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What is Optimal Control?

We define Optimal Control as the active manipulation of
dynamical systems to achieve a given engineering goal.

J

Core Ildea: Closed Loop Feed Back Control

Disturbances ! Cost
w ' H J
H Systi H
\ Actuators ystem Sensors !
|\ [—
' u y :
: Controller ,




THE UNIVERSITY

Simple Control Example OF BRITISH COLUMBIA

Temperature Control

Create a control policy to keep the internal temperature of a
freezer at a reference temperature.

Governing ODE Bang Bang Control
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What will we focus on?

This term will focus on Closed Loop Feedback Control in both
discrete and continuous systems. We will also for the most
part focus on leaning a parameterized control policy.
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Continuous Control
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What are some applications

1. Fluid dynamics: Improve drag reduction, lift increase, and

noise reduction in aeronautics.
2. Finance: Maximize profit given a level of risk tolerance.

3. Epidemiology: Effectively suppress a disease with
constraints of sensing (blood samples, clinics, etc.) and
actuation (vaccines, bed nets, etc.).

4. Industry: Increasing productivity subject to constraints like
labor and work safety laws, and enviro impact.

5. Autonomy and robotics: self-driving cars and autonomous
robots is to achieve a task while interacting safely with a
complex environment, including cooperating with human
agents.




Why should we care about optimal
control?
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It Connects us with powerful tools from different fields

e Approximate Dynamic Programming
e Reinforcement Learning
e Model Predictive Control

e Online Control / System ldentification

Areas that have been researched depending on focus:

e Do you need algorithmic guarantees?

e What can you approximate safely?
e How quickly do you need to produce control online?

e Do you have access to a model?

Can you make assumptions about the dynamical system?




THE UNIVERSITY

Why should we care about Optimal Control OF BRITISH COLUMBIA

Learning from imperfect experts Simple ef

Sometimes we can reduce an RL/IL problem to something Initialize D « 0.
Initialize 7, to any policy in IT.
fori =1to N do
e “A Reduction of Imitation Learning and Let m; = Bim* + (1 — Bi) .

Structured Prediction to No-Regret Online Sample 7"-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;

Learning and actions given by expert.

e “Reinforcement and Imitation Learning via Aggregate fjélasftsz D+ DUDi
Train classifier ;41 on D.

Interactive No-Regret Learning” end for
Return best 7; on validation.
Algorithm 3.1: DAGGER Algorithm.

simpler, like an online learning problem.

e ‘“Truncated Horizon Policy Search: Combining
Reinforcement Learning Imitation Learning”
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Learning via some notion of intrinsic stability

If the goal is actually to produce an agent which just needs to
“survive” in the environment, then the usual reward mechanisms /
deep RL might not be the right tool. (some results from https:

//sites.google.com/view/surpriseminimization)

Emergent behavior from stability seeking algorithms



https://sites.google.com/view/surpriseminimization
https://sites.google.com/view/surpriseminimization
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Safe Policy Learning with Model Predictive Control

Planning/MPC often provides guarantees and improved per-
formance over “constrained policy learning” approach.

Staying in safe regions of state-space

S

Baseline policy is safe
/

unsafe
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Exploration and Learning In Novel Environments

When actually interacting with the environment, how do we
deal with new information while still maintaining performance?

Perception learning + closed loop feedback control

Linear & angular speed
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Model Stacking Stacks versus End-to-End

When the perception problem can be detached from learning

the policy, we can take advantage of extremely efficient, low
sample complexity control methods, but can we do better
(“End-to-End Training of Deep Visuomotor Policies”)?

Pipeline Example

£ ¥
[ optimize cach pi(r)
w.rt. Lp

(b) cube (c) hammer (d) bottle
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A deep connection to model based RL

Depending on on your definition of control, many approaches to
planning stem from dynamic programming principles: “Probabilistic
Planning with Sequential Monte-Carlo Methods".

Multi-model behavior in SAC using fewer samples

13
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Improved Algorithmic and Performance Guarantees

There has been a huge, amount of work done in this area. Here is

a list of papers by a prominent control researcher:

e "“Finite-time Analysis of Approximate Policy Iteration for the
Linear Quadratic Regulator”

e ‘“Learning Linear Dynamical Systems with Semi-Parametric
Least Squares”

e "Regret Bounds for Robust Adaptive Control of the Linear
Quadratic Regulator”

e ‘“Least-Squares Temporal Difference Learning for the Linear
Quadratic Regulator”

e "On the Sample Complexity of the Linear Quadratic
Regulator”

14
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Efficient Expert Learning in Asymmetric Algorithms

In AV, we can use information such as a top-down view, or a
condensed numerical format is used to train models that are
not used at test time (from “Learning by Cheating” - here).

