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Introduction



Introduction

Control theory is the study and practice of manipulating dynamical systems.

• Inseparable from data science - sensor measurements (data)
• Characteristics of this data is different from a statistical learning setting.
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Example - PID temperature controller

Figure 1: https://bit.ly/2Zk2JKE

• A Proportional-Integral-Derivative
controller is a feedback control
mechanism.

• A temperature controller takes
measurements from a temperature sensor.

• Its output is connected to a control
element such as a heater or a fan.
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Example - MCAS

Figure 2: https://bit.ly/3iYLkyI
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Types of control
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• Passive control does not require input energy.

• Cheap, simple, reliable.
• May not be sufficient.
• Example: stop signs at traffic

intersections.

• Active control requires input energy.

• Further categorized based on whether
sensors are used.
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• Open-loop control relies on a pre-programmed
control sequence.

• Example: traffic lights.

• Sensor-based control uses sensor measurements
to inform the control law.
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• Disturbance feedforward control measures
external disturbances to the system, then feeds
this into an open-loop control law.

• Example: Preemptive road closure near a
stadium before a concert.

• Closed-loop control measures the system directly,
then feeds the sensor measurements back.

• Example: Sensors in the roadbed.

• This will be our main focus.
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Outline

We will follow Chapter 8 in Brunton and Kutz [2019],

• Closed-loop feedback control (Section 8.1)
• Stability and eigenvalues (Section 8.2)
• Controllability (Section 8.3)
• Reachability (Section 8.3)
• Optimal full-state control: LQR (Section 8.4)
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Closed-loop feedback control



Closed-loop feedback control

System

Controller

Sensors
y(t)

Actuators
u(t)

Disturbances

w =
[
wT

d wT
n wT

r

]T

Cost
J(x,u,wr )
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Closed-loop feedback control

System

Controller

Sensors
y(t)

Actuators
u(t)

Disturbances

w =
[
wT

d wT
n wT

r

]T

Cost
J(x,u,wr )

Together, this forms a dynamical system given by

ẋ := d
dt x = f(x,u,wd ), y = g(x,u,wn),

and the goal is to construct a control law

u = k(y,wr ) such that the cost J is minimized. 6



Example: Inverted pendulum
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Benefits of feedback control

Compared to open-loop control, closed-loop feedback makes it possible to

• Stabilize an unstable system.

• Compensate for external disturbances.
• Correct for unmodeled dynamics.
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Stability and eigenvalues



Linearization of nonlinear dynamics

Our nonlinear dynamical system is given by

ẋ = f(x,u,wd ), y = g(x,u,wn),

and the goal is to construct a control law

u = k(y,wr ) such that the cost J(x,u,wr ) is minimized.
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Linearization of nonlinear dynamics

For simplicity, let’s ignore the external disturbances w, which gives

ẋ = f(x,u), y = g(x,u).

Near a fixed point (x̄, ū) where f(x̄, ū) = 0, we can use a Taylor expansion to obtain the
following linearization

ẋ = Ax + Bu, y = Cx + Du,

where A = ∇fx(x̄ , ū), B = ∇fu(x̄ , ū), C = ∇gx(x̄ , ū), and D = ∇gu(x̄ , ū).
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10



Unforced linear system - without control

Linear system

ẋ = Ax + Bu, y = Cx + Du

Now suppose

• In the absence of control: u = 0
• and with measurements of the full state: y = x,

our dynamical system becomes
ẋ = Ax,

and the solution x(t) is given by
x(t) = eAtx(0).
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Unforced linear system - without control

Linear system

ẋ = Ax, y = x

and the solution x(t) is given by
x(t) = eAtx(0),

where the matrix exponential is given by the infinite power series

eAt = I + At + 1
2!A2t2 + 1

3!A2t3 + · · · =
∞∑

k=0

1
k!Aktk .

• When A is diagonalizable, eAt can be computed by leveraging A’s eigendecomposition:
• A = QΛQ−1 =⇒ eAt = QeΛtQ−1

• When A is not diagonalizable, write Λ in Jordan form and compute the matrix exponential
with simple extensions.
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Unforced linear system - without control

If we write the states as x = Qz, then

ż = Q−1ẋ
= Q−1Ax
= Q−1AQz
= Λz.

Our dynamical system simplifies from ẋ = Ax to ż = Λz, with solution
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Unforced linear system - stability

x(t) = QeΛtQ−1x(0).

• In general, the eigenvalues may be complex numbers: λ = a + ib.
• Using Euler’s formula: eλt = eat(cos(bt) + i sin(bt)).

• Therefore, if all the eigenvalues λk have negative real part, i.e. a < 0, then the
system is stable and x = 0 as t →∞.

• If for any λk we have a > 0, then the system will diverge in this direction, which is very
likely for a random initial condition.
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Example: Stability of the inverted pendulum

From physics, we have θ̈ = − g
L sin(θ) + u.

