
Iterative LQR and Guided Policy Search

Betty Shea

UBC MLRG

29-July-2020

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 1 / 40



Outline

1 Introduction
Goals and Objectives
Terminology and notation

2 Building blocks
Iterated LQG
Guided Policy Search

3 Hybrid algorithm for systems with unknown dynamics

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 2 / 40



Introduction

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 3 / 40



MLRG theme: Optimal control

Previously

Optimal control and dynamic systems
I engineering perspective
I closed-loop feedback control, stability, controllability, reachability, LQR,

etc

Classic control and dynamic programming
I optimization perspective
I HJB equation, LQG/ LQR/ Ricatti equation, Pontryagin’s maximum

principle, Kalman filters etc

Today: an application.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 4 / 40



MLRG theme: Optimal control

Previously

Optimal control and dynamic systems
I engineering perspective
I closed-loop feedback control, stability, controllability, reachability, LQR,

etc

Classic control and dynamic programming
I optimization perspective
I HJB equation, LQG/ LQR/ Ricatti equation, Pontryagin’s maximum

principle, Kalman filters etc

Today: an application.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 4 / 40



MLRG theme: Optimal control

Previously

Optimal control and dynamic systems
I engineering perspective
I closed-loop feedback control, stability, controllability, reachability, LQR,

etc

Classic control and dynamic programming
I optimization perspective
I HJB equation, LQG/ LQR/ Ricatti equation, Pontryagin’s maximum

principle, Kalman filters etc

Today: an application.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 4 / 40



Focus of talk

A hybrid model-based and model-free algorithm for optimizing objectives in
environments with unknown dynamics based on

iterated linear quadratic Gaussian (iLQG)

guided policy search (GPS)

Levine, S. & Abbeel, P. (2014) Learning neural network policies with guided
policy search under unknown dynamics. In Advances in Neural Information
Processing Systems (NeurIPS).

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 5 / 40

https://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf
https://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf
https://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf


Examples of goals

Robot learns to walk under different conditions (video)

Heess et al. (2017) Emergence of locomotion behaviours in rich environments.

Robot learns to insert a peg into a slot (video)

Levine and Abbeel (2014)

In general (part of a list from Michiel’s CPSC533V lecture):

Drive a car
Defeat the world champion at Go

Manage an investment portfolio

Sequence a series of medical tests and interventions

Control a power station or a chemical process to maximize revenue
...

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 6 / 40

https://www.youtube.com/watch?v=hx_bgoTF7bs&feature=youtu.be
https://youtu.be/jyjhkJ8oDU4


Examples of goals

Robot learns to walk under different conditions (video)

Heess et al. (2017) Emergence of locomotion behaviours in rich environments.

Robot learns to insert a peg into a slot (video)

Levine and Abbeel (2014)

In general (part of a list from Michiel’s CPSC533V lecture):

Drive a car
Defeat the world champion at Go

Manage an investment portfolio

Sequence a series of medical tests and interventions

Control a power station or a chemical process to maximize revenue
...

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 6 / 40

https://www.youtube.com/watch?v=hx_bgoTF7bs&feature=youtu.be
https://youtu.be/jyjhkJ8oDU4


Optimal control and reinforcement learning goals

General goal of optimal control with unknown dynamics

min
ut

Eet [lt [xt , ut ]] s.t. xt+1 = f (xt , u,wt )

where x0 is given, xt is the state of the system, ut is the action, wt is a random
disturbance or noise, and f is some function that gives the new state.

But this is very general and so we will make assumptions that builds off what we
learned in the prior two talks.

Introductory presentation gave a list of problem class. Today’s problem fits within
the finite horizon-stochastic problem framework where system dynamics are
unknown.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 7 / 40



Optimal control and reinforcement learning goals

General goal of optimal control with unknown dynamics

min
ut

Eet [lt [xt , ut ]] s.t. xt+1 = f (xt , u,wt )

where x0 is given, xt is the state of the system, ut is the action, wt is a random
disturbance or noise, and f is some function that gives the new state.

But this is very general and so we will make assumptions that builds off what we
learned in the prior two talks.