Learning From Asymmetric Information
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https://arxiv.org/abs/1912.12294

Different Types of Control Problems
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stic Problems

O OO D

Stage k

@ Discrete-time system:
Xk+1:fk(Xk,Uk), k:O,1,.,..N71

where xx: State, ux: Control chosen from some constraint set Uk (k)

@ Cost function:
N—1

an(xn) + Y g(Xe, U)
k=0

@ For given initial state xo, minimize over control sequences {wo, ..., Uv—1}
N—1
J(X0; o, -, Un—1) = GvON) + D GiXk, Ux)
k=0

@ Control sequences correspond to paths from start node to end node in the graph
@ Optimal cost function J*(xo) = min yeu, ) J(X0i o, ..., Un—1)
k=0,...,N—1

16
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ochastic Problems

Random Transition
Fre(@h, uk, wi)

Trt1 =
: C C Random Cost . . .

gk Ll Uk wk

@ Stochasticity in the form of a random “disturbance" w; (e.g., physical noise, market
uncertainties, demand for inventory, unpredictable breakdowns, etc)

@ Cost function:

E {QN(XN) + i 9k(Xk, U, Wk)}

k=0

@ Policies m = {po, ..., un—1}, Where py is a “closed-loop control law" or “feedback
policy"/a function of xx. Specifies control ux = ux(x«x) to apply when at x.

@ For given initial state xo, minimize over all 7 = {uo, . .., un—1} the cost

N—1
Jr(X0) = E {QN(XN) AF Z Ik (Xk, (X ), Wk)}
k=0

@ Optimal cost function J*(xo) = min, J-(xo)

17
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Infinite Horizo iscounted Problems

Random Transition

Tht1 = [(Th, Uk, W) Infinite Horizon
: Random Cost ' .

akg(zk, wk, wi)

Infinite number of stages, and stationary system and cost
@ System xi1 = f(xk, Uk, wx) with state, control, and random disturbance.
@ Policies m = {0, pi1, . . .} With pux(x) € U(x) for all x and k.
@ Optimal cost function J*(xo) = min, J=(X) satisfies Bellman’s equation

J(x) = ugndpx) E{g(x, u, w) + ad*(f(x, u, w))}

@ Optimal policy: Applies at x the minimizing v above, regardless of stage k.

@ When there are finitely many states, i = 1, ..., n, Bellman’s equation is written in
terms of the i — j transition probabilities pj;(u) as

J7(0) = min 2 Pilu)(gli,u,)) + ad” ()

@ Approximation possibility: Use Jin place of J*, and approximate E{-} and min,

18
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Stochastic Shortest Path Problems

Traveling Salesman
Example

Matrix of Intercity
Travel Costs

Optimal Tour

Terminal State ¢

19
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Inducing stability in dynamical systems

Typically this requires finding the minimum cost control to
remain within a region of stability with respect to the system
dynamics, and (provided the system is linear) the Eigen values
of the transition matrix.

J

Simple Pole-Balancing Example
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Different Forms of Approximation

e Approximation in Value space
e Approximation in Policy space

e Approximation in Value space and Policy space

Different Algorithm Classes

e Look-ahead algorithms

e Roll-out Algorithms

Why do we care

e Simple, efficient algorithms

e Improvement bounds o1
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ook ahead algorithms (1-step look ahead

At state xx, use Jx+ (in place of Ji,1) to compute a (suboptimal) control J

Approximate Min
Discretization First Step “Future”

\I‘Iilkn E{gk(l’k, gy W)+t 1 (1171\- 1)}

Approximate Cost-to-Go Jit1

Approximate E{-} Problem approximation

Certainty equivalence Rollout, Model Predictive Control
Adaptive simulation c approximation

Monte Carlo tree search Neural nets

Aggregation

THE THREE APPROXIMATIONS: (They can be designed separately)
@ How to construct Jx [an important example is parametric approximation Jk(xk, )
with parameter vector ri, €.9., neural nets].
@ How to simplify E{-} operation.
@ How to simplify min operation.

22
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Look ahead algorithms (k-step | ahead)
First £ Steps “Future”
k4+£-1 B
uk‘#HiI’l‘i}}“HH E{g,c (zk, ug, wi) + m,§-+1gm (Tm, tom (Tm) s wm) + Tt (Thy f)}

@ At state xi, solve an £-stage version of the DP problem with x, as the initial state
and Jg4. as the terminal cost function.

