Optimal Control: Introduction and Overview

Jonathan Wilder Lavington

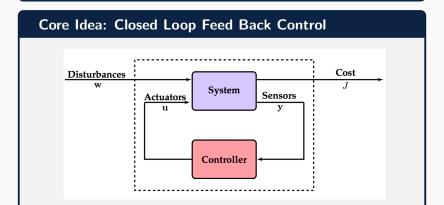
July 8, 2020

University of British Columbia, Department of Computer Science

Optimal Control

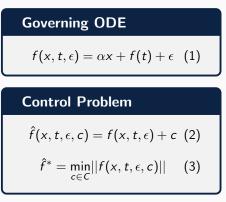
What is Optimal Control?

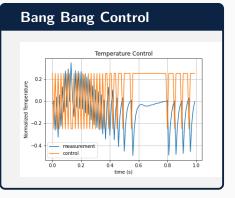
We define Optimal Control as the active manipulation of dynamical systems to achieve a given engineering goal.



Temperature Control

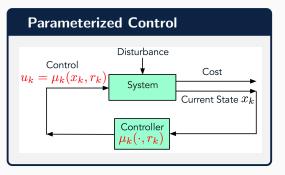
Create a control policy to keep the internal temperature of a freezer at a reference temperature.

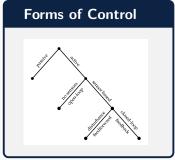




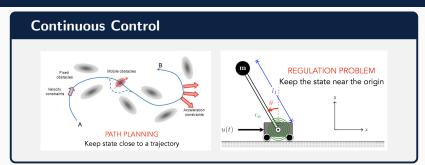
What will we focus on?

This term will focus on Closed Loop Feedback Control in both discrete and continuous systems. We will also for the most part focus on leaning a parameterized control policy.

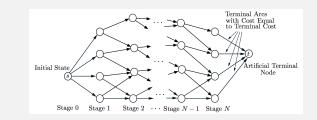




Optimal Control Problem Classes



Discrete Control



What are some applications

- 1. Fluid dynamics: Improve drag reduction, lift increase, and noise reduction in aeronautics.
- 2. Finance: Maximize profit given a level of risk tolerance.
- 3. **Epidemiology:** Effectively suppress a disease with constraints of sensing (blood samples, clinics, etc.) and actuation (vaccines, bed nets, etc.).
- 4. **Industry:** Increasing productivity subject to constraints like labor and work safety laws, and enviro impact.
- Autonomy and robotics: self-driving cars and autonomous robots is to achieve a task while interacting safely with a complex environment, including cooperating with human agents.

Why should we care about optimal control?

Why should we care about Optimal Control

- Do you need algorithmic guarantees?
- What can you approximate safely?
- How quickly do you need to produce control online?
- Do you have access to a model?
- Can you make assumptions about the dynamical system?

Learning from imperfect experts

Sometimes we can reduce an RL/IL problem to something simpler, like an online learning problem.

- "A Reduction of Imitation Learning and • Structured Prediction to No-Regret Online Learning"
- "Reinforcement and Imitation Learning via . Interactive No-Regret Learning"
- "Truncated Horizon Policy Search: Combining . Reinforcement Learning Imitation Learning"

Simple efficient algorithms (DAgger)

```
Initialize \mathcal{D} \leftarrow \emptyset
Initialize \hat{\pi}_1 to any policy in \Pi.
for i = 1 to N do
   Let \pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i.
   Sample T-step trajectories using \pi_i.
   Get dataset \mathcal{D}_i = \{(s, \pi^*(s))\} of visited states by \pi_i
   and actions given by expert.
   Aggregate datasets: \mathcal{D} \leftarrow \mathcal{D} \mid \mathcal{D}_i.
   Train classifier \hat{\pi}_{i+1} on \mathcal{D}.
end for
Return best \hat{\pi}_i on validation.
```

Algorithm 3.1: DAGGER Algorithm.