Introductory presentation gave a list of problem class. Today’s problem fits within
the finite horizon-stochastic problem framework where system dynamics are
unknown.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 7 / 40



Terminology and notation

State xt , action ut

System dynamics f (xt , ut ) or p(xt+1|xt , ut )

Policy πθ(ut |xt ). A function or a distribution parameterized by θ.

Trajectory τ = (x0, u1, x1, u2, . . . , xT )

Rollout τi . A trajectory created from running a given policy starting at some
initial state x0.

Cost l(xt , ut )

Cost to go Jt =
∫ T
t0

l(xt , ut )dt or Jt =
∑T

k=t l(xk , uk ). Sum of remaining costs.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 8 / 40



Terminology and notation

Model-based. Dynamics and losses follow distributions known in advance.

Model-free. Dynamics and losses not known in advance and discovered
through experience.

Regulation. Minimize error with respect to a reference goal.

Regulator, controller or policy. Takes in a state and returns an action.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 9 / 40



Building blocks

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 10 / 40



Linear Quadratic Regulator (LQR)
Recall from the prior two talks, LQR is a special case in the deterministic setting
where there is a closed form solution. LQR has cost-to-go (for finite horizons)

J = xᵀQf x +

∫ T

t0

(xᵀQx + uᵀRu) dt or J =
1

2
x
ᵀ
N
Qf xN +

1

2

N−1∑
k=0

x
ᵀ
k
Qxk + u

ᵀ
k
Ruk

where R is symmetric positive definite, Q and Qf are symmetric.

Q and Qf are also known as state cost-weighting matrices. R as control
cost-weighting matrix.

Within the integral/ summation, the first term is the error cost and the
second term is the control cost.
For linear dynamical systems, i.e. xk+1 = f (xk , uk ) = Axk + Buk , the optimal
solution has the form

uk = −Lkxk where Lk =
(
R + BᵀVk+1B

)−1
BᵀVk+1A

i.e. Control is linear of state and Lk is the control gain.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 11 / 40



Linear Quadratic Regulator (LQR)
Recall from the prior two talks, LQR is a special case in the deterministic setting
where there is a closed form solution. LQR has cost-to-go (for finite horizons)

J = xᵀQf x +

∫ T

t0

(xᵀQx + uᵀRu) dt or J =
1

2
x
ᵀ
N
Qf xN +

1

2

N−1∑
k=0

x
ᵀ
k
Qxk + u

ᵀ
k
Ruk

where R is symmetric positive definite, Q and Qf are symmetric.

Q and Qf are also known as state cost-weighting matrices. R as control
cost-weighting matrix.

Within the integral/ summation, the first term is the error cost and the
second term is the control cost.
For linear dynamical systems, i.e. xk+1 = f (xk , uk ) = Axk + Buk , the optimal
solution has the form

uk = −Lkxk where Lk =
(
R + BᵀVk+1B

)−1
BᵀVk+1A

i.e. Control is linear of state and Lk is the control gain.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 11 / 40



Iterated LQR

But in real life, systems are complex and nonlinear.

Idea originally from Li and Todorov (2004)

“uses iterative linearization of the nonlinear system around a nominal
trajectory”

“computes a locally optimal feedback control law via a modified LQR
technique”

In other words
assume that some localized area on a complex trajectory is linear

optimize on this linearized local model to get the next step

Derivation of iLQR controller follows closely last week’s derivation of LQR.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 12 / 40



Iterated LQR

But in real life, systems are complex and nonlinear.

Idea originally from Li and Todorov (2004)

“uses iterative linearization of the nonlinear system around a nominal
trajectory”

“computes a locally optimal feedback control law via a modified LQR
technique”

In other words
assume that some localized area on a complex trajectory is linear

optimize on this linearized local model to get the next step

Derivation of iLQR controller follows closely last week’s derivation of LQR.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 12 / 40



Iterated LQR: Derivation sketch for controller

The true dynamics are xk+1 = f (xk , uk ) where f is nonlinear.