@ Use the first control of the ¢-stage policy thus obtained, and discard the others.

The “effective" one-step lookahead function is the optimal cost function of an

We can view /-step lookahead as a special case of one-step lookahead:
(¢ — 1)-stage DP problem with terminal cost et ‘

23
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nline vs Offline look ahead algorithm

Approximate Min
Discretization First Step “Future”

\nﬁn E {gk (T, wp, W)+ Tt 1 (.’L‘k<1 ) }

Approximate Cost-to-Go ij

Approximate £{-} Problem approximation
Certainty equivalence Rollout, Model Predictive Control
Adaptive simulation Parametric approximation
Monte Carlo tree search Neural nets
Aggregation

@ Off-line methods: All the functions Jk+1 are computed for every k, before the
control process begins.
Examples of off-line methods: Neural net and other parametric approximations.

@ On-line methods: The values Jk;1(Xk+1) are computed only at the relevant next
states xk+1, and are used to compute the control to be applied at the N time steps.

Examples of on-line methods: Rollout and model predictive control.

@ On-line methods are well-suited for on-line replanning (but require more on-line
computation).

24
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| only do hat are these terms?
% Sample
tate T} Simulator Next State a7, ijrl Sample Q_—Factor
Sample Sample By = g8 + J+1(x5 )
Control uj Transition Cost gj

@ Use the simulator to collect a large number of “representative" samples of
state-control-successor states-stage cost quadruplets (g, Ui, Xi,1, 9), and
corresponding sample Q-factors

Bi=0gi+Jk1(xe),  s=1,...,q

@ Introduce a parametric family of Q-factors C)K(xk, Uk, Ik)-
@ Determine the parameter vector 7 by the least-squares fit

q
- . = 2
Tk € arg rr}:n 55:1 (Qu(xi, uic; ) — B)

@ Use the policy

fi(x) €arg min  Qu(Xk, Uk, T)
Uk € Uk (%)

25
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Algorithm
First £ Steps “Future”
k+£-1 N
” vl‘kf?-l‘i?})‘k;f;7| E{gk(ﬂ%,uk, wy) + m:ZIH»1 g (Tm, pin (Tm), W) + v]k+é‘(‘77k+l)}
Rollout Control Lookahead Minimization Cost of Base Policy
Use the cost of the base/suboptimal policy at the end of £-step lookahead J

Assume a base policy is available and can be simulated.
The control jix(xk) of the lookahead policy, can be computed at any x. It defines
the rollout policy.

@ The rollout policy performs better than the base policy. (Intuition: Using
optimization in the first £ steps instead of using the base policy should work better.)

@ In practice rollout performs well, is very reliable, is very simple to implement, can

be model-free (particularly in the case £ = 1).

Rollout in its “standard” form involves simulation and on-line implementation.

The simulation can be prohibitively expensive (so further approximations may be
needed); particularly for stochastic problems and multistep lookahead.

26
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Base Policy

Q-Factors
@ At state x«, for every pair (xk, ux), ux € Uk(x«), we generate a Q-factor

ék(Xk, Uk) = gk(X/(. Uk) + Hkiq (fk(Xk, uk))

using the base policy [Hk1(xXx+1) is the base policy cost starting from xk1].
@ We select the control ux with minimal Q-factor.
@ We move to the next state xx+1, and continue.

@ Multistep lookahead versions (length of lookahead limited by the branching factor
of the lookahead tree).

27
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Algorithm (s ast

First £ Steps “Future”
k-1
min Ii{gk(zk,uk,wk) + Z gm(zm,um(zm), Wm) + Jk+k<17k+[)}
U410 Pk —1
m=k+1
Rollout Control Lookahead Minimization Cost of Base Policy

@ Start with a base policy 7 = {uo, ..., un—1}
@ Let the rollout policy be # = {jio, . . . , fin—1}. Then cost improvement is obtained

i, (X)) < Jieym(Xk), for all xx and k.

@ This fundamental property carries over to policy iteration, which can be viewed as
perpetual rollout:

Start Policy = Rollout Policy = Rollout of Rollout Policy —-

@ Approximate policy iteration (or self-learning): Use of simulation, and
approximation in policy and/or value space, to learn sequentially improved policies.

@ Many variants: Actor only, critic only, actor-critic, Q-learning methods.