Learning via some notion of intrinsic stability

If the goal is actually to produce an agent which just needs to "survive" in the environment, then the usual reward mechanisms / deep RL might not be the right tool. (some results from https://sites.google.com/view/surpriseminimization)

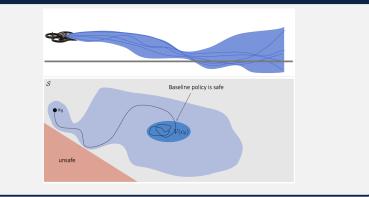


Why should we care about Optimal Control

Safe Policy Learning with Model Predictive Control

Planning/MPC often provides guarantees and improved performance over "constrained policy learning" approach.

Staying in safe regions of state-space

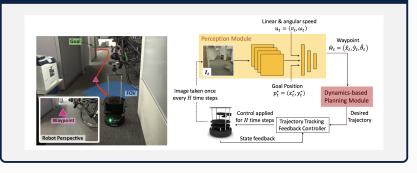


Why should we care about Optimal Control

Exploration and Learning In Novel Environments

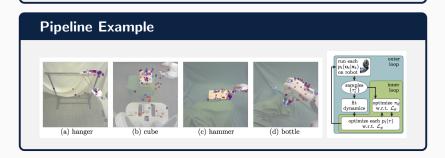
When actually interacting with the environment, how do we deal with new information while still maintaining performance?

Perception learning + closed loop feedback control



Model Stacking Stacks versus End-to-End

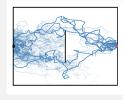
When the perception problem can be detached from learning the policy, we can take advantage of extremely efficient, low sample complexity control methods, but can we do better ("End-to-End Training of Deep Visuomotor Policies")?



A deep connection to model based RL

Depending on on your definition of control, many approaches to planning stem from dynamic programming principles: "Probabilistic Planning with Sequential Monte-Carlo Methods".

Multi-model behavior in SAC using fewer samples





Improved Algorithmic and Performance Guarantees

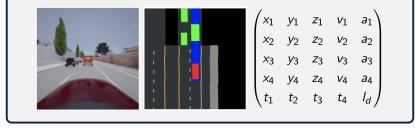
There has been a **huge**, amount of work done in this area. Here is a list of papers by a prominent control researcher:

- "Finite-time Analysis of Approximate Policy Iteration for the Linear Quadratic Regulator"
- "Learning Linear Dynamical Systems with Semi-Parametric Least Squares"
- "Regret Bounds for Robust Adaptive Control of the Linear Quadratic Regulator"
- "Least-Squares Temporal Difference Learning for the Linear Quadratic Regulator"
- "On the Sample Complexity of the Linear Quadratic Regulator"

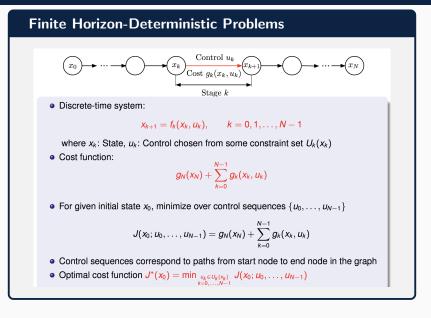
Efficient Expert Learning in Asymmetric Algorithms

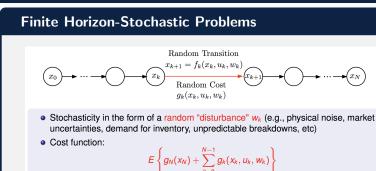
In AV, we can use information such as a top-down view, or a condensed numerical format is used to train models that are not used at test time (from "Learning by Cheating" - here).