1 Quadratic approximation of true cost

J0 =
1

2
(xN − x∗)ᵀQf (xN − x∗) +

1

2

N−1∑
k=0

(
xᵀk Qxk + uᵀkRuk

)
2 Denote deviations from uk and xk as δuk and δxk . Linear approximation to deviations

δxk+1 = Akδxk + Bkδuk

where Ak = Dx f (xk , uk ), Bk = Duf (xk , uk ) and Dx and Du are the Jacobian of f (·) wrt x
and u at xk , uk .

3 Point (2) into point (1) to get modified cost

J =
1

2
(xN+δxN − x∗)ᵀQf (xN+δxN − x∗)

+
1

2

N−1∑
k=0

(
(xᵀk + δxk )Q(xk+δxk ) + (uk + δuk )ᵀR(uk+δuk )

)

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 13 / 40



Iterated LQR: Derivation sketch for controller

4 Define Hamiltonian function with Lagrangian multiplier.
5 Define boundary conditions, state equations, stationary conditions to get Hamiltonian

system.
6 Assume δλk = Skδxk + vk for some unknown sequence Sk and vk .
7 Solve Hamiltonian system to get

δuk = −Kδxk − Kvvk+1 − Kuuk

K =
(
Bᵀ
k Sk+1Bk + R

)−1
Bᵀ
k Sk+1Ak

Kv =
(
Bᵀ
k Sk+1Bk + R

)−1
Bᵀ
k

Ku =
(
Bᵀ
k Sk+1Bk + R

)−1
R

Sk = Aᵀ
kSk+1(Ak − BkK) + Q

vk = (Ak − BkK)ᵀvk+1 − KᵀRuk + Qxk

8 u∗k = uk + δuk is optimal controller.

For details, refer to Li and Todorov (2004) which walks through the derivation step-by-step.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 14 / 40



Iterated LQR: Optimal control

δuk = −Kδxk − Kv vk+1 − Kuuk

Main takeaway:

1 Control gain of iLQR (i.e. K) depends on the control gain in regular LQR
(i.e. Lk or the Ricatti equation).

2 Unlike LQR, the optimal controller of iLQR is not linear (of state) but is
composed of a term that is linear and two additional terms.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 15 / 40



From iterated LQR to iterated LQG

Main paper needs a stochastic environment to generate samples

Main algorithm builds off iterated linear quadratic Gaussian (iLQG) and not
iLQR.
Recall from last week, LQG assumes linear dynamics with additive Gaussian
noise, i.e. a controlled Ito diffusion

dx = f (x , u)dt + F (x , u)dw

where f (x , u) is the drift and F (x , u) is the diffusion coefficient.

Also from last week, the LQG optimal controller can be derived in closed
form using the HJB equation.

To understand iLQG, you need two additional papers:
Todorov and Li (2005) and Tassa et al. (2012).

The first paper derives the iLQG optimal controller and the second paper explains
how to stabilize the sequence of trajectories generated.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 16 / 40



Iterated LQG: Optimal control and stability

Relevant points:

iLQG uses a quadratic approximation to the cost-to-go function of LQG

The optimal iLQG controller is p(xt ) = ût + kt + Kt (xt − x̂t ) where x̂t and ût
are the states and actions of the current trajectory, and terms kt and Kt are
such that the overall controller is linear
The fitted dynamics are only valid in a local region around the samples but
the new controller generated by iLQG can be arbitrarily different from the
old one.
Large changes in trajectories between iterations cause the algorithm to
quickly fall into unstable, costly parts of the state space, preventing
convergence.

The original iLQG algorithm uses a line search to bound the difference
between the old and new generated trajectory.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 17 / 40



Iterated LQG: Optimal control and stability

Relevant points:

iLQG uses a quadratic approximation to the cost-to-go function of LQG

The optimal iLQG controller is p(xt ) = ût + kt + Kt (xt − x̂t ) where x̂t and ût
are the states and actions of the current trajectory, and terms kt and Kt are
such that the overall controller is linear

The fitted dynamics are only valid in a local region around the samples but
the new controller generated by iLQG can be arbitrarily different from the
old one.
Large changes in trajectories between iterations cause the algorithm to
quickly fall into unstable, costly parts of the state space, preventing
convergence.

