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Introduction

Control theory is the study and practice of manipulating dynamical systems.

e Inseparable from data science - sensor measurements (data)

e Characteristics of this data is different from a statistical learning setting.



Example - PID temperature controller

e A Proportional-Integral-Derivative
controller is a feedback control
mechanism.

Figure 1: https://bit.1ly/2Zk2JKE


https://bit.ly/2Zk2JKE

Example - PID temperature controller

e A Proportional-Integral-Derivative
controller is a feedback control
mechanism.

e A temperature controller takes
measurements from a temperature sensor.

e |ts output is connected to a control
element such as a heater or a fan.

Figure 1: https://bit.1ly/2Zk2JKE


https://bit.ly/2Zk2JKE

Example - MCAS

Boeing 737 Max
Maneuvering Characteristics Augmentation System

MCAS pushes the jet's nose down
to reduce the risk of stalling

Activates automatically when:
- Angle of attack is high ="

- Autopilot is off

- Flaps are up

- Steeply turning

MCAS moves Ihe horlzomal stabilizer trim
upward at .27° per secon \
up to 2.5° and 9 26 seconds atatime \

Deactivates when:

- Angle of attack is sufficiently lowered
Q THE AIR CURRENT - Pilots override with manual trim

Figure 2: https://bit.1ly/3iYLkyl


https://bit.ly/3iYLkyI

Types of control

e Passive control does not require input energy.

o Cheap, simple, reliable.

e May not be sufficient.

e Example: stop signs at traffic
intersections.



Types of control

e Passive control does not require input energy.

o Cheap, simple, reliable.

e May not be sufficient.

e Example: stop signs at traffic
intersections.

e Active control requires input energy.

e Further categorized based on whether
sensors are used.



Types of control

e Open-loop control relies on a pre-programmed

control sequence.

e Example: traffic lights.




Types of control

e Open-loop control relies on a pre-programmed

control sequence.

e Example: traffic lights.

e Sensor-based control uses sensor measurements

to inform the control law.



Types of control

e Disturbance feedforward control measures
external disturbances to the system, then feeds
this into an open-loop control law.

e Example: Preemptive road closure near a
stadium before a concert.
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e Disturbance feedforward control measures
external disturbances to the system, then feeds
this into an open-loop control law.

e Example: Preemptive road closure near a
stadium before a concert.

e Closed-loop control measures the system directly,
then feeds the sensor measurements back.

e Example: Sensors in the roadbed.




Types of control

e Disturbance feedforward control measures
external disturbances to the system, then feeds
this into an open-loop control law.

e Example: Preemptive road closure near a
stadium before a concert.

e Closed-loop control measures the system directly,
then feeds the sensor measurements back.

e Example: Sensors in the roadbed.
e This will be our main focus.




We will follow Chapter 8 in Brunton and Kutz [2019],

e Closed-loop feedback control (Section 8.1)

Stability and eigenvalues (Section 8.2)

Controllability (Section 8.3)
Reachability (Section 8.3)
Optimal full-state control: LQR (Section 8.4)
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Closed-loop feedback control

Cost

J(x,u,w,)

Disturbances

Actuators Sensors

u(t) SR y(1)

Controller

e y(t) sensor measurements



Closed-loop feedback control

! 1
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e y(t) sensor measurements

e u(t) actuation signal



Closed-loop feedback control

! 1
Disturbances —_— | —

= 77 1 :

W= WZ/’ W/777 WyT : ACtuatOrS SyStem Sensors : J(X7 u, Wr)

d 1

: u(t) _ y( t) !
i !
' — !
! 1
1
| Controller :
: 1
1 - 0
! 1

e w, disturbances to the system



Closed-loop feedback control
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e wy disturbances to the system

e W, measurement noise



Closed-loop feedback control

Cost

J(x,u,w,)

Disturbances

Actuators Sensors

ut) (1)

Controller

e wy disturbances to the system
e w, measurement noise

e w, reference trajectory



Closed-loop feedback control

| 1
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Together, this forms a dynamical system given by
X = —-X :f(x,u,wd), y:g(xauvwn)v

dt

and the goal is to construct a control law

u = k(y,w,) such that the cost J is minimized.