Learning From Asymmetric Information



Different Types of Control Problems

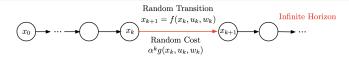




- Policies π = {μ₀,..., μ_{N-1}}, where μ_k is a "closed-loop control law" or "feedback policy"/a function of x_k. Specifies control μ_k = μ_k(x_k) to apply when at x_k.
- For given initial state x_0 , minimize over all $\pi = \{\mu_0, \dots, \mu_{N-1}\}$ the cost

$$J_{\pi}(x_0) = E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

• Optimal cost function $J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$



Infinite number of stages, and stationary system and cost

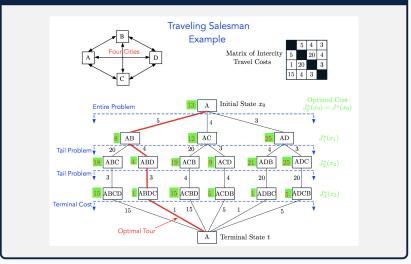
- System $x_{k+1} = f(x_k, u_k, w_k)$ with state, control, and random disturbance.
- Policies $\pi = \{\mu_0, \mu_1, \ldots\}$ with $\mu_k(x) \in U(x)$ for all x and k.
- Optimal cost function $J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$ satisfies Bellman's equation

$$J^*(x) = \min_{u \in U(x)} E\left\{g(x, u, w) + \alpha J^*(f(x, u, w))\right\}$$

- Optimal policy: Applies at x the minimizing u above, regardless of stage k.
- When there are finitely many states, *i* = 1,..., *n*, Bellman's equation is written in terms of the *i* → *j* transition probabilities p_{ij}(u) as

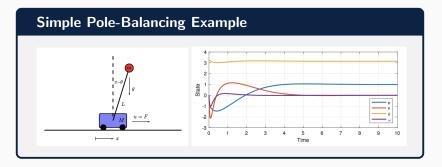
$$J^*(i) = \min_{u \in U(i)} \sum_{i=1}^n p_{ij}(u) (g(i, u, j) + lpha J^*(j))$$

Approximation possibility: Use J
 in place of J*, and approximate E{·} and minu



Inducing stability in dynamical systems

Typically this requires finding the minimum cost control to remain within a region of stability with respect to the system dynamics, and (provided the system is linear) the Eigen values of the transition matrix.



Optimal Control Overview

Important Algorithm Classes

Different Forms of Approximation

- Approximation in Value space
- Approximation in Policy space
- Approximation in Value space and Policy space

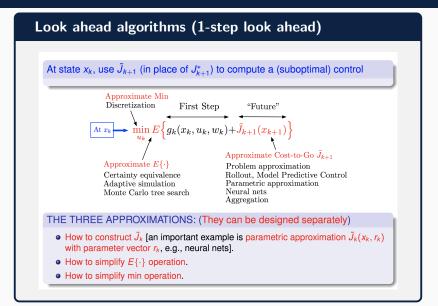
Different Algorithm Classes

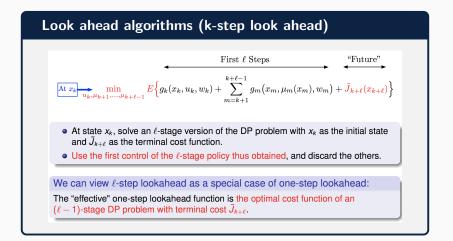
- Look-ahead algorithms
- Roll-out Algorithms

Why do we care

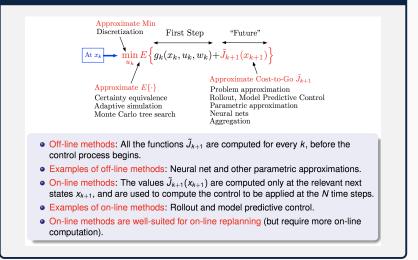
- Simple, efficient algorithms
- Improvement bounds