The original iLQG algorithm uses a line search to bound the difference
between the old and new generated trajectory.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 17 / 40



Iterated LQG: Optimal control and stability

Relevant points:

iLQG uses a quadratic approximation to the cost-to-go function of LQG

The optimal iLQG controller is p(xt ) = ût + kt + Kt (xt − x̂t ) where x̂t and ût
are the states and actions of the current trajectory, and terms kt and Kt are
such that the overall controller is linear
The fitted dynamics are only valid in a local region around the samples but
the new controller generated by iLQG can be arbitrarily different from the
old one.

Large changes in trajectories between iterations cause the algorithm to
quickly fall into unstable, costly parts of the state space, preventing
convergence.

The original iLQG algorithm uses a line search to bound the difference
between the old and new generated trajectory.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 17 / 40



Iterated LQG: Optimal control and stability

Relevant points:

iLQG uses a quadratic approximation to the cost-to-go function of LQG

The optimal iLQG controller is p(xt ) = ût + kt + Kt (xt − x̂t ) where x̂t and ût
are the states and actions of the current trajectory, and terms kt and Kt are
such that the overall controller is linear
The fitted dynamics are only valid in a local region around the samples but
the new controller generated by iLQG can be arbitrarily different from the
old one.
Large changes in trajectories between iterations cause the algorithm to
quickly fall into unstable, costly parts of the state space, preventing
convergence.

The original iLQG algorithm uses a line search to bound the difference
between the old and new generated trajectory.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 17 / 40



Iterated LQG: Optimal control and stability

Relevant points:

iLQG uses a quadratic approximation to the cost-to-go function of LQG

The optimal iLQG controller is p(xt ) = ût + kt + Kt (xt − x̂t ) where x̂t and ût
are the states and actions of the current trajectory, and terms kt and Kt are
such that the overall controller is linear
The fitted dynamics are only valid in a local region around the samples but
the new controller generated by iLQG can be arbitrarily different from the
old one.
Large changes in trajectories between iterations cause the algorithm to
quickly fall into unstable, costly parts of the state space, preventing
convergence.

The original iLQG algorithm uses a line search to bound the difference
between the old and new generated trajectory.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 17 / 40



Policy Search

States and actions could continuous or high dimension and so we would like to
parameterize value functions into policies. Direct policy search

Finds parameters θ that optimizes expected reward J(θ)

Uses methods such as policy gradients, finite-differences or evolutionary
methods

What if θ itself is high dimension? Direct policy search may

require many samples. Can be addressed with importance sampling.

fall into local minima

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 18 / 40



Policy Search

States and actions could continuous or high dimension and so we would like to
parameterize value functions into policies. Direct policy search

Finds parameters θ that optimizes expected reward J(θ)

Uses methods such as policy gradients, finite-differences or evolutionary
methods

What if θ itself is high dimension? Direct policy search may

require many samples. Can be addressed with importance sampling.

fall into local minima

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 18 / 40



Guided Policy Search

Guided policy search (Levine and Koltun 2013)

uses a variant of importance sampling

uses iLQG to generate guiding samples offline. iLQG as ‘differential dynamic
programming (DDP)’ in the paper.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 19 / 40



Guided Policy Search: importance sampling

Uses a variant of importance sampling where the estimator has an
additional regularizing term.

Φ(θ) =
T∑
t=1

[
1

Zt(θ)

m∑
i=1

πθ(ξi ,1:t)

q(ξi ,1:t)
r(x it , u

i
t)+wr logZt(θ)

]

where ξi ,1:t is the ith truncated rollout to time t, r is the reward function,
Zt(θ) normalizes the weights, q(x) is a different distribution where
samples are drawn.

Regularizing term acts as a soft maximum over the log weights, ensuring
that at least some samples have a high probability under πθ.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 20 / 40



Guided Policy Search: importance sampling

Uses a variant of importance sampling where the estimator has an
additional regularizing term.

Φ(θ) =
T∑
t=1

[
1

Zt(θ)

m∑
i=1

πθ(ξi ,1:t)

q(ξi ,1:t)
r(x it , u

i
t)+wr logZt(θ)

]

where ξi ,1:t is the ith truncated rollout to time t, r is the reward function,
Zt(θ) normalizes the weights, q(x) is a different distribution where
samples are drawn.