Writing the system as a first-order differential equation,

x =
[

x1

x2

]
=
[
θ

θ̇

]
=⇒ d

dt

[
x1

x2

]
=
[

x2

− g
L sin(x1) + u

]
.

Taking the Jacobian of ẋ = f(x,u) yields

df
dx =

[
0 1

− g
L cos(x1) 0

]
,

df
du =

[
0
1

]
.
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Stability of the inverted pendulum

df
dx

=
[

0 1
− g

L cos(x1) 0

]
,

df
du

=
[

0
1

]
.

Linearizing at the pendulum up (x1 = π, x2 = 0) fixed point,

ẋ =
[

0 1
g
L 0

][
x1
x2

]
+
[

0
1

]
u

and down (x1 = 0, x2 = 0) fixed point,

ẋ =
[

0 1
− g

L 0

][
x1
x2

]
+
[

0
1

]
u

• Pendulum up (“inverted”): λ = ±
√

g/L, positive real part =⇒ instability.

• Pendulum down: λ = 0± i
√

g/L, stable.
• Good news: if we use closed-loop feedback control u = −Kx, we may be able to stabilize it!
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Controllability

Linear system

ẋ = Ax + Bu, y = x

where x ∈ Rn, u ∈ Rq, A ∈ Rn×m, and B ∈ Rn×q.

Controllability:

• When can we use feedback control to manipulate the system into what we want?

• If we can control the system, how do we design the control law u = −Kx to drive the
system to the desired behaviour?

With feedback control, we can write the dynamical system as

ẋ = (A− BK)x

and hopefully we can use K such that we can place the eigenvalues wherever we want.
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Controllability matrix

The controllability of a linear system in the form ẋ = (A− BK)x is determined entirely by the column space of
the controllability matrix:

Controllability matrix

C =
[

B AB A2B . . . An−1B
]

The following conditions are equivalent:

• Controllability:

• Columns of C span all of Rn.
• Arbitrary eigenvalue placement:

• It’s possible to choose K such that the eigenvalues of (A− BK) can be wherever we want.
• Reachability of Rn:

• It’s possible to steer the system to any arbitrary state x(t) = ξ ∈ Rn in finite time with some
actuation signal u(t).
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Controllability - Example I

Consider the following system:

ẋ =
[

1 0
0 2

][
x1

x2

]
+
[

0
1

]
u

Is this system controllable?

No. The eigenvalues are real and greater than 0, the states x1 and x2 are completely decoupled
but u only affects x2.
We can also check the controllability matrix, which is in this case

C =
[

0 0
1 2

]

and the two columns are linearly dependent.
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Controllability - Example II

What about allowing two knobs? Consider the following system:

ẋ =
[

1 0
0 2

][
x1

x2

]
+
[

1 0
0 1

][
u1

u2

]

Is this system controllable?

Yes. Both states can be independently controlled by u1 and u2.
The controllability matrix is

C =
[

1 0 1 0
0 1 0 2

]
which spans all of R2.
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Controllability - Example III

What about when the states are coupled? Consider the following system:

ẋ =
[

1 1
0 2

][
x1

x2

]
+
[

0
1

]
u

Is this system controllable?

Maybe not obvious, but Yes. Even though we only have a single actuation, we can actually
control x1 through controlling x2 since the states are coupled.
In this case, the controllability matrix is

C =
[

0 1
1 2

]

which again spans all of R2.
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The PBH test for controllability

The Popov-Belevitch-Hautus test

The system ẋ = Ax + Bu is controllable if and only if the column rank of
[
(A− λI) B

]
is

equal to n for all λ ∈ C.

• If λ is not an eigenvalue of A, then rank(A− λI) = n is guaranteed,.
• Only need to test for the eigenvalues of A!

• If λ is an eigenvalue of A, then N (A− λI) is the span of the eigenvector.
• To make up for this rank deficiency, columns of B must have components in the eigenvector

direction corresponding to λ.

• If A has n distinct eigenvalues, then B only needs to account for one direction per eigenvalue.
• Take B to be the sum of all n linearly-independent eigenvectors, and we only need a single

actuation to control ths system!
• Or just take a random vector...
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The Gramian - degrees of controllability

• The rank tests only give yes or no answers.
• But some states can be easier to control than others.

The controllability Gramian

W(t) =
∫ t

0
eAτ BBT eAT τ dτ ∈ Rn×n,

which is often evaluated at infinite time,

W = lim
t→∞

W(t).

• The controllability of a state is measured by xT Wx, the larger the more controllable.
• The eigendecomposition of W also tells us how much we can steer the system in the

direction of the eigenvectors.
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Reachability



The Cayley-Hamilton theorem and reachability

Reachability: it’s possible to steer the system to any arbitrary state x(t) = ξ ∈ Rn in finite time with some
actuation signal u(t).

The Cayley-Hamilton theorem
Every square matrix A satisfies its own characteristic equation:

det(A− λI) = λn + an−1λ
n−1 + · · ·+ a2λ

2 + a1λ+ a0 = 0

=⇒ An + an−1An−1 + · · ·+ a2A2 + a1A + a0I = 0.

