testbed with no additional training.

• Testing took place in two different buildings, neither of which

is in the training dataset.

• On-board odometry is used for state measurement.

• 4 different experiments, each repeated 5 times for each

method.
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Hardware - Experiments
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Hardware - Example

Video
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https://www.youtube.com/watch?v=7c_c1DE_78M&feature=emb_title


Hardware - Quantitative Results
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Summary of Results

• Combining learning and optimal control gets the best of both

worlds; semantic understanding of navigational cues and

smooth, robust trajectories

• More reliable and efficient at reaching goals than comparable

methods

• Can be directly transferred from simulation to hardware in

previously unseen environments
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Dynamic Environments

Video
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https://www.youtube.com/watch?v=zyI-SW2KxLU&feature=emb_title


Questions/Discussion

27



Appendix



Splines

The choice of φ̂ in ŵ provides an additional degree of freedom,

allowing the robot to select collision free trajectories.
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Training vs. Test Areas
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Data Augmentation
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