Regularizing term acts as a soft maximum over the log weights, ensuring
that at least some samples have a high probability under πθ.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 20 / 40



Guided Policy Search: iLQG

Recall iLQG controller is a linear controller p(xt) = ût + kt + Kt(xt − x̂t)

Under linear dynamics and quadratic rewards, the quadratic cost-to-go
function in iLQG can also be minimized by a linear-Gaussian controller

πG (ut |xt) = N (ût + kt + Kt(xt − x̂t),Q
−1
u,ut)

where the covariance term Q−1
u,ut is the inverse Hessian of the quadratic

form of the cost-to-go with respect to action u.

Use this linear-Gaussian controller to generate guiding samples.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 21 / 40



Guided Policy Search: iLQG

Recall iLQG controller is a linear controller p(xt) = ût + kt + Kt(xt − x̂t)

Under linear dynamics and quadratic rewards, the quadratic cost-to-go
function in iLQG can also be minimized by a linear-Gaussian controller

πG (ut |xt) = N (ût + kt + Kt(xt − x̂t),Q
−1
u,ut)

where the covariance term Q−1
u,ut is the inverse Hessian of the quadratic

form of the cost-to-go with respect to action u.

Use this linear-Gaussian controller to generate guiding samples.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 21 / 40



Guided Policy Search: iLQG

Recall iLQG controller is a linear controller p(xt) = ût + kt + Kt(xt − x̂t)

Under linear dynamics and quadratic rewards, the quadratic cost-to-go
function in iLQG can also be minimized by a linear-Gaussian controller

πG (ut |xt) = N (ût + kt + Kt(xt − x̂t),Q
−1
u,ut)

where the covariance term Q−1
u,ut is the inverse Hessian of the quadratic

form of the cost-to-go with respect to action u.

Use this linear-Gaussian controller to generate guiding samples.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 21 / 40



Guided Policy Search

Line 1 uses the linear-Gaussian
controller to generate guiding samples

Line 2 generates m rollouts

Line 4 Builds sample set from guiding
samples and samples from initial policy
πθ∗

Line 6 performs importance sampling

Line 7 uses LBFGS to find optimal (for
Sk ) parameters θk which gives
optimized policy πθk for Sk

Line 8 add samples from optimized πθk
to Sk and S

If policy πθk is better than policy πθ∗ ,
replace parameters θ∗ with θk

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 22 / 40



Pause

Those are the main building blocks.

Any questions/ comments before we move on to the algorithm in the main paper?

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 23 / 40



Main algorithm

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 24 / 40



Overview of algorithm

Conceptually, there are three main components to the algorithm

1 Optimize time-varying linear-Gaussian controllers (i.e. iLQG-like controllers)
and use this to generate rollouts.

2 Fit a Gaussian mixture model (GMM) to the distribution of trajectories.
3 Optimize policy parameters using GPS.

This is a hybrid approach because item 1 is model-based and item 3 is model-free.
Item 2 is there to reduce sample complexity.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 25 / 40



Algorithm

Indices: i for controller/ rollout. j is probably k

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 26 / 40



Line 2: Generate sample trajectories

Generate samples {τ ji } from each linear-Gaussian controller pi (τ) by
performing rollouts. In other words, each linear-Gaussian controller interacts
with the live system to generate trajectories τi = {x1i , u1i , . . . , xTi , uTi}.

Rollouts start from different initial states or in different conditions.

Note that during training, this is the only step that interacts with the
system.

The authors argue that this is appealing from a safety point of view when
the initial parameterized policy is unstable because stabilizing
linear-Gaussian controllers is easier than stabilizing arbitrary policies.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 27 / 40



Line 2: Generate sample trajectories

Generate samples {τ ji } from each linear-Gaussian controller pi (τ) by
performing rollouts. In other words, each linear-Gaussian controller interacts
with the live system to generate trajectories τi = {x1i , u1i , . . . , xTi , uTi}.

Rollouts start from different initial states or in different conditions.

Note that during training, this is the only step that interacts with the
system.