28
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Presentation List

1. Background and overview (Engineering Perspective)

2. Background and overview (Optimization Perspective)

3. Applied versions of LQR in deep learning (ILQR / Guided
Policy Search)

4. Learning Non-linear system dynamics (LQR Sample
Complexity / Koopman Theory)

5. Model Predictive Control (Safe-exploration + Tutorial)

6. Learning End to End Visuomotor Policies (high-dim control
Under Partial Information)

7. Vision Based Navigation in Novel Environments (high-dim
control + exploration)
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Presentation 1:

Linear Control In Engineering Applications

Read chapter 8 of “Data Driven Science Engineering Machine
Learning, Dynamical Systems, and Control” (pg 326-352) from here

Major Topics

e Closed loop feedback control

e Controllability and observability
e Optimal full state control: the linear quadratic regulator

e Optimal full state estimation: the Kalman filter

30


http://databookuw.com/databook.pdf
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Presentation 2: Control Theory From RL / Optimization

Perspective

Read “Optimal Control Theory”" (pg 1-23) from here

. J

Major Topics

e Discrete Control / Dynamic Programming

e Continuous Control / HJB equations

Pontryagin's Maximum Principle

Linear quadratic Guassian

Duality of optimal control and optimal estimation

31


https://courses.cs.washington.edu/courses/cse528/09sp/optimality_chapter.pdf
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Presentation 3: Applications of LQR

Read “Learning Neural Network Policies with Guided Policy Search

under Unknown Dynamics” - link and if your up for it, an important
reference “lterative Linear Quadratic Regulator Design for Nonlinear
Biological Movement Systems” - link

Major Topics

e |terative LQR

e Guided Policy Search

e Learning Unknown System dynamics

32


https://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamicsl
https://homes.cs.washington.edu/~todorov/papers/LiICINCO04.pdf
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Presentation 4: Theory / Sample Complexity of LQR

Read "“On the Sample Complexity of the Linear Quadratic Regulator”
- link

Major Topics

e Sample Complexity Bounds in LQR

e Computing Unknown Model Dynamics
e Optimization Theory for Control

e System Identification

33


https://homes.cs.washington.edu/~todorov/papers/LiICINCO04.pdf
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Presentation 5: Safe Model Predictive Control

Read “Learning-based Model Predictive Control for Safe Exploration
and Reinforcement Learning” - link, and if you want an additional
resource for MPC see “Model predictive control: Recent develop-
ments and future promise” - link, a complete review of safe RL see:
link, or a nice set of slides - here

Major Topics

e Safe exploration
e Model predictive control (MPC)

e combining MPC with reinforcement learning

34


https://arxiv.org/pdf/1906.12189.pdf
https://arxiv.org/pdf/1906.12189.pdf
http://www.jmlr.org/papers/volume16/garcia15a/garcia15a.pdf
https://las.inf.ethz.ch/files/ewrl18_SafeRL_tutorial.pdf
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Presentation 6:

Read “End-to-End Training of Deep Visuomotor Policies” - link

Major Topics

e Partial Observation

e High dimensional control
e Learning from Images

e Asymmetric Information

85


https://arxiv.org/pdf/1906.12189.pdf
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Presentation 7: Learning online in high dimensional state-
spaces with simple control algorithms

Read “Combining Optimal control and Learning for Visual Naviga-
tion in Novel Environments” - link

Major Topics

e Trajectory planning

e Learning perception

e online navigation in environments

36


https://arxiv.org/abs/1903.02531
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Lawrence Evans Mini-Textbook

Partial textbook provided for free online at https://math.
berkeley.edu/~evans/control.course.pdf.

Bertsekas RL+4OC slides

http://web.mit.edu/dimitrib/www/RLbook.html

Two interesting control theory papers

e Lyapunov Functions and Feedback in Nonlinear Control - link

e The O.D.E. Method for Convergence of Stochastic
Approximation and Reinforcement Learning - link

37


https://math.berkeley.edu/~evans/control.course.pdf
https://math.berkeley.edu/~evans/control.course.pdf
http://web.mit.edu/dimitrib/www/RLbook.html
http://math.univ-lyon1.fr/~clarke/ClarkeLyap.pdf
https://epubs.siam.org/doi/10.1137/S0363012997331639
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Control BootCamp (Engineering)

YouTube series:link

Nice tutorial from the perspective of control

Tour of Reinforcement Learning and Control - link

38


https://www.youtube.com/watch?v=Pi7l8mMjYVE&list=PLMrJAkhIeNNR20Mz-VpzgfQs5zrYi085m&index=1
https://arxiv.org/abs/1806.09460
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