Optimal Control and Dynamical Systems

Si Yi (Cathy) Meng
July 15, 2020
UBC MLRG

Introduction

Introduction

Control theory is the study and practice of manipulating dynamical systems.

- Inseparable from data science - sensor measurements (data)
- Characteristics of this data is different from a statistical learning setting.

Example - PID temperature controller

- A Proportional-Integral-Derivative controller is a feedback control mechanism.

Figure 1: https://bit.ly/2Zk2JKE

Example - PID temperature controller

- A Proportional-Integral-Derivative controller is a feedback control mechanism.
- A temperature controller takes measurements from a temperature sensor.
- Its output is connected to a control element such as a heater or a fan.

Figure 1: https://bit.ly/2Zk2JKE

Example - MCAS

Boeing 737 Max
Maneuvering Characteristics Augmentation System

Figure 2: https://bit.ly/3iYLkyI

Types of control

- Passive control does not require input energy.
- Cheap, simple, reliable.
- May not be sufficient.
- Example: stop signs at traffic intersections.

Types of control

- Passive control does not require input energy.
- Cheap, simple, reliable.
- May not be sufficient.
- Example: stop signs at traffic intersections.
- Active control requires input energy.
- Further categorized based on whether sensors are used.

Types of control

- Open-loop control relies on a pre-programmed control sequence.
- Example: traffic lights.

Types of control

- Open-loop control relies on a pre-programmed control sequence.
- Example: traffic lights.
- Sensor-based control uses sensor measurements to inform the control law.

Types of control

- Disturbance feedforward control measures external disturbances to the system, then feeds this into an open-loop control law.
- Example: Preemptive road closure near a stadium before a concert.

Types of control

- Disturbance feedforward control measures external disturbances to the system, then feeds this into an open-loop control law.
- Example: Preemptive road closure near a stadium before a concert.
- Closed-loop control measures the system directly, then feeds the sensor measurements back.
- Example: Sensors in the roadbed.

Types of control

- Disturbance feedforward control measures external disturbances to the system, then feeds this into an open-loop control law.
- Example: Preemptive road closure near a stadium before a concert.
- Closed-loop control measures the system directly, then feeds the sensor measurements back.
- Example: Sensors in the roadbed.
- This will be our main focus.

Outline

We will follow Chapter 8 in Brunton and Kutz [2019],

- Closed-loop feedback control (Section 8.1)
- Stability and eigenvalues (Section 8.2)
- Controllability (Section 8.3)
- Reachability (Section 8.3)
- Optimal full-state control: LQR (Section 8.4)

Closed-loop feedback control

Closed-loop feedback control

Closed-loop feedback control

- $\mathbf{y}(t)$ sensor measurements

Closed-loop feedback control

- $\mathbf{y}(t)$ sensor measurements
- $\mathbf{u}(t)$ actuation signal

Closed-loop feedback control

- \mathbf{w}_{d} disturbances to the system

Closed-loop feedback control

- \mathbf{w}_{d} disturbances to the system
- w_{n} measurement noise

Closed-loop feedback control

- \mathbf{w}_{d} disturbances to the system
- \mathbf{w}_{n} measurement noise
- w_{r} reference trajectory

Closed-loop feedback control

Together, this forms a dynamical system given by

$$
\dot{\mathbf{x}}:=\frac{d}{d t} \mathbf{x}=\mathbf{f}\left(\mathbf{x}, \mathbf{u}, \mathbf{w}_{d}\right), \quad \mathbf{y}=\mathbf{g}\left(\mathbf{x}, \mathbf{u}, \mathbf{w}_{n}\right)
$$

and the goal is to construct a control law

$$
\mathbf{u}=\mathbf{k}\left(\mathbf{y}, \mathbf{w}_{r}\right) \quad \text { such that the cost } J \text { is minimized. }
$$

Example: Inverted pendulum

Benefits of feedback control

Compared to open-loop control, closed-loop feedback makes it possible to

- Stabilize an unstable system.

Benefits of feedback control

Compared to open-loop control, closed-loop feedback makes it possible to

- Stabilize an unstable system.
- Compensate for external disturbances.

Benefits of feedback control

Compared to open-loop control, closed-loop feedback makes it possible to

- Stabilize an unstable system.
- Compensate for external disturbances.
- Correct for unmodeled dynamics.

Stability and eigenvalues

Linearization of nonlinear dynamics

Our nonlinear dynamical system is given by

$$
\dot{\mathbf{x}}=\mathbf{f}\left(\mathbf{x}, \mathbf{u}, \mathbf{w}_{d}\right), \quad \mathbf{y}=\mathbf{g}\left(\mathbf{x}, \mathbf{u}, \mathbf{w}_{n}\right)
$$

and the goal is to construct a control law

$$
\mathbf{u}=\mathbf{k}\left(\mathbf{y}, \mathbf{w}_{r}\right) \quad \text { such that the cost } J\left(\mathbf{x}, \mathbf{u}, \mathbf{w}_{r}\right) \text { is minimized. }
$$

Linearization of nonlinear dynamics

For simplicity, let's ignore the external disturbances \mathbf{w}, which gives

$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}), \quad \mathbf{y}=\mathbf{g}(\mathbf{x}, \mathbf{u}) .
$$

Linearization of nonlinear dynamics

For simplicity, let's ignore the external disturbances \mathbf{w}, which gives

$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}), \quad \mathbf{y}=\mathbf{g}(\mathbf{x}, \mathbf{u}) .
$$

Near a fixed point $(\overline{\mathbf{x}}, \overline{\mathbf{u}})$ where $\mathbf{f}(\overline{\mathbf{x}}, \overline{\mathbf{u}})=\mathbf{0}$, we can use a Taylor expansion to obtain the following linearization

$$
\dot{x}=\mathbf{A x}+\mathbf{B u}, \quad \mathbf{y}=\mathbf{C x}+\mathbf{D u},
$$

where $\mathbf{A}=\nabla \mathbf{f}_{\mathbf{x}}(\bar{x}, \bar{u}), \mathbf{B}=\nabla \mathbf{f}_{\mathbf{u}}(\bar{x}, \bar{u}), \mathbf{C}=\nabla \mathbf{g}_{\mathbf{x}}(\bar{x}, \bar{u})$, and $\mathbf{D}=\nabla \mathbf{g}_{\mathbf{u}}(\bar{x}, \bar{u})$.