This allows us to express An as a linear combination of the lower-order powers:

An = −an−1An−1 − · · · − a2A2 − a1A− a0I.

More importantly, we can do this for any power greater than n:

Ak≥n =
n−1∑
j=0

αj Aj .
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The Cayley-Hamilton theorem and reachability

The Cayley-Hamilton theorem allows us to express the infinite power series eAt as a finite sum:

eAt = I + At +
1
2!

A2t2 +
1
3!

A2t3 + . . .

= α0(t)I + α1(t)A + α2(t)A2 + · · ·+ αn−1(t)An−1.

What does this have to do with reachability?

With control and zero initial condition x(0) = 0, the solution to the system ẋ = Ax + Bu is

x(t) =
∫ t

0
eA(t−τ)Bu(τ)dτ.

So a state ξ ∈ Rn being reachable just means there exists u(t) such that

ξ =
∫ t

0
eA(t−τ)Bu(τ)dτ.
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x(t) =
∫ t

0
eA(t−τ)Bu(τ)dτ.

So a state ξ ∈ Rn being reachable just means there exists u(t) such that

ξ =
∫ t

0
eA(t−τ)Bu(τ)dτ.

25



The Cayley-Hamilton theorem and reachability

A state ξ ∈ Rn is reachable if there exists u(t) such that

ξ =
∫ t

0
eA(t−τ)Bu(τ)dτ

=
∫ t

0
[α0(t − τ)I + α1(t − τ)A + α2(t − τ)A2 + · · ·+ αn−1(t − τ)An−1]Bu(τ)dτ

= B
∫ t

0
α0(t − τ)u(τ)dτ + AB

∫ t

0
α1(t − τ)u(τ)dτ + · · ·+ An−1B

∫ t

0
αn−1(t − τ)u(τ)dτ

=
[

B AB . . . An−1B
]

∫ t

0 α0(t − τ)u(τ)dτ∫ t
0 α1(t − τ)u(τ)dτ

...∫ t
0 αn−1(t − τ)u(τ)dτ

 .
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The Cayley-Hamilton theorem and reachability

A state ξ ∈ Rn is reachable if there exists u(t) such that
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 .

• Therefore, the only way for all of Rn to be reachable is when the columns of C spans Rn.

• If C has rank n, then we can design u(t) to reach any state ξ ∈ Rn.
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Optimal full-state control: LQR



Optimal control

System

Controller

Sensors
y(t)

Actuators
u(t)

Disturbances
w

Cost
J(x,u)

• Recall that if the system ẋ = Ax + Bu is controllable, then it’s possible to arbitrarily manipulate the
eigenvalues through a full-state feedback control law u = −Kx.

• If we choose u to make the system arbitrarily stable, this can lead to
• Expensive control expenditure J(x, u).
• Over-react to noise and disturbances.

28



Optimal control

System

Controller

Sensors
y(t)

Actuators
u(t)

Disturbances
w

Cost
J(x,u)
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Optimal control: LQR

• Optimal control: choosing the best gain matrix K to stabilize the system with minimum effort.

• Seek balance between stability and aggressiveness of control.

Consider the cost function

J(t) =
∫ t

0
x(τ)T Qx(τ)︸ ︷︷ ︸

cost of deviations of x

+ u(τ)T Ru(τ)︸ ︷︷ ︸
cost of control

dτ

• Q � 0 - can achieve zero deviation.

• R � 0 - but control effort is always needed.

• Often diagonal, tuned to weigh the relative importance of the states/control knobs.

• We now have an optimization problem!!!!!
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Optimal control: LQR

J(t) =
∫ t

0
x(τ)T Qx(τ)︸ ︷︷ ︸

cost of deviations of x

+ u(τ)T Ru(τ)︸ ︷︷ ︸
cost of control

dτ

The linear-quadratic-regulator (LQR) control law u = −Kr x is designed to minimize J = limt→∞ J(t).

• Linear control law u = −Kr x

• Quadratic cost function J

• Regulates the state of the system to limt→inf x(t) = 0.
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• Linear control law u = −Kr x

• Quadratic cost function J

• Regulates the state of the system to limt→inf x(t) = 0.
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Optimal control: LQR

Since J(t) is quadratic, there is an analytical solution given by

Kr = R−1BT X,

where X is the solution to an algebraic Riccati equation:

AT X + XA− XBR−1BT X + Q = 0.

• There exists numerically robust implementations to solve this.

• Very expensive for high-dimensional systems - O(n3).

• Reduced-order models: use fewer states.
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Summary

What we covered:

• Closed-loop feedback control.

• Stability and eigenvalues of a linear dynamical system.
• Controllability and Reachability.
• Optimal full-state control: LQR.

What we didn’t cover:

• How to derive the Riccati equations for LQR. (End of Section 8.4 in [Brunton and Kutz,
2019])

• Full-state estimation and the Kalman filter. (Section 8.5 in [Brunton and Kutz, 2019])
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Thank you
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