Previously on MLRG

Closed loop control

LQR

LQR

Solving for K

Solving for K

$$J = \int (x - x^*)^\top Q (x - x^*) + u^\top R u \quad dt$$

Solving for K

Go to
$$x^*$$
 min control
 $\downarrow \qquad \qquad \downarrow$
 $J = \int (x - x^*)^\top Q (x - x^*) + u^\top R u \quad dt$

Learning A, B

$$x' = Ax + Bu$$

Learning A, B

$$x' = Ax + Bu$$

 $\min_{A,B} \|Ax + Bu - x'\|$

Learning A, B

$$x' = Ax + Bu$$

 $\min_{A,B} \|Ax + Bu - x'\|$

- Nonlinear?
- Wrong model?

- Nonlinear?
- Wrong model?

- Nonlinear?
- Wrong model?

- Nonlinear?
- Wrong model?
- Learning?
- Safety?

- Nonlinear?
- Wrong model?
- Learning?
- Safety?

- Nonlinear?
- Wrong model?
- Learning?
- Safety?

LQR \downarrow Model Predictive Control \downarrow Nonlinear Learning \downarrow \downarrow Explore/Exploit Constraints \downarrow safe RL

Today

Find K a priori

Find K a priori

Find *u* at every step

Off/Online

Full/Local model

Non-linear

Off/Online

Full/Local model

Non-linear

Off/Online

Full/Local model

Non-linear

Example

$$x_{i+1} = A(x_t)x_i + B(x_t)u_i$$

Example

$$x_{i+1} = A(x_t)x_i + B(x_t)u_i$$

Example

$$x_{i+1} = A(x_t)x_i + B(x_t)u_i$$

Example

$$x_{i+1} = A(x_t)x_i + B(x_t)u_i$$

$$\min_{\substack{u_{t+1},...,u_{t+H}}} \sum_{i=1}^{H} x_{t+i}^{\top} Q x_{t+i} + u_{t+i}^{\top} R u_{t+i}$$

s.t. $x_{i+1} = A(x_t) x_i + B(x_t) u_i$

or
$$u_t = K x_t$$

or
$$u_t, ..., u_{t+H} = NN(x_t, \theta)$$

more flexible and hungry

MPC

Replace full planning by local optimization

Learning

"Online LQR"

Learning

"Online LQR"

True dynamics:
$$x' = Ax + Bu$$

Model of the system: $x' = A_t x + B_t u$

Learning

"Online LQR"

True dynamics:
$$x' = Ax + Bu$$

Model of the system: $x' = A_t x + B_t u$

Start with (A_0, B_0) , update as you go

Learning safely?

Safety Correct models Explore/Exploit Uncertainty

Safety

Safety

Safety

Ensure we don't crash

avoid known bad outcomes / stay within known safe regime

Uncertainty about the dynamics

Uncertainty about the dynamics

There is a safe controller that can take over if $x \in \mathcal{X}_{\mathsf{safe}}$

Uncertainty about the dynamics

There is a safe controller that can take over if $x \in \mathcal{X}_{safe}$

How do we get to x^* ?

Loss = J

 $Loss = \mathbb{E}[J]$

 $Loss = \mathbb{E}[J]$

 $\mathsf{Loss} = \mathbb{E}[J] + \mathbb{E}[(J - \mathbb{E}[J])^2]$

Loss = $\mathbb{E}[J]$, but with safety constraints

$$g(x) \geq 0$$

$$g(x) \ge 0$$
 $heta o u o x$ $g(heta) \ge 0$

How do we get to x^* ?

Uncertain transition dynamics

$$x' = f(x, u)$$
$$f(x, u) = h(x, u) + e(x, u)$$

h is known

e is not, but we have a probabilistic model

Uncertain transition dynamics

$$x' = f(x, u)$$
$$f(x, u) = h(x, u) + e(x, u)$$

h is known *e* is not, but we have a probabilistic model

For (μ, σ) and β , with high probability

$$|\mu(x,u) - e(x,u)| \le \beta \sigma(x,u)$$

Gaussian Processes Crash Course

Kernel k(x, y)

Gaussian Processes Crash Course

Kernel k(x, y)

Squared exponential

Gaussian Processes Crash Course

Kernel k(x, y)

Gaussian Processes Crash Course

Kernel k(x, y)

Matérn 0.5

Gaussian Processes Crash Course

Kernel k(x, y)

Linear regression: $||Xw - y||^2$

Kernel regression: $||Kw - y||^2$ where $K_{ij} = k(x_i, x_j)$

+ Covariances

Exploration/Exploitation

Exploration/Exploitation

Exploration/Exploitation

Exploration/Exploitation

Exploration/Exploitation

Exploration/Exploitation

Ideal result

g(x) might be linear/convex but $g(\theta)$ is not

g(x) might be linear/convex but $g(\theta)$ is not

 $g(f(x, u = Model(x, \theta)))$

g(x) might be linear/convex but $g(\theta)$ is not

$$|\mu(x,u)-e(x,u)|\leq\beta\sigma(x,u)$$

g(x) might be linear/convex but $g(\theta)$ is not

 $|\mu(x, u) - e(x, u)| \leq \beta \sigma(x, u)$

Linearized uncertainty propagation

One last thing...

Simultaneous planning

Simultaneous planning

- A safe default controller
- A definition of the boundaries
- A well specified Gaussian Process
- The Lipschitz constant of the model error
- Bayesian Optimization Model Predictive Control