Unforced linear system - without control

Linear system

$$
\dot{\mathrm{x}}=\mathbf{A x}+\mathbf{B u}, \quad \mathbf{y}=\mathbf{C x}+\mathbf{D u}
$$

Unforced linear system - without control

Linear system

$$
\dot{\mathrm{x}}=\mathbf{A x}+\mathbf{B u}, \quad \mathbf{y}=\mathbf{C x}+\mathbf{D u}
$$

Now suppose

- In the absence of control: $\mathbf{u}=\mathbf{0}$
- and with measurements of the full state: $\mathbf{y}=\mathbf{x}$,
our dynamical system becomes

$$
\dot{\mathbf{x}}=\mathbf{A x},
$$

and the solution $\mathbf{x}(t)$ is given by

$$
\mathbf{x}(t)=e^{\mathbf{A t}} \mathbf{x}(0)
$$

Unforced linear system - without control

Linear system

$$
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}, \quad \mathbf{y}=\mathbf{x}
$$

and the solution $\mathbf{x}(t)$ is given by

$$
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}(0)
$$

where the matrix exponential is given by the infinite power series

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\frac{1}{2!} \mathbf{A}^{2} t^{2}+\frac{1}{3!} \mathbf{A}^{2} t^{3}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k} t^{k}
$$

Unforced linear system - without control

Linear system

$$
\dot{x}=\mathbf{A x}, \quad \mathbf{y}=\mathbf{x}
$$

and the solution $\mathbf{x}(t)$ is given by

$$
\mathbf{x}(t)=e^{A t} \mathbf{x}(0)
$$

where the matrix exponential is given by the infinite power series

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\frac{1}{2!} \mathbf{A}^{2} t^{2}+\frac{1}{3!} \mathbf{A}^{2} t^{3}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k} t^{k} .
$$

- When \mathbf{A} is diagonalizable, $e^{\mathbf{A} t}$ can be computed by leveraging \mathbf{A}^{\prime} 's eigendecomposition:
- $\mathbf{A}=\mathbf{Q} \Lambda \mathbf{Q}^{-1} \Longrightarrow e^{\mathbf{A} t}=\mathbf{Q} e^{\wedge t} \mathbf{Q}^{-1}$
- When \mathbf{A} is not diagonalizable, write $\boldsymbol{\Lambda}$ in Jordan form and compute the matrix exponential with simple extensions.

Unforced linear system - without control

If we write the states as $\mathbf{x}=\mathbf{Q z}$, then

$$
\begin{aligned}
\dot{\mathbf{z}} & =\mathbf{Q}^{-1} \dot{\mathbf{x}} \\
& =\mathbf{Q}^{-1} \mathbf{A} \mathbf{x} \\
& =\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q} \mathbf{z} \\
& =\mathbf{\Lambda z} .
\end{aligned}
$$

Unforced linear system - without control

If we write the states as $\mathbf{x}=\mathbf{Q z}$, then

$$
\begin{aligned}
\dot{\mathbf{z}} & =\mathbf{Q}^{-1} \dot{\mathbf{x}} \\
& =\mathbf{Q}^{-1} \mathbf{A} \mathbf{x} \\
& =\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q} \mathbf{z} \\
& =\mathbf{\Lambda} \mathbf{z} .
\end{aligned}
$$

Our dynamical system simplifies from $\dot{\mathbf{x}}=\mathbf{A x}$ to $\dot{\mathbf{z}}=\boldsymbol{\Lambda z}$, with solution

$$
\mathbf{x}(t)=\mathbf{Q} e^{\boldsymbol{\Lambda} t} \mathbf{Q}^{-1} \mathbf{x}(0)
$$

Unforced linear system - without control

If we write the states as $\mathbf{x}=\mathbf{Q z}$, then

$$
\begin{aligned}
\dot{\mathbf{z}} & =\mathbf{Q}^{-1} \dot{\mathbf{x}} \\
& =\mathbf{Q}^{-1} \mathbf{A} \mathbf{x} \\
& =\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q} \mathbf{z} \\
& =\mathbf{\Lambda} \mathbf{z} .
\end{aligned}
$$

Our dynamical system simplifies from $\dot{\mathbf{x}}=\mathbf{A x}$ to $\dot{\mathbf{z}}=\boldsymbol{\Lambda z}$, with solution

$$
\mathbf{x}(t)=\underbrace{\mathbf{Q} e^{\Lambda t} \underbrace{\mathbf{Q}^{-1} \mathbf{x}(0)}_{z(0)}}_{z(t)} .
$$

The eigenvalues in $\boldsymbol{\Lambda}$ also tell us about the stability of the system.

Unforced linear system - without control

If we write the states as $\mathbf{x}=\mathbf{Q z}$, then

$$
\begin{aligned}
\dot{\mathbf{z}} & =\mathbf{Q}^{-1} \dot{\mathbf{x}} \\
& =\mathbf{Q}^{-1} \mathbf{A} \mathbf{x} \\
& =\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q} \mathbf{z} \\
& =\mathbf{\Lambda} \mathbf{z} .
\end{aligned}
$$

Our dynamical system simplifies from $\dot{\mathbf{x}}=\mathbf{A x}$ to $\dot{\mathbf{z}}=\boldsymbol{\Lambda z}$, with solution

$$
\mathbf{x}(t)=\underbrace{\mathbf{Q} e^{\Lambda t} \underbrace{\mathbf{Q}^{-1} \mathbf{x}(0)}_{z(0)}}_{z(t)} .
$$

The eigenvalues in $\boldsymbol{\Lambda}$ also tell us about the stability of the system.

Unforced linear system - stability

$$
\mathbf{x}(t)=\mathbf{Q} e^{\boldsymbol{\Lambda} t} \mathbf{Q}^{-1} \mathbf{x}(0)
$$

- In general, the eigenvalues may be complex numbers: $\lambda=a+i b$.
- Using Euler's formula: $e^{\lambda t}=e^{a t}(\cos (b t)+i \sin (b t))$.

Unforced linear system - stability

$$
\mathbf{x}(t)=\mathbf{Q} e^{\boldsymbol{\Lambda} t} \mathbf{Q}^{-1} \mathbf{x}(0)
$$

- In general, the eigenvalues may be complex numbers: $\lambda=a+i b$.
- Using Euler's formula: $e^{\lambda t}=e^{a t}(\cos (b t)+i \sin (b t))$.
- Therefore, if all the eigenvalues λ_{k} have negative real part, i.e. $a<0$, then the system is stable and $\mathbf{x}=0$ as $t \rightarrow \infty$.