Approximation in Value Space

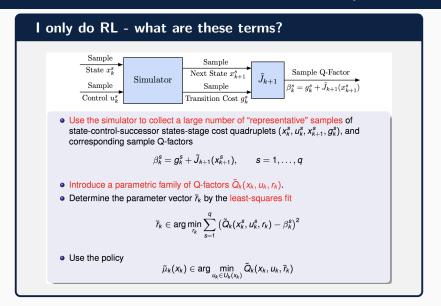




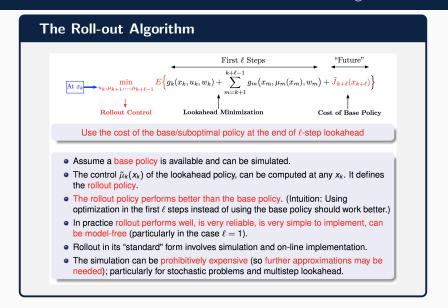
Approximation in Value Space



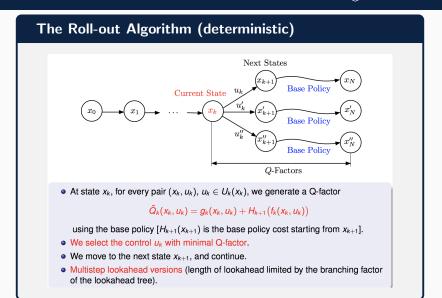
Reference Point (Policy Gradients)



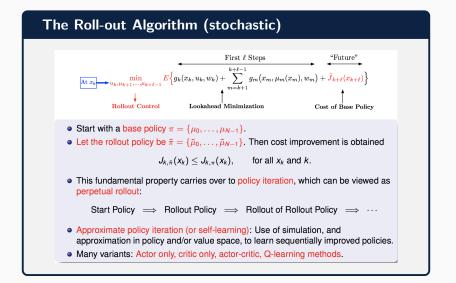
Approximation in Value Space + Policy Space



Approximation in Value Space + Policy Space



Approximation in Value Space + Policy Space



Picking Presenters

Presentation List

- 1. Background and overview (Engineering Perspective)
- 2. Background and overview (Optimization Perspective)
- 3. Applied versions of LQR in deep learning (ILQR / Guided Policy Search)
- 4. Learning Non-linear system dynamics (LQR Sample Complexity / Koopman Theory)
- 5. Model Predictive Control (Safe-exploration + Tutorial)
- 6. Learning End to End Visuomotor Policies (high-dim control Under Partial Information)
- Vision Based Navigation in Novel Environments (high-dim control + exploration)

Presentation 1:

Linear Control In Engineering Applications

Read chapter 8 of "Data Driven Science Engineering Machine Learning, Dynamical Systems, and Control" (pg 326-352) from here

- Closed loop feedback control
- Controllability and observability
- Optimal full state control: the linear quadratic regulator
- Optimal full state estimation: the Kalman filter

Presentation 2: Control Theory From RL / Optimization Perspective

Read "Optimal Control Theory" (pg 1-23) from here

- Discrete Control / Dynamic Programming
- Continuous Control / HJB equations
- Pontryagin's Maximum Principle
- Linear quadratic Guassian
- Duality of optimal control and optimal estimation

Presentation 3: Applications of LQR

Read "Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics" - link and if your up for it, an important reference "Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems" - link

- Iterative LQR
- Guided Policy Search
- Learning Unknown System dynamics

Presentation 4: Theory / Sample Complexity of LQR

Read "On the Sample Complexity of the Linear Quadratic Regulator" - link

- Sample Complexity Bounds in LQR
- Computing Unknown Model Dynamics
- Optimization Theory for Control
- System Identification

Presentation 5: Safe Model Predictive Control

Read "Learning-based Model Predictive Control for Safe Exploration and Reinforcement Learning" - link, and if you want an additional resource for MPC see "Model predictive control: Recent developments and future promise" - link, a complete review of safe RL see: link, or a nice set of slides - here

- Safe exploration
- Model