Example: Inverted pendulum

NNV NNV N VNN



Benefits of feedback control

Compared to open-loop control, closed-loop feedback makes it possible to

e Stabilize an unstable system.
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Benefits of feedback control

Compared to open-loop control, closed-loop feedback makes it possible to

e Stabilize an unstable system.
e Compensate for external disturbances.

e Correct for unmodeled dynamics.



Stability and eigenvalues



Linearization of nonlinear dynamics

Our nonlinear dynamical system is given by
x = f(x,u,wy), y = g(x,u,w,),
and the goal is to construct a control law

u =k(y,w,) such that the cost J(x,u,w,) is minimized.



Linearization of nonlinear dynamics

For simplicity, let's ignore the external disturbances w, which gives

x = f(x,u), y = g(x,u).

10



Linearization of nonlinear dynamics

For simplicity, let's ignore the external disturbances w, which gives

x = f(x,u), y = g(x,u).

Near a fixed point (X,u) where f(x,u) = 0, we can use a Taylor expansion to obtain the
following linearization
x = Ax + Bu, y = Cx + Du,

where A = Vi, (x, 1), B = Vf,(x,0), C = Vgx(k, ), and D = Vg,(x, 0).

10



Unforced linear system - without control

Linear system

x = Ax + Bu, y = Cx + Du

11



Unforced linear system - without control

Linear system

x = Ax + Bu, y = Cx + Du

Now suppose

e In the absence of control: u=0

e and with measurements of the full state: y = x,

our dynamical system becomes
x = Ax,

and the solution x(t) is given by
x(t) = e*x(0).

11



Unforced linear system - without control

Linear system
x = Ax, y =X
and the solution x(t) is given by
x(t) = e*'x(0),

where the matrix exponential is given by the infinite power series

i

1
At _ 2.2
€ —I+At+2!At +3!

1
2.3 _Z k 4k
At+-~-—k0k!At.

12



Unforced linear system - without control

Linear system

and the solution x(t) is given by

where the matrix exponential is given by the infinite power series

i

1
At _ 2.2
€ —I+At+2!At +3!

1
2.3 _Z k 4k
At+-~-—k0k!At.

e When A is diagonalizable, e®t can be computed by leveraging A's eigendecomposition:
e A=QAQ ! — M =QMQH
e When A is not diagonalizable, write A in Jordan form and compute the matrix exponential
with simple extensions.

12



Unforced linear system - without control

If we write the states as x = Qz, then
z=Q 'x
= Q 'Ax
= Q 'AQz
= Az.
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Unforced linear system - without control

If we write the states as x = Qz, then

z=Q 'x
= Q 'Ax
= Q!AQz
= Az.

Our dynamical system simplifies from x = Ax to z = Az, with solution

x(t) = Qe Q1x(0).
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Unforced linear system - without control

If we write the states as x = Qz, then

Our dynamical system simplifies from x = Ax to z = Az, with solution

x(t) = QM Q1x(0).

The eigenvalues in A also tell us about the stability of the system.
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Unforced linear system - without control

If we write the states as x = Qz, then

Our dynamical system simplifies from x = Ax to z = Az, with solution

x(t) = QM Q1x(0).

The eigenvalues in A also tell us about the stability of the system.
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Unforced linear system - stability

x(t) = QeMQ1x(0).

e In general, the eigenvalues may be complex numbers: A = a + ib.

e Using Euler's formula: e’ = e¥(cos(bt) + isin(bt)).

14



Unforced linear system - stability

x(t) = QeMQ1x(0).

e In general, the eigenvalues may be complex numbers: A = a + ib.
e Using Euler's formula: e’ = e¥(cos(bt) + isin(bt)).
e Therefore, if all the eigenvalues )\, have negative real part, i.e. a <0, then the

system is stable and x =0 as t — oo.
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Unforced linear system - stability

x(t) = QeMQ1x(0).

e In general, the eigenvalues may be complex numbers: A = a + ib.
e Using Euler's formula: e’ = e¥(cos(bt) + isin(bt)).
e Therefore, if all the eigenvalues )\, have negative real part, i.e. a <0, then the

system is stable and x =0 as t — oo.

If for any Ax we have a > 0, then the system will diverge in this direction, which is very

likely for a random initial condition.

14



Example: Stability of the inverted pendulum

NV VN VNN N
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Example: Stability of the inverted pendulum

From physics, we have 6 = —£ sin(6) + u.
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Example: Stability of the inverted pendulum

From physics, we have 6 = —£ sin(6) + u.
Writing the system as a first-order differential equation,

- X1 - 9 i X1 - X2
x= lX2‘| N [H] — dt lX2‘| N [fsin(xl)—&-u ’

NV VN VNN N

15



Example: Stability of the inverted pendulum

From physics, we have 6 = —£ sin(6) + u.
Writing the system as a first-order differential equation,

- X1 - 9 i X1 - X2
x= lX2‘| N [9] — dt lX2‘| N [fsin(xl)—&-u ’

Taking the Jacobian of x = f(x, u) yields

df 0 1| df |0
AV VA VA VA N N N W WY dx |—%cos(x;) O]  du [1|°

15



Stability of the inverted pendulum

df 0 1] o o
dx —£cos(x1) O’ du  [1|°

Linearizing at the pendulum up (x; = 7, x2 = 0) fixed point,

w0 1 [l [o],
o % 0 |x 1
and down (x; = 0, x> = 0) fixed point,
o 1] [a], [0
.V U W W W W W W W T =g o] || T |1]"

16



Stability of the inverted pendulum

NV VNNV NN N

e Pendulum up (“inverted”): \ = 4 \//g L

o [ o 1] o o
dx —£cos(x1) O’ du  [1|°

Linearizing at the pendulum up (x; = 7, x2 = 0) fixed point,

. 0 1 X1 0
X= |, + u
i 0 X2 1
and down (x; = 0, x> = 0) fixed point,
)_( 0 1| [x1 i 0
= u
—% Of [x 1

, positive real part = instability.

16



ty of the inverted pendulum

L 1] df o
m dx —£cos(x1) O’ du  [1|°

Linearizing at the pendulum up (x; = 7, x2 = 0) fixed point,

0 /L, w0 1 [l [o],
o % 0 |x 1
and down (x; = 0, x> = 0) fixed point,
)’LL:T . 0 1 X1 n 0
1YV N W W WA WA W WA =g 0| || " [1]"”

e Pendulum up (“inverted”): A\ = 4+/g/L, positive real part = instability.

e Pendulum down: \ =0 +/ \//g L, stable.
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ty of the inverted pendulum

L 1] df o
dx —£cos(x1) O’ du  [1|°

Linearizing at the pendulum up (x; = 7, x2 = 0) fixed point,

a— 0 1| |x n 0 u
o % 0 |x 1
and down (x; = 0, x> = 0) fixed point,
«— 0 1| |x n 0
.V U W W W W W W W -8 of |x| " |1]”
e Pendulum up (“inverted”): A\ = 4+/g/L, positive real part = instability.
e Pendulum down: A =0+ iy/g/L, stable.
e Good news: if we use closed-loop feedback control u = —Kx, we may be able to stabilize it!

16



Controllability



Controllability

Linear system

x = Ax + Bu, y =X
where x € R", u € R, A € R"*, and B € R"*9,
Controllability:

e When can we use feedback control to manipulate the system into what we want?
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Linear system
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where x € R", u € R, A € R"*, and B € R"*9,
Controllability:

e When can we use feedback control to manipulate the system into what we want?

e |f we can control the system, how do we design the control law u = —Kx to drive the
system to the desired behaviour?
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Controllability

Linear system

x = Ax + Bu, y =X
where x € R", u € R, A € R"*, and B € R"*9,
Controllability:

e When can we use feedback control to manipulate the system into what we want?

e |f we can control the system, how do we design the control law u = —Kx to drive the
system to the desired behaviour?

With feedback control, we can write the dynamical system as
x = (A — BK)x

and hopefully we can use K such that we can place the eigenvalues wherever we want.

17



Controllability matrix

The controllability of a linear system in the form x = (A — BK)x is determined entirely by the column space of
the controllability matrix:

Controllability matrix

c=[B AB A’B ... A" B

18
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The controllability of a linear system in the form x = (A — BK)x is determined entirely by the column space of
the controllability matrix:

Controllability matrix

c=[B AB A’B ... A" B

The following conditions are equivalent:

e Controllability:

e Columns of C span all of R".
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Controllability matrix

The controllability of a linear system in the form x = (A — BK)x is determined entirely by the column space of
the controllability matrix:

Controllability matrix

c=[B AB A’B ... A" B

The following conditions are equivalent:

e Controllability:
e Columns of C span all of R".
e Arbitrary eigenvalue placement:

e It's possible to choose K such that the eigenvalues of (A — BK) can be wherever we want.
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Controllability matrix

The controllability of a linear system in the form x = (A — BK)x is determined entirely by the column space of
the controllability matrix:

Controllability matrix

c=[B AB A’B ... A" B

The following conditions are equivalent:

e Controllability:

e Columns of C span all of R".
e Arbitrary eigenvalue placement:

e It's possible to choose K such that the eigenvalues of (A — BK) can be wherever we want.
e Reachability of R":

e It's possible to steer the system to any arbitrary state x(t) = £ € R” in finite time with some
actuation signal u(t).

18



Controllability - Example |

Consider the following system:

Is this system controllable?
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Controllability - Example |

Consider the following system:

Is this system controllable?
No. The eigenvalues are real and greater than 0, the states x; and x» are completely decoupled
but u only affects x,.
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Controllability - Example |

Consider the following system:

Is this system controllable?

No. The eigenvalues are real and greater than 0, the states x; and x» are completely decoupled
but u only affects x,.

We can also check the controllability matrix, which is in this case

c— 0 0
1 2
and the two columns are linearly dependent.

19



Controllability - Example Il

What about allowing two knobs? Consider the following system:

SN EEIR

Is this system controllable?
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Controllability - Example Il

What about allowing two knobs? Consider the following system:

SN EEIR

Is this system controllable?
Yes. Both states can be independently controlled by u; and w;.

20



Controllability - Example Il

What about allowing two knobs? Consider the following system:

. 1 0| |x 1 0 [
X = +
0 2| |x 0 1| |w
Is this system controllable?

Yes. Both states can be independently controlled by u; and w;.

The controllability matrix is
1010
C =
[0 1 0 2]

which spans all of R?.

20



Controllability - Example 111

What about when the states are coupled? Consider the following system:

I

Is this system controllable?
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Controllability - Example 111

What about when the states are coupled? Consider the following system:
, 1 1) |x 0
X = P u
0 2 X2 1

Maybe not obvious, but Yes. Even though we only have a single actuation, we can actually

Is this system controllable?

control x; through controlling x, since the states are coupled.

21



Controllability - Example 111

What about when the states are coupled? Consider the following system:

) 1 1] [x 0
X = + u
0 2 X2 1
Is this system controllable?

Maybe not obvious, but Yes. Even though we only have a single actuation, we can actually
control x; through controlling x, since the states are coupled.
In this case, the controllability matrix is

which again spans all of R?.

21



The PBH test for controllability

The Popov-Belevitch-Hautus test

The system x = Ax + Bu is controllable if and only if the column rank of {(A —Al) B} is
equal to n for all A € C.
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e If X is not an eigenvalue of A, then rank(A — Al) = n is guaranteed,.

e Only need to test for the eigenvalues of Al

e If X is an eigenvalue of A, then N (A — Al) is the span of the eigenvector.
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The PBH test for controllability

The Popov-Belevitch-Hautus test

The system x = Ax + Bu is controllable if and only if the column rank of [(A —Al) B} is
equal to n for all A € C.

e If X is not an eigenvalue of A, then rank(A — Al) = n is guaranteed,.
e Only need to test for the eigenvalues of Al
e If X is an eigenvalue of A, then A/(A — Al) is the span of the eigenvector.

e To make up for this rank deficiency, columns of B must have components in the eigenvector
direction corresponding to .
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The PBH test for controllability

The Popov-Belevitch-Hautus test

The system x = Ax + Bu is controllable if and only if the column rank of [(A —Al) B} is
equal to n for all A € C.

e If X is not an eigenvalue of A, then rank(A — Al) = n is guaranteed,.
e Only need to test for the eigenvalues of Al
e If X is an eigenvalue of A, then A/(A — Al) is the span of the eigenvector.

e To make up for this rank deficiency, columns of B must have components in the eigenvector
direction corresponding to .

e If A has n distinct eigenvalues, then B only needs to account for one direction per eigenvalue.

e Take B to be the sum of all n linearly-independent eigenvectors, and we only need a single
actuation to control ths system!
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The PBH test for controllability