Unforced linear system - stability

$$
\mathbf{x}(t)=\mathbf{Q} e^{\boldsymbol{\Lambda} t} \mathbf{Q}^{-1} \mathbf{x}(0)
$$

- In general, the eigenvalues may be complex numbers: $\lambda=a+i b$.
- Using Euler's formula: $e^{\lambda t}=e^{a t}(\cos (b t)+i \sin (b t))$.
- Therefore, if all the eigenvalues λ_{k} have negative real part, i.e. $a<0$, then the system is stable and $\mathbf{x}=0$ as $t \rightarrow \infty$.
- If for any λ_{k} we have $a>0$, then the system will diverge in this direction, which is very likely for a random initial condition.

Example: Stability of the inverted pendulum

Example: Stability of the inverted pendulum

From physics, we have $\ddot{\theta}=-\frac{g}{L} \sin (\theta)+u$.

Example: Stability of the inverted pendulum

From physics, we have $\ddot{\theta}=-\frac{g}{L} \sin (\theta)+u$.
Writing the system as a first-order differential equation,

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\theta \\
\dot{\theta}
\end{array}\right] \Longrightarrow \frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-\frac{g}{L} \sin \left(x_{1}\right)+u
\end{array}\right] .
$$

Example: Stability of the inverted pendulum

From physics, we have $\ddot{\theta}=-\frac{g}{L} \sin (\theta)+u$.
Writing the system as a first-order differential equation,

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\theta \\
\dot{\theta}
\end{array}\right] \Longrightarrow \frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-\frac{g}{L} \sin \left(x_{1}\right)+u
\end{array}\right] .
$$

Taking the Jacobian of $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u})$ yields

$$
\frac{\mathbf{d f}}{\mathbf{d} \mathbf{x}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{L} \cos \left(x_{1}\right) & 0
\end{array}\right], \quad \frac{\mathbf{d f}}{\mathbf{d} \mathbf{u}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Stability of the inverted pendulum

$$
\frac{\mathbf{d f}}{\mathbf{d x}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{L} \cos \left(x_{1}\right) & 0
\end{array}\right], \quad \frac{\mathbf{d f}}{\mathbf{d u}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Linearizing at the pendulum up ($x_{1}=\pi, x_{2}=0$) fixed point,

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
0 & 1 \\
\frac{g}{L} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

and down $\left(x_{1}=0, x_{2}=0\right)$ fixed point,

$$
\dot{\mathrm{x}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{L} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

Stability of the inverted pendulum

$$
\frac{\mathbf{d f}}{\mathbf{d x}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{L} \cos \left(x_{1}\right) & 0
\end{array}\right], \quad \frac{\mathbf{d f}}{\mathbf{d} \mathbf{u}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Linearizing at the pendulum up ($x_{1}=\pi, x_{2}=0$) fixed point,

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
0 & 1 \\
\frac{g}{L} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

and down ($x_{1}=0, x_{2}=0$) fixed point,

$$
\dot{\mathrm{x}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{L} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

- Pendulum up ("inverted"): $\lambda= \pm \sqrt{g / L}$, positive real part \Longrightarrow instability.

Stability of the inverted pendulum

$$
\frac{\mathbf{d f}}{\mathbf{d x}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{L} \cos \left(x_{1}\right) & 0
\end{array}\right], \quad \frac{\mathbf{d f}}{\mathbf{d u}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Linearizing at the pendulum up ($x_{1}=\pi, x_{2}=0$) fixed point,

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
0 & 1 \\
\frac{g}{L} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

and down $\left(x_{1}=0, x_{2}=0\right)$ fixed point,

$$
\dot{\mathrm{x}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{L} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

- Pendulum up ("inverted"): $\lambda= \pm \sqrt{g / L}$, positive real part \Longrightarrow instability.
- Pendulum down: $\lambda=0 \pm i \sqrt{g / L}$, stable.

Stability of the inverted pendulum

$$
\frac{\mathbf{d f}}{\mathbf{d x}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{L} \cos \left(x_{1}\right) & 0
\end{array}\right], \quad \frac{\mathbf{d f}}{\mathbf{d u}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Linearizing at the pendulum up ($x_{1}=\pi, x_{2}=0$) fixed point,

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
0 & 1 \\
\frac{g}{L} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

and down ($x_{1}=0, x_{2}=0$) fixed point,

$$
\dot{\mathrm{x}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{L} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

- Pendulum up ("inverted"): $\lambda= \pm \sqrt{g / L}$, positive real part \Longrightarrow instability.
- Pendulum down: $\lambda=0 \pm i \sqrt{g / L}$, stable.
- Good news: if we use closed-loop feedback control $\mathbf{u}=-\mathrm{Kx}$, we may be able to stabilize it

Controllability

Controllability

Linear system

$$
\dot{\mathrm{x}}=\mathbf{A x}+\mathbf{B u}, \quad \mathrm{y}=\mathrm{x}
$$

where $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{u} \in \mathbb{R}^{q}, \mathbf{A} \in \mathbb{R}^{n \times m}$, and $\mathbf{B} \in \mathbb{R}^{n \times q}$.
Controllability:

- When can we use feedback control to manipulate the system into what we want?

Controllability

Linear system

$$
\dot{x}=\mathbf{A x}+\mathbf{B u}, \quad \mathbf{y}=\mathrm{x}
$$

where $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{u} \in \mathbb{R}^{q}, \mathbf{A} \in \mathbb{R}^{n \times m}$, and $\mathbf{B} \in \mathbb{R}^{n \times q}$.
Controllability:

- When can we use feedback control to manipulate the system into what we want?
- If we can control the system, how do we design the control law $\mathbf{u}=-\mathbf{K x}$ to drive the system to the desired behaviour?

Controllability

Linear system

$$
\dot{x}=\mathbf{A x}+\mathbf{B u}, \quad \mathbf{y}=\mathrm{x}
$$

where $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{u} \in \mathbb{R}^{q}, \mathbf{A} \in \mathbb{R}^{n \times m}$, and $\mathbf{B} \in \mathbb{R}^{n \times q}$.
Controllability:

- When can we use feedback control to manipulate the system into what we want?
- If we can control the system, how do we design the control law $\mathbf{u}=-\mathbf{K x}$ to drive the system to the desired behaviour?

With feedback control, we can write the dynamical system as

$$
\dot{\mathrm{x}}=(\mathrm{A}-\mathrm{BK}) \mathrm{x}
$$

and hopefully we can use \mathbf{K} such that we can place the eigenvalues wherever we want.