The authors argue that this is appealing from a safety point of view when
the initial parameterized policy is unstable because stabilizing
linear-Gaussian controllers is easier than stabilizing arbitrary policies.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 27 / 40



Line 2: Generate sample trajectories

Generate samples {τ ji } from each linear-Gaussian controller pi (τ) by
performing rollouts. In other words, each linear-Gaussian controller interacts
with the live system to generate trajectories τi = {x1i , u1i , . . . , xTi , uTi}.

Rollouts start from different initial states or in different conditions.

Note that during training, this is the only step that interacts with the
system.

The authors argue that this is appealing from a safety point of view when
the initial parameterized policy is unstable because stabilizing
linear-Gaussian controllers is easier than stabilizing arbitrary policies.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 27 / 40



Line 2: Generate sample trajectories

Generate samples {τ ji } from each linear-Gaussian controller pi (τ) by
performing rollouts. In other words, each linear-Gaussian controller interacts
with the live system to generate trajectories τi = {x1i , u1i , . . . , xTi , uTi}.

Rollouts start from different initial states or in different conditions.

Note that during training, this is the only step that interacts with the
system.

The authors argue that this is appealing from a safety point of view when
the initial parameterized policy is unstable because stabilizing
linear-Gaussian controllers is easier than stabilizing arbitrary policies.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 27 / 40



Line 3: Use generated samples to model dynamics

The linear-Gaussian controllers pi (τ) induce approximately Gaussian
distribution over trajectories. Use this to fit dynamics p(xt+1|xt , ut ).

This is where the mixture of Gaussian models prior on the distribution of
trajectories is used for sample efficiency.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 28 / 40



Line 4: Policy optimization using GPS

A supervised learning step involving a constrained version of GPS (Levine and
Koltun 2014).

Enforces agreement between policy and trajectory by means of a soft
KL-divergence constraint.

We use the more standard expected cost objective, resulting in the following
optimization objective

min
θ,p(τ)

Ep(τ)[l(τ)] s.t. DKL(p(xt )πθ(ut |xt )‖p(xt , ut )) = 0 ∀t

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 29 / 40



Line 4: Policy optimization using GPS

Turn constrained GPS to unconstrained with Lagrangian

LGPS (θ, p, λ) = Ep(τ)[l(τ)] +
T∑
t=1

λtDKL(p(xt )πθ(ut |xt )‖p(xt , ut ))

where

p(τ) = argmin
p(τ)∈N (τ)

Ep [l(τ)]−H(p(τ)) s.t. p(xt+1|xt , ut ) = N (xt+1 : ∇fx,t · xt +∇fu,t ·ut ,Ft )

where H is the differential entropy, which is an attempt to extend the idea of
Shannon entropy to continuous probability distributions. Guided policy search

uses alternating optimization:
1 Optimizing LGPS wrt to p(τ) corresponds to trajectory optimization, which in

our case involves dual gradient descent on Ltraj in Section 3.1,

2 and optimizing with respect to θ corresponds to supervised policy
optimization to minimize the weighted sum of KL-divergence.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 30 / 40



Line 5: Optimize linear Gaussian controllers

This step performs trajectory optimization with unknown dynamics step and
is the part of the paper that is novel.

Now that the dynamics have been updated, we need to update the
linear-Gaussian controllers pi (ut |xt ) = N (Ktxt + kt ,Ct ) that will generate new
trajectories at the start of the next iteration of the loop.

We also want to exploit the linear-Gaussian structure and use dynamic
programming. That would make this step more efficient than general policy
optimization.

But we cannot use iLQG directly. iLQG uses a line search to ensure stability,
i.e. new trajectory generated is not too different from old. But a line search
‘is impractical when the rollouts must be stochastically sampled from the
real system’.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 31 / 40



Line 5: Optimize linear Gaussian controllers

Instead, authors impose constraint on the change in the KL divergence of
controller between iterations

min
p(τ)∈τ

Ep [l(τ)] s.t. DKL(p(τ)‖p̂(τ)) ≤ ε

Again, use Lagrangian to go from constrained to unconstrained optimization

Ltraj (p(τ), η) = Ep [l(τ)] + η [DKL(p(τ)l p̂(τ))− ε]

Authors show that Ltraj can still use DP to optimize p(τ).

So this step involves

Run gradient descent to optimize η

Run DP to optimize p(τ).

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 32 / 40



Line 6: Proxy for dual gradient descent (practical detail)

In practice, the algorithm does not use dual gradient descent to update the dual
variable λi,t in line 4.

It takes too long (‘unnecessary and costly’) to optimize LGPS (θ, p, λ) wrt p(τ) and
to θ to convergence before each update of λ.

Instead, they just increment every λi after each iteration with a multiple α of the
constraint of the original (constrained) objective. This approach amounts to using
a penalty method instead.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 33 / 40



Use a Gaussian mixture model prior (practical detail)

Sample efficiency generally depends on system dimension. But could use
priors to reduce sample complexity.

Recall that the distribution of sampled trajectories is roughly Gaussian. This
suggests a mixture of Gaussian model (GMM).

If we use the GMM to obtain a prior for linear regression, it is easy to
determine the correct linear model from the covariance of (xti , uti ) with xt+1i
in the current samples at time step t.

Construct GMM prior using experience tuples {xt+1, xt , ut} from samples.

GMM is used to produce a normal-inverse-Wishart prior for the mean and
covariance of this Gaussian at each time step.

Authors claimed that GMM prior reduces the number of samples needed at
each iteration by a factor of 4 to 8.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 34 / 40



Experimental results

Comparison methods

iLQG with a known model. Baseline.

REPS(100s) and REPS(20+500). Model-free method that enforces
KL-divergence constraint between new and old policy. The 500 is the
number of pseudo-samples.

Reward-weighted regression. (RWR). An EM algorithm that fits the policy
to previous samples weighted by the exponential of their reward.

Cross-entropy method. (CEM) Fits policy to the best samples in each batch.

PILCO. Model-based method that uses a Gaussian process to learn a global
dynamics model that is used to optimize the policy.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 35 / 40



Experimental results

Comparison tasks

Insertion tasks. Test method’s ability to handle discontinuities.

Octopus arm control. Test method’s ability to handle high dimensionalities.

Swimming and walking tasks. Challenge comes from underactuation.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 36 / 40



Experimental results

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 37 / 40



Experimental results

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 38 / 40



Questions/ discussion

Thank you.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 39 / 40



Questions/ discussion

Thank you.

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 39 / 40



References

Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z.,
Eslami, A., Riedmiller, M., & Silver, D. (2017) Emergence of locomotion behaviours in
rich environments. In arXiv:1707.02286.

Levine, S. (2018) CS 285 lectures. http://rail.eecs.berkeley.edu/deeprlcourse

Levine, S. & Abbeel, P. (2014) Learning neural network policies with guided policy search
under unknown dynamics. In Advances in Neural Information Processing Systems
(NeurIPS).

Levine, S. & Koltun, V. (2013) Guided policy search. In International Conference on
Machine Learning (ICML).

Levine, S. & Koltun, V. (2014) Learning complex neural network policies with trajectory
optimization. In International Conference on Machine Learning (ICML).

Li, W. & Todorov, E. (2004) Iterative Linear Quadratic Regulator Design for Nonlinear
Biological Movement Systems. In ICINCO (1), pages 222-229.

Tassa, Y., Erez, T. & Todorov, E. (2012) Synthesis and stabilization of complex behaviors
through online trajectory optimization. In IEEE/ RSJ International Conference on
Intelligent Robots and Systems.

Todorov, E. & Li, W. (2005) A generalized iterative LQG method for locally-optimal
feedback control of constrained nonlinear stochastic systems. In Proceedings of the 2005
American Control Conference.

Van de Panne, M. (2020) CPSC 533-V lectures.
https://www.cs.ubc.ca/~van/cpsc533/index.html

UBC MLRG Iterative LQR and Guided Policy Search 29-July-2020 40 / 40

http://rail.eecs.berkeley.edu/deeprlcourse
https://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf
https://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf
https://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf
https://www.cs.ubc.ca/~van/cpsc533/index.html

	Introduction
	Goals and Objectives
	Terminology and notation

	Building blocks
	Iterated LQG
	Guided Policy Search

	Hybrid algorithm for systems with unknown dynamics