The Popov-Belevitch-Hautus test

The system x = Ax + Bu is controllable if and only if the column rank of [(A —Al) B} is
equal to n for all A € C.

e If X is not an eigenvalue of A, then rank(A — Al) = n is guaranteed,.
e Only need to test for the eigenvalues of Al
e If X is an eigenvalue of A, then A/(A — Al) is the span of the eigenvector.
e To make up for this rank deficiency, columns of B must have components in the eigenvector
direction corresponding to A.
e If A has n distinct eigenvalues, then B only needs to account for one direction per eigenvalue.

e Take B to be the sum of all n linearly-independent eigenvectors, and we only need a single
actuation to control ths system!
e Or just take a random vector...

22



The Gramian - degrees of controllability

e The rank tests only give yes or no answers.

e But some states can be easier to control than others.
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The Gramian - degrees of controllability

e The rank tests only give yes or no answers.

e But some states can be easier to control than others.

The controllability Gramian
t
W(t) :/ A" BB A Tdr € RN,
0
which is often evaluated at infinite time,

W = lim W(t).

t—o0
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The Gramian - degrees of controllability

e The rank tests only give yes or no answers.

e But some states can be easier to control than others.

The controllability Gramian
t
W(t) :/ A" BB A Tdr € RN,
0
which is often evaluated at infinite time,

W = lim W(t).

t—o0

e The controllability of a state is measured by x” WXx, the larger the more controllable.
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The Gramian - degrees of controllability

e The rank tests only give yes or no answers.

e But some states can be easier to control than others.
The controllability Gramian
t
.
W(t) :/ eA"BBT M Tdr € R™",
0
which is often evaluated at infinite time,

W = lim W(t).

t—o0

e The controllability of a state is measured by x” WXx, the larger the more controllable.

e The eigendecomposition of W also tells us how much we can steer the system in the
direction of the eigenvectors.

23



Reachability




and reachability

Reachability: it's possible to steer the system to any arbitrary state x(t) = & € R” in finite time with some
actuation signal u(t).
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The Cayley-Hamilton rem and reachability

Reachability: it's possible to steer the system to any arbitrary state x(t) = & € R” in finite time with some
actuation signal u(t).

The Cayley-Hamilton theorem

Every square matrix A satisfies its own characteristic equation:

det(A —A)=A"4+a, A\ 4.+ A+ +a=0
= A"+ a2, 1A+ 4+ A% + a1A + a9l = 0.
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The Cayley-Hamilton rem and reachability

Reachability: it's possible to steer the system to any arbitrary state x(t) = & € R” in finite time with some
actuation signal u(t).

The Cayley-Hamilton theorem

Every square matrix A satisfies its own characteristic equation:

det(A —A)=A"4+a, A\ 4.+ A+ +a=0
= A"+ a2, 1A+ 4+ A% + a1A + a9l = 0.

This allows us to express A” as a linear combination of the lower-order powers:

A" = —a, A"l — ... — A% — 31A — ol
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The Cayley-Hamilton theorem and reachability

Reachability: it's possible to steer the system to any arbitrary state x(t) = & € R” in finite time with some
actuation signal u(t).

The Cayley-Hamilton theorem

Every square matrix A satisfies its own characteristic equation:

det(A —A)=A"4+a, A\ 4.+ A+ +a=0
= A"+ a2, 1A+ 4+ A% + a1A + a9l = 0.

This allows us to express A” as a linear combination of the lower-order powers:
n __ n—1 2
A" = —a, 1A — - — aA° — a1 A — Fl.

More importantly, we can do this for any power greater than n:
n—1
A= =N "l
j=0

24



The Cayley-Hamilton rem and reachability

At

The Cayley-Hamilton theorem allows us to express the infinite power series e*! as a finite sum:

1 1
eAt:|+At+§A2t2+aA2t3+.‘.

25



The Cayley-Hamilton rem and reachability

At as a finite sum:

The Cayley-Hamilton theorem allows us to express the infinite power series e
At 1o, 1,53
e :I+At+§At +§At+”'

= ao(t)| -+ Ozl(t)A -+ OlQ(t)AZ + -4 Oénfl(t)Anil.
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The Cayley-Hamilton rem and reachability

At

The Cayley-Hamilton theorem allows us to express the infinite power series e*! as a finite sum:

1 1
M =1+ At + —A%2 + A% 4L
2! 3!
= ao(t)| -+ al(t)A -+ OlQ(t)AZ + -4 Oénfl(t)Anil.

What does this have to do with reachability?
With control and zero initial condition x(0) = 0, the solution to the system x = Ax + Bu is

ot
x(t):/ eMt=T)Bu(r)dr.
0

So a state £ € R" being reachable just means there exists u(t) such that

t
f:/ eA(tiT)BU(T)C/TA
0

25



The Cayley-Hamilton th m and reachability

A state £ € R" is reachable if there exists u(t) such that

t
&:/ eA(t_T)Bu(T)d‘r
Jo
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The Cayley-Hamilton th m and reachability

A state £ € R" is reachable if there exists u(t) such that

t
&:/ eA(t_T)Bu(T)d‘r
Jo

:/ [ao(t — 7)1+ a1 (t — 7)A + ax(t — 7)A2 + - - 4+ a1 (t — 7)A" " Bu(7)dT
0

26



The Cayley-Hamilton t m and reachability

A state £ € R" is reachable if there exists u(t) such that

t
&:/ eA(t_T)Bu(T)d‘r
. ot
:/ [ao(t — 7)1+ a1 (t — 7)A + ax(t — 7)A2 + - - 4+ a1 (t — 7)A" " Bu(7)dT
0

:B/ ao(t—T)U(T)dT+AB/ Oél(t—T)u(T)dT-i-"'-i-AnilB/ an—1(t — 7)u(r)dr
0 0 0

26



The Cayley-Hamilton theorem and reachability

A state £ € R" is reachable if there exists u(t) such that
t
= / eA(t_T)Bu(T)d‘r
Jo
t
= / [ao(t — 7)1+ a1 (t — 7)A + ax(t — 7)A2 + - - 4+ a1 (t — 7)A" " Bu(7)dT
0

:B/ ao(t—T)U(T)dT+AB/ Oél(t—T)u(T)dT-i-"'-i-AnilB/ an—1(t — 7)u(r)dr
0 0 0

foi ao(t — 7)u(r)dr
_ [B AB An—lB} fo a1(t — 7)u(r)dr

fot an—1(t — 7)u(r)dr
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The Cayley-Hamilton theorem and reachability

A state £ € R” is reachable if there exists u(t) such that
Jy ao(t — T)u(r)dr
t
ay(t — 7)u(r)dr
c=[B AB ... A"—IB} Jo _

Jy cna(t - u(r)dr
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The Cayley-Hamilton theorem and reachability

A state £ € R” is reachable if there exists u(t) such that

¢=[B AB ... A”*lB]

Controllability matrix C fOt anfl(t , T)U(T)d’T
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The Cayley-Hamilton theorem and reachability

A state £ € R” is reachable if there exists u(t) such that

fot ao(t — 7)u(r)dT

' — 7)u(T)dT
¢=[B AB .. Arg] Jy an(t .)u()

Controllability matrix C fot Oz,,,l(t - T)U(T)d’T

e Therefore, the only way for all of R” to be reachable is when the columns of C spans R".

e If C has rank n, then we can design u(t) to reach any state £ € R".
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Optimal full-state control: LQR



Optimal control

Cost
J(x,u)

Disturbances
w

Actuators Sensors

u(t) “~—— y(t)

Controller

e Recall that if the system x = Ax + Bu is controllable, then it's possible to arbitrarily manipulate the
eigenvalues through a full-state feedback control law u = —Kx.
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Optimal control

Disturbances
w

Actuators Sensors

u(t) “~—— y(t)

Controller

e Recall that if the system x = Ax + Bu is controllable, then it's possible to arbitrarily manipulate the
eigenvalues through a full-state feedback control law u = —Kx.
e If we choose u to make the system arbitrarily stable, this can lead to
e Expensive control expenditure J(x, u).
e Over-react to noise and disturbances.
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Optimal control: LQR

e Optimal control: choosing the best gain matrix K to stabilize the system with minimum effort.

e Seek balance between stability and aggressiveness of control.
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Optimal control: LQR

e Optimal control: choosing the best gain matrix K to stabilize the system with minimum effort.

e Seek balance between stability and aggressiveness of control.