Controllability matrix

The controllability of a linear system in the form $\dot{\mathbf{x}}=(\mathbf{A}-\mathbf{B K}) \mathbf{x}$ is determined entirely by the column space of the controllability matrix:

Controllability matrix

$$
\mathcal{C}=\left[\begin{array}{lllll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B} & \ldots & \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]
$$

Controllability matrix

The controllability of a linear system in the form $\dot{\mathbf{x}}=(\mathbf{A}-\mathbf{B K}) \mathbf{x}$ is determined entirely by the column space of the controllability matrix:

Controllability matrix

$$
\mathcal{C}=\left[\begin{array}{lllll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B} & \ldots & \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]
$$

The following conditions are equivalent:

- Controllability:
- Columns of \mathcal{C} span all of \mathbb{R}^{n}.

Controllability matrix

The controllability of a linear system in the form $\dot{\mathbf{x}}=(\mathbf{A}-\mathbf{B K}) \mathbf{x}$ is determined entirely by the column space of the controllability matrix:

Controllability matrix

$$
\mathcal{C}=\left[\begin{array}{lllll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B} & \ldots & \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]
$$

The following conditions are equivalent:

- Controllability:
- Columns of \mathcal{C} span all of \mathbb{R}^{n}.
- Arbitrary eigenvalue placement:
- It's possible to choose \mathbf{K} such that the eigenvalues of ($\mathbf{A}-\mathbf{B K}$) can be wherever we want.

Controllability matrix

The controllability of a linear system in the form $\dot{\mathbf{x}}=(\mathbf{A}-\mathbf{B K}) \mathbf{x}$ is determined entirely by the column space of the controllability matrix:

Controllability matrix

$$
\mathcal{C}=\left[\begin{array}{lllll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B} & \ldots & \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]
$$

The following conditions are equivalent:

- Controllability:
- Columns of \mathcal{C} span all of \mathbb{R}^{n}.
- Arbitrary eigenvalue placement:
- It's possible to choose K such that the eigenvalues of $(\mathbf{A}-\mathbf{B K})$ can be wherever we want.
- Reachability of \mathbb{R}^{n} :
- It's possible to steer the system to any arbitrary state $\mathbf{x}(t)=\xi \in \mathbb{R}^{n}$ in finite time with some actuation signal $\mathbf{u}(t)$.

Controllability - Example I

Consider the following system:

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

Is this system controllable?

Controllability - Example I

Consider the following system:

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

Is this system controllable?
No. The eigenvalues are real and greater than 0 , the states x_{1} and x_{2} are completely decoupled but u only affects x_{2}.

Controllability - Example I

Consider the following system:

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

Is this system controllable?

No. The eigenvalues are real and greater than 0 , the states x_{1} and x_{2} are completely decoupled but u only affects x_{2}.
We can also check the controllability matrix, which is in this case

$$
\mathcal{C}=\left[\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right]
$$

and the two columns are linearly dependent.

Controllability - Example II

What about allowing two knobs? Consider the following system:

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Is this system controllable?

Controllability - Example II

What about allowing two knobs? Consider the following system:

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Is this system controllable?
Yes. Both states can be independently controlled by u_{1} and u_{2}.

Controllability - Example II

What about allowing two knobs? Consider the following system:

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Is this system controllable?
Yes. Both states can be independently controlled by u_{1} and u_{2}.
The controllability matrix is

$$
\mathcal{C}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

which spans all of \mathbb{R}^{2}.

Controllability - Example III

What about when the states are coupled? Consider the following system:

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

Is this system controllable?

Controllability - Example III

What about when the states are coupled? Consider the following system:

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

Is this system controllable?
Maybe not obvious, but Yes. Even though we only have a single actuation, we can actually control x_{1} through controlling x_{2} since the states are coupled.

Controllability - Example III

What about when the states are coupled? Consider the following system:

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

Is this system controllable?

Maybe not obvious, but Yes. Even though we only have a single actuation, we can actually control x_{1} through controlling x_{2} since the states are coupled.
In this case, the controllability matrix is

$$
\mathcal{C}=\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right]
$$

which again spans all of \mathbb{R}^{2}.

The PBH test for controllability

The Popov-Belevitch-Hautus test

The system $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$ is controllable if and only if the column rank of $\left[\begin{array}{ll}\left(\begin{array}{ll}(\mathbf{I}) & \mathbf{B}\end{array}\right] \text { is } \mathrm{s}\end{array}\right.$ equal to n for all $\lambda \in \mathbb{C}$.

The PBH test for controllability

The Popov-Belevitch-Hautus test

The system $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$ is controllable if and only if the column rank of $\left[\begin{array}{ll}\left(\begin{array}{ll}(\mathbf{I}) & \mathbf{B}\end{array}\right] \text { is } \mathrm{s}\end{array}\right.$ equal to n for all $\lambda \in \mathbb{C}$.

- If λ is not an eigenvalue of \mathbf{A}, then $\operatorname{rank}(\mathbf{A}-\lambda \mathbf{I})=n$ is guaranteed,

The PBH test for controllability

The Popov-Belevitch-Hautus test

The system $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$ is controllable if and only if the column rank of $\left[\begin{array}{ll}\left(\begin{array}{ll}(\mathbf{I}) & \mathbf{B}\end{array}\right] \text { is } \mathrm{s}\end{array}\right.$ equal to n for all $\lambda \in \mathbb{C}$.

- If λ is not an eigenvalue of \mathbf{A}, then $\operatorname{rank}(\mathbf{A}-\lambda \mathbf{I})=n$ is guaranteed,.
- Only need to test for the eigenvalues of \mathbf{A} !

The PBH test for controllability

The Popov-Belevitch-Hautus test

The system $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$ is controllable if and only if the column rank of $\left[\begin{array}{ll}\left.\left(\begin{array}{ll}\mathbf{A}\end{array}\right) \mathbf{B}\right] \text { is }\end{array}\right.$ equal to n for all $\lambda \in \mathbb{C}$.

- If λ is not an eigenvalue of \mathbf{A}, then $\operatorname{rank}(\mathbf{A}-\lambda \mathbf{I})=n$ is guaranteed,.
- Only need to test for the eigenvalues of \mathbf{A} !
- If λ is an eigenvalue of \mathbf{A}, then $\mathcal{N}(\mathbf{A}-\lambda \mathbf{I})$ is the span of the eigenvector.

The PBH test for controllability

The Popov-Belevitch-Hautus test

The system $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$ is controllable if and only if the column rank of $\left[\begin{array}{ll}\left.\left(\begin{array}{ll}\mathbf{A}\end{array}\right) \mathbf{B}\right] \text { is }\end{array}\right.$ equal to n for all $\lambda \in \mathbb{C}$.

- If λ is not an eigenvalue of \mathbf{A}, then $\operatorname{rank}(\mathbf{A}-\lambda \mathbf{I})=n$ is guaranteed, .
- Only need to test for the eigenvalues of \mathbf{A} !
- If λ is an eigenvalue of \mathbf{A}, then $\mathcal{N}(\mathbf{A}-\lambda \mathbf{I})$ is the span of the eigenvector.
- To make up for this rank deficiency, columns of \mathbf{B} must have components in the eigenvector direction corresponding to λ.

The PBH test for controllability

The Popov-Belevitch-Hautus test

The system $\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B u}$ is controllable if and only if the column rank of $\left[\begin{array}{lll}(\mathbf{A}-\lambda \mathbf{I}) & \mathbf{B}\end{array}\right]$ is equal to n for all $\lambda \in \mathbb{C}$.

- If λ is not an eigenvalue of \mathbf{A}, then $\operatorname{rank}(\mathbf{A}-\lambda \mathbf{I})=n$ is guaranteed,.
- Only need to test for the eigenvalues of \mathbf{A} !
- If λ is an eigenvalue of \mathbf{A}, then $\mathcal{N}(\mathbf{A}-\lambda \mathbf{I})$ is the span of the eigenvector.
- To make up for this rank deficiency, columns of \mathbf{B} must have components in the eigenvector direction corresponding to λ.
- If \mathbf{A} has n distinct eigenvalues, then \mathbf{B} only needs to account for one direction per eigenvalue.
- Take B to be the sum of all n linearly-independent eigenvectors, and we only need a single actuation to control ths system!

The PBH test for controllability

The Popov-Belevitch-Hautus test

The system $\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B u}$ is controllable if and only if the column rank of $\left[\begin{array}{lll}(\mathbf{A}-\lambda \mathbf{I}) & \mathbf{B}\end{array}\right]$ is equal to n for all $\lambda \in \mathbb{C}$.

- If λ is not an eigenvalue of \mathbf{A}, then $\operatorname{rank}(\mathbf{A}-\lambda \mathbf{I})=n$ is guaranteed,.
- Only need to test for the eigenvalues of \mathbf{A} !
- If λ is an eigenvalue of \mathbf{A}, then $\mathcal{N}(\mathbf{A}-\lambda \mathbf{I})$ is the span of the eigenvector.
- To make up for this rank deficiency, columns of \mathbf{B} must have components in the eigenvector direction corresponding to λ.
- If \mathbf{A} has n distinct eigenvalues, then \mathbf{B} only needs to account for one direction per eigenvalue.
- Take B to be the sum of all n linearly-independent eigenvectors, and we only need a single actuation to control ths system!
- Or just take a random vector...

The Gramian - degrees of controllability

- The rank tests only give yes or no answers.
- But some states can be easier to control than others.

The Gramian - degrees of controllability

- The rank tests only give yes or no answers.
- But some states can be easier to control than others.

The controllability Gramian

$$
\mathbf{W}(t)=\int_{0}^{t} e^{\mathbf{A} \tau} \mathbf{B B}^{T} e^{\mathbf{A}^{T} \tau} d \tau \in \mathbb{R}^{n \times n},
$$

which is often evaluated at infinite time,

$$
\mathbf{W}=\lim _{t \rightarrow \infty} \mathbf{W}(t) .
$$

The Gramian - degrees of controllability

- The rank tests only give yes or no answers.
- But some states can be easier to control than others.

The controllability Gramian

$$
\mathbf{W}(t)=\int_{0}^{t} e^{\mathbf{A} \tau} \mathbf{B B}^{T} e^{\mathbf{A}^{T} \tau} d \tau \in \mathbb{R}^{n \times n},
$$

which is often evaluated at infinite time,

$$
\mathbf{W}=\lim _{t \rightarrow \infty} \mathbf{W}(t) .
$$

- The controllability of a state is measured by $\mathbf{x}^{\top} \mathbf{W} \mathbf{x}$, the larger the more controllable.

The Gramian - degrees of controllability

- The rank tests only give yes or no answers.
- But some states can be easier to control than others.

The controllability Gramian

$$
\mathbf{W}(t)=\int_{0}^{t} e^{\mathbf{A} \tau} \mathbf{B B}^{T} e^{\mathbf{A}^{T} \tau} d \tau \in \mathbb{R}^{n \times n},
$$

which is often evaluated at infinite time,

$$
\mathbf{W}=\lim _{t \rightarrow \infty} \mathbf{W}(t) .
$$

- The controllability of a state is measured by $\mathbf{x}^{\top} \mathbf{W} \mathbf{x}$, the larger the more controllable.
- The eigendecomposition of \mathbf{W} also tells us how much we can steer the system in the direction of the eigenvectors.

Reachability

The Cayley-Hamilton theorem and reachability

Reachability: it's possible to steer the system to any arbitrary state $\mathbf{x}(t)=\xi \in \mathbb{R}^{n}$ in finite time with some actuation signal $\mathbf{u}(t)$.

The Cayley-Hamilton theorem and reachability

Reachability: it's possible to steer the system to any arbitrary state $\mathbf{x}(t)=\xi \in \mathbb{R}^{n}$ in finite time with some actuation signal $\mathbf{u}(t)$.

The Cayley-Hamilton theorem

Every square matrix \mathbf{A} satisfies its own characteristic equation:

$$
\begin{array}{r}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0 \\
\Longrightarrow \mathbf{A}^{n}+a_{n-1} \mathbf{A}^{n-1}+\cdots+a_{2} \mathbf{A}^{2}+a_{1} \mathbf{A}+a_{0} \mathbf{I}=0 .
\end{array}
$$

The Cayley-Hamilton theorem and reachability

Reachability: it's possible to steer the system to any arbitrary state $\mathbf{x}(t)=\xi \in \mathbb{R}^{n}$ in finite time with some actuation signal $\mathbf{u}(t)$.

The Cayley-Hamilton theorem

Every square matrix \mathbf{A} satisfies its own characteristic equation:

$$
\begin{array}{r}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0 \\
\Longrightarrow \mathbf{A}^{n}+a_{n-1} \mathbf{A}^{n-1}+\cdots+a_{2} \mathbf{A}^{2}+a_{1} \mathbf{A}+a_{0} \mathbf{I}=0 .
\end{array}
$$

This allows us to express \mathbf{A}^{n} as a linear combination of the lower-order powers:

$$
\mathbf{A}^{n}=-a_{n-1} \mathbf{A}^{n-1}-\cdots-a_{2} \mathbf{A}^{2}-a_{1} \mathbf{A}-a_{0} \mathbf{I} .
$$

The Cayley-Hamilton theorem and reachability

Reachability: it's possible to steer the system to any arbitrary state $\mathbf{x}(t)=\xi \in \mathbb{R}^{n}$ in finite time with some actuation signal $\mathbf{u}(t)$.

The Cayley-Hamilton theorem

Every square matrix \mathbf{A} satisfies its own characteristic equation:

$$
\begin{array}{r}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0 \\
\Longrightarrow \mathbf{A}^{n}+a_{n-1} \mathbf{A}^{n-1}+\cdots+a_{2} \mathbf{A}^{2}+a_{1} \mathbf{A}+a_{0} \mathbf{I}=0 .
\end{array}
$$

This allows us to express \mathbf{A}^{n} as a linear combination of the lower-order powers:

$$
\mathbf{A}^{n}=-a_{n-1} \mathbf{A}^{n-1}-\cdots-a_{2} \mathbf{A}^{2}-a_{1} \mathbf{A}-a_{0} \mathbf{I} .
$$

More importantly, we can do this for any power greater than n :

$$
\mathbf{A}^{k \geq n}=\sum_{j=0}^{n-1} \alpha_{j} \mathbf{A}^{j} .
$$

The Cayley-Hamilton theorem and reachability

The Cayley-Hamilton theorem allows us to express the infinite power series $e^{\mathbf{A} t}$ as a finite sum:

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\frac{1}{2!} \mathbf{A}^{2} t^{2}+\frac{1}{3!} \mathbf{A}^{2} t^{3}+\ldots
$$

The Cayley-Hamilton theorem and reachability

The Cayley-Hamilton theorem allows us to express the infinite power series $e^{\mathbf{A} t}$ as a finite sum:

$$
\begin{aligned}
e^{\mathbf{A} t} & =\mathbf{I}+\mathbf{A} t+\frac{1}{2!} \mathbf{A}^{2} t^{2}+\frac{1}{3!} \mathbf{A}^{2} t^{3}+\ldots \\
& =\alpha_{0}(t) \mathbf{I}+\alpha_{1}(t) \mathbf{A}+\alpha_{2}(t) \mathbf{A}^{2}+\cdots+\alpha_{n-1}(t) \mathbf{A}^{n-1}
\end{aligned}
$$

The Cayley-Hamilton theorem and reachability

The Cayley-Hamilton theorem allows us to express the infinite power series $e^{\mathbf{A t}}$ as a finite sum:

$$
\begin{aligned}
e^{\mathbf{A} t} & =\mathbf{I}+\mathbf{A} t+\frac{1}{2!} \mathbf{A}^{2} t^{2}+\frac{1}{3!} \mathbf{A}^{2} t^{3}+\ldots \\
& =\alpha_{0}(t) \mathbf{I}+\alpha_{1}(t) \mathbf{A}+\alpha_{2}(t) \mathbf{A}^{2}+\cdots+\alpha_{n-1}(t) \mathbf{A}^{n-1}
\end{aligned}
$$

What does this have to do with reachability?
With control and zero initial condition $\mathbf{x}(0)=\mathbf{0}$, the solution to the system $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$ is

$$
\mathbf{x}(t)=\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau
$$

So a state $\xi \in \mathbb{R}^{n}$ being reachable just means there exists $\mathbf{u}(t)$ such that

$$
\xi=\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau
$$

The Cayley-Hamilton theorem and reachability

A state $\xi \in \mathbb{R}^{n}$ is reachable if there exists $\mathbf{u}(t)$ such that

$$
\xi=\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau
$$

The Cayley-Hamilton theorem and reachability

A state $\xi \in \mathbb{R}^{n}$ is reachable if there exists $\mathbf{u}(t)$ such that

$$
\begin{aligned}
\xi & =\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau \\
& =\int_{0}^{t}\left[\alpha_{0}(t-\tau) \mathbf{I}+\alpha_{1}(t-\tau) \mathbf{A}+\alpha_{2}(t-\tau) \mathbf{A}^{2}+\cdots+\alpha_{n-1}(t-\tau) \mathbf{A}^{n-1}\right] \mathbf{B u}(\tau) d \tau
\end{aligned}
$$

The Cayley-Hamilton theorem and reachability

A state $\xi \in \mathbb{R}^{n}$ is reachable if there exists $\mathbf{u}(t)$ such that

$$
\begin{aligned}
\xi & =\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau \\
& =\int_{0}^{t}\left[\alpha_{0}(t-\tau) \mathbf{I}+\alpha_{1}(t-\tau) \mathbf{A}+\alpha_{2}(t-\tau) \mathbf{A}^{2}+\cdots+\alpha_{n-1}(t-\tau) \mathbf{A}^{n-1}\right] \mathbf{B u}(\tau) d \tau \\
& =\mathbf{B} \int_{0}^{t} \alpha_{0}(t-\tau) \mathbf{u}(\tau) d \tau+\mathbf{A B} \int_{0}^{t} \alpha_{1}(t-\tau) \mathbf{u}(\tau) d \tau+\cdots+\mathbf{A}^{n-1} \mathbf{B} \int_{0}^{t} \alpha_{n-1}(t-\tau) \mathbf{u}(\tau) d \tau
\end{aligned}
$$

The Cayley-Hamilton theorem and reachability

A state $\xi \in \mathbb{R}^{n}$ is reachable if there exists $\mathbf{u}(t)$ such that

$$
\begin{aligned}
\xi & =\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau \\
& =\int_{0}^{t}\left[\alpha_{0}(t-\tau) \mathbf{I}+\alpha_{1}(t-\tau) \mathbf{A}+\alpha_{2}(t-\tau) \mathbf{A}^{2}+\cdots+\alpha_{n-1}(t-\tau) \mathbf{A}^{n-1}\right] \mathbf{B u}(\tau) d \tau \\
& =\mathbf{B} \int_{0}^{t} \alpha_{0}(t-\tau) \mathbf{u}(\tau) d \tau+\mathbf{A B} \int_{0}^{t} \alpha_{1}(t-\tau) \mathbf{u}(\tau) d \tau+\cdots+\mathbf{A}^{n-1} \mathbf{B} \int_{0}^{t} \alpha_{n-1}(t-\tau) \mathbf{u}(\tau) d \tau \\
& =\left[\begin{array}{llll}
\mathbf{B} & \mathbf{A B} & \ldots & \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]\left[\begin{array}{c}
\int_{0}^{t} \alpha_{0}(t-\tau) \mathbf{u}(\tau) d \tau \\
\int_{0}^{t} \alpha_{1}(t-\tau) \mathbf{u}(\tau) d \tau \\
\vdots \\
\int_{0}^{t} \alpha_{n-1}(t-\tau) \mathbf{u}(\tau) d \tau
\end{array}\right]
\end{aligned}
$$

The Cayley-Hamilton theorem and reachability

A state $\xi \in \mathbb{R}^{n}$ is reachable if there exists $\mathbf{u}(t)$ such that

$$
\xi=\left[\begin{array}{llll}
\mathbf{B} & \mathbf{A B} & \ldots & \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]\left[\begin{array}{c}
\int_{0}^{t} \alpha_{0}(t-\tau) \mathbf{u}(\tau) d \tau \\
\int_{0}^{t} \alpha_{1}(t-\tau) \mathbf{u}(\tau) d \tau \\
\vdots \\
\int_{0}^{t} \alpha_{n-1}(t-\tau) \mathbf{u}(\tau) d \tau
\end{array}\right]
$$

The Cayley-Hamilton theorem and reachability

A state $\xi \in \mathbb{R}^{n}$ is reachable if there exists $\mathbf{u}(t)$ such that

$$
\xi=\underbrace{\left[\begin{array}{llll}
\mathbf{B} & \mathbf{A B} & \ldots & \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]}_{\text {Controllability matrix } \mathcal{C}}\left[\begin{array}{c}
\int_{0}^{t} \alpha_{0}(t-\tau) \mathbf{u}(\tau) d \tau \\
\int_{0}^{t} \alpha_{1}(t-\tau) \mathbf{u}(\tau) d \tau \\
\vdots \\
\int_{0}^{t} \alpha_{n-1}(t-\tau) \mathbf{u}(\tau) d \tau
\end{array}\right]
$$

The Cayley-Hamilton theorem and reachability

A state $\xi \in \mathbb{R}^{n}$ is reachable if there exists $\mathbf{u}(t)$ such that

$$
\xi=\underbrace{\left[\begin{array}{llll}
\mathbf{B} & \mathbf{A B} & \ldots & \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]}_{\text {Controllability matrix } \mathcal{C}}\left[\begin{array}{c}
\int_{0}^{t} \alpha_{0}(t-\tau) \mathbf{u}(\tau) d \tau \\
\int_{0}^{t} \alpha_{1}(t-\tau) \mathbf{u}(\tau) d \tau \\
\vdots \\
\int_{0}^{t} \alpha_{n-1}(t-\tau) \mathbf{u}(\tau) d \tau
\end{array}\right]
$$

- Therefore, the only way for all of \mathbb{R}^{n} to be reachable is when the columns of \mathcal{C} spans \mathbb{R}^{n}.
- If \mathcal{C} has rank n, then we can design $\mathbf{u}(t)$ to reach any state $\xi \in \mathbb{R}^{n}$.

Optimal full-state control: LQR

Optimal control

- Recall that if the system $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$ is controllable, then it's possible to arbitrarily manipulate the eigenvalues through a full-state feedback control law $\mathbf{u}=-\mathbf{K x}$.

Optimal control

- Recall that if the system $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$ is controllable, then it's possible to arbitrarily manipulate the eigenvalues through a full-state feedback control law $\mathbf{u}=-\mathbf{K x}$.
- If we choose \mathbf{u} to make the system arbitrarily stable, this can lead to
- Expensive control expenditure $J(\mathbf{x}, \mathbf{u})$.
- Over-react to noise and disturbances.

Optimal control: LQR

- Optimal control: choosing the best gain matrix \mathbf{K} to stabilize the system with minimum effort.
- Seek balance between stability and aggressiveness of control.

Optimal control: LQR

- Optimal control: choosing the best gain matrix \mathbf{K} to stabilize the system with minimum effort.
- Seek balance between stability and aggressiveness of control.

Consider the cost function

$$
J(t)=\int_{0}^{t} \underbrace{\mathbf{x}(\tau)^{T} \mathbf{Q} \mathbf{x}(\tau)}_{\text {cost of deviations of } \mathrm{x}}+\underbrace{\mathbf{u}(\tau)^{T} \mathbf{R u}(\tau)}_{\text {cost of control }} d \tau
$$

- $\mathbf{Q} \succeq 0$ - can achieve zero deviation.

Optimal control: LQR

- Optimal control: choosing the best gain matrix \mathbf{K} to stabilize the system with minimum effort.
- Seek balance between stability and aggressiveness of control.

Consider the cost function

$$
J(t)=\int_{0}^{t} \underbrace{\mathbf{x}(\tau)^{T} \mathbf{Q} \mathbf{x}(\tau)}_{\text {cost of deviations of } \mathrm{x}}+\underbrace{\mathbf{u}(\tau)^{T} \mathbf{R u}(\tau)}_{\text {cost of control }} d \tau
$$

- $\mathbf{Q} \succeq 0$ - can achieve zero deviation.
- $\mathbf{R} \succ 0$ - but control effort is always needed.

Optimal control: LQR

- Optimal control: choosing the best gain matrix \mathbf{K} to stabilize the system with minimum effort.
- Seek balance between stability and aggressiveness of control.

Consider the cost function

$$
J(t)=\int_{0}^{t} \underbrace{\mathbf{x}(\tau)^{T} \mathbf{Q} \mathbf{x}(\tau)}_{\text {cost of deviations of } \mathrm{x}}+\underbrace{\mathbf{u}(\tau)^{T} \mathbf{R u}(\tau)}_{\text {cost of control }} d \tau
$$

- $\mathbf{Q} \succeq 0$ - can achieve zero deviation.
- $\mathbf{R} \succ 0$ - but control effort is always needed.
- Often diagonal, tuned to weigh the relative importance of the states/control knobs.

Optimal control: LQR

- Optimal control: choosing the best gain matrix \mathbf{K} to stabilize the system with minimum effort.
- Seek balance between stability and aggressiveness of control.

Consider the cost function

$$
J(t)=\int_{0}^{t} \underbrace{\mathbf{x}(\tau)^{T} \mathbf{Q} \mathbf{x}(\tau)}_{\text {cost of deviations of } \mathrm{x}}+\underbrace{\mathbf{u}(\tau)^{T} \mathbf{R u}(\tau)}_{\text {cost of control }} d \tau
$$

- $\mathbf{Q} \succeq 0$ - can achieve zero deviation.
- $\mathbf{R} \succ 0$ - but control effort is always needed.
- Often diagonal, tuned to weigh the relative importance of the states/control knobs.
- We now have an optimization problem!!!!!

Optimal control: LQR

$$
J(t)=\int_{0}^{t} \underbrace{\mathbf{x}(\tau)^{T} \mathbf{Q x}(\tau)}_{\text {cost of deviations of } \mathrm{x}}+\underbrace{\mathbf{u}(\tau)^{T} \mathbf{R u}(\tau)}_{\text {cost of control }} d \tau
$$

The linear-quadratic-regulator (LQR) control law $\mathbf{u}=-\mathbf{K}_{r} \mathbf{x}$ is designed to minimize $J=\lim _{t \rightarrow \infty} J(t)$.

Optimal control: LQR

$$
J(t)=\int_{0}^{t} \underbrace{\mathbf{x}(\tau)^{T} \mathbf{Q} \mathbf{x}(\tau)}_{\text {cost of deviations of } \mathrm{x}}+\underbrace{\mathbf{u}(\tau)^{T} \mathbf{R u}(\tau)}_{\text {cost of control }} d \tau
$$

The linear-quadratic-regulator (LQR) control law $\mathbf{u}=-\mathbf{K}_{r} \mathbf{x}$ is designed to minimize $J=\lim _{t \rightarrow \infty} J(t)$.

- Linear control law $\mathbf{u}=-\mathbf{K}_{r} \mathbf{x}$

Optimal control: LQR

$$
J(t)=\int_{0}^{t} \underbrace{\mathbf{x}(\tau)^{T} \mathbf{Q} \mathbf{x}(\tau)}_{\text {cost of deviations of } \mathrm{x}}+\underbrace{\mathbf{u}(\tau)^{T} \mathbf{R u}(\tau)}_{\text {cost of control }} d \tau
$$

The linear-quadratic-regulator (LQR) control law $\mathbf{u}=-\mathbf{K}_{r} \mathbf{x}$ is designed to minimize $J=\lim _{t \rightarrow \infty} J(t)$.

- Linear control law $\mathbf{u}=-\mathbf{K}_{r} \mathbf{x}$
- Quadratic cost function J

Optimal control: LQR

$$
J(t)=\int_{0}^{t} \underbrace{\mathbf{x}(\tau)^{T} \mathbf{Q} \mathbf{x}(\tau)}_{\text {cost of deviations of } \mathrm{x}}+\underbrace{\mathbf{u}(\tau)^{T} \mathbf{R u}(\tau)}_{\text {cost of control }} d \tau
$$

The linear-quadratic-regulator (LQR) control law $\mathbf{u}=-\mathbf{K}_{r} \mathbf{x}$ is designed to minimize $J=\lim _{t \rightarrow \infty} J(t)$.

- Linear control law $\mathbf{u}=-\mathbf{K}_{r} \mathbf{x}$
- Quadratic cost function J
- Regulates the state of the system to $\lim _{t \rightarrow \text { inf }} \mathbf{x}(t)=\mathbf{0}$.

Optimal control: LQR

$$
J(t)=\int_{0}^{t} \underbrace{\mathbf{x}(\tau)^{T} \mathbf{Q} \mathbf{x}(\tau)}_{\text {cost of deviations of } \mathrm{x}}+\underbrace{\mathbf{u}(\tau)^{T} \mathbf{R u}(\tau)}_{\text {cost of control }} d \tau
$$

The linear-quadratic-regulator (LQR) control law $\mathbf{u}=-\mathbf{K}_{r} \mathbf{x}$ is designed to minimize $J=\lim _{t \rightarrow \infty} J(t)$.

- Linear control law $\mathbf{u}=-\mathbf{K}_{r} \mathbf{x}$
- Quadratic cost function J
- Regulates the state of the system to $\lim _{t \rightarrow \text { inf }} \mathbf{x}(t)=\mathbf{0}$.

Optimal control: LQR

Since $J(t)$ is quadratic, there is an analytical solution given by

$$
\mathbf{K}_{r}=\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{X}
$$

where \mathbf{X} is the solution to an algebraic Riccati equation:

$$
\mathbf{A}^{T} \mathbf{X}+\mathbf{X A}-\mathbf{X B R}^{-1} \mathbf{B}^{T} \mathbf{X}+\mathbf{Q}=\mathbf{0}
$$

Optimal control: LQR

Since $J(t)$ is quadratic, there is an analytical solution given by

$$
\mathbf{K}_{r}=\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{X}
$$

where \mathbf{X} is the solution to an algebraic Riccati equation:

$$
\mathbf{A}^{T} \mathbf{X}+\mathbf{X A}-\mathbf{X B R}^{-1} \mathbf{B}^{T} \mathbf{X}+\mathbf{Q}=\mathbf{0} .
$$

- There exists numerically robust implementations to solve this.
- Very expensive for high-dimensional systems - $O\left(n^{3}\right)$.

Optimal control: LQR

Since $J(t)$ is quadratic, there is an analytical solution given by

$$
\mathbf{K}_{r}=\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{X}
$$

where \mathbf{X} is the solution to an algebraic Riccati equation:

$$
\mathbf{A}^{T} \mathbf{X}+\mathbf{X A}-\mathbf{X B R}^{-1} \mathbf{B}^{T} \mathbf{X}+\mathbf{Q}=\mathbf{0} .
$$

- There exists numerically robust implementations to solve this.
- Very expensive for high-dimensional systems - $O\left(n^{3}\right)$.
- Reduced-order models: use fewer states.

Summary

What we covered:

- Closed-loop feedback control.

Summary

What we covered:

- Closed-loop feedback control.
- Stability and eigenvalues of a linear dynamical system.

Summary

What we covered:

- Closed-loop feedback control.
- Stability and eigenvalues of a linear dynamical system.
- Controllability and Reachability.

Summary

What we covered:

- Closed-loop feedback control.
- Stability and eigenvalues of a linear dynamical system.
- Controllability and Reachability.
- Optimal full-state control: LQR.

Summary

What we covered:

- Closed-loop feedback control.
- Stability and eigenvalues of a linear dynamical system.
- Controllability and Reachability.
- Optimal full-state control: LQR.

What we didn't cover:

- How to derive the Riccati equations for LQR. (End of Section 8.4 in [Brunton and Kutz, 2019])
- Full-state estimation and the Kalman filter. (Section 8.5 in [Brunton and Kutz, 2019])

References i

Steven L. Brunton. Control Bootcamp.
https://www.youtube.com/playlist?list=PLMrJAkhIeNNR20Mz-VpzgfQs5zrYi085m, 2020.
Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.