Consider the cost function

J(t) = x(r)TQx(r) + u(7)"Ru(7) dr
© f deviati f f |
cost of deviations of x cost of control

e Q > 0 - can achieve zero deviation.
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J(t) = x(r)TQx(r) + u(7)"Ru(7) dr
© f deviati f f |
cost of deviations of x cost of control

e Q > 0 - can achieve zero deviation.
e R > 0 - but control effort is always needed.

e Often diagonal, tuned to weigh the relative importance of the states/control knobs.
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Optimal control: LQR

e Optimal control: choosing the best gain matrix K to stabilize the system with minimum effort.

e Seek balance between stability and aggressiveness of control.

Consider the cost function

J(t) = x(r)TQx(r) + u(7)"Ru(7) dr
© f deviati f f |
cost of deviations of x cost of control

e Q > 0 - can achieve zero deviation.
e R > 0 - but control effort is always needed.
e Often diagonal, tuned to weigh the relative importance of the states/control knobs.

e We now have an optimization problem!!!!!
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Optimal control: LQR

J(t) = x(7)TQx(T) + u(7)"Ru(r) dr
~— —
cost of deviations of x cost of control
The linear-quadratic-regulator (LQR) control law u = —K,x is designed to minimize J = lim;— o J(t).
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Optimal control: LQR

J(t) = X(T)TQX(T) + U(T)TRU(T) dr
N—— N—
cost of deviations of x cost of control
The linear-quadratic-regulator (LQR) control law u = —K,x is designed to minimize J = lim;— o J(t).
e Linear control law u = —K,x

30



Optimal control: LQR

J(t) = X(T)TQX(T) + U(T)TRU(T) dr
N—— N—
cost of deviations of x cost of control
The linear-quadratic-regulator (LQR) control law u = —K,x is designed to minimize J = lim;— o J(t).
e Linear control law u = —K,x

e Quadratic cost function J
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Optimal control: LQR

J(t) :/ X(T)TQX(T) + U(T)TRU(T) dr
—_—— —_——
cost of deviations of x cost of control
The linear-quadratic-regulator (LQR) control law u = —K,x is designed to minimize J = lim;— o J(t).
e Linear control law u = —K,x
e Quadratic cost function J

e Regulates the state of the system to lim;_i,¢ x(t) = 0.
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Optimal control: LQR

J(t) :/ X(T)TQX(T) + U(T)TRU(T) dr
—_—— —_——
cost of deviations of x cost of control
The linear-quadratic-regulator (LQR) control law u = —K,x is designed to minimize J = lim;— o J(t).
e Linear control law u = —K,x
e Quadratic cost function J

e Regulates the state of the system to lim;_i,¢ x(t) = 0.
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Optimal control: LQR

Since J(t) is quadratic, there is an analytical solution given by
K, =R1B7X,
where X is the solution to an algebraic Riccati equation:

ATX+ XA - XBR!IB'X+Q=0.
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Optimal control: LQR

Since J(t) is quadratic, there is an analytical solution given by
K, =R1B7X,
where X is the solution to an algebraic Riccati equation:

ATX+ XA - XBR!IB'X+Q=0.

e There exists numerically robust implementations to solve this.

e Very expensive for high-dimensional systems - O(n%).
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Optimal control: LQR

Since J(t) is quadratic, there is an analytical solution given by
K, =R1B7X,
where X is the solution to an algebraic Riccati equation:

ATX+ XA - XBR!IB'X+Q=0.

e There exists numerically robust implementations to solve this.
e Very expensive for high-dimensional systems - O(n%).

e Reduced-order models: use fewer states.
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What we covered:

e Closed-loop feedback control.
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What we covered:

e Closed-loop feedback control.

e Stability and eigenvalues of a linear dynamical system.
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e Closed-loop feedback control.
e Stability and eigenvalues of a linear dynamical system.

e Controllability and Reachability.
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What we covered:

Closed-loop feedback control.

Stability and eigenvalues of a linear dynamical system.

Controllability and Reachability.
e Optimal full-state control: LQR.

What we didn’t cover:

e How to derive the Riccati equations for LQR. (End of Section 8.4 in [Brunton and Kutz,
2019])

e Full-state estimation and the Kalman filter. (Section 8.5 in [Brunton and Kutz, 2019])
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Thank you

WHEN DID YOU BECOME AN EXPERT IN
CONTROL THEORY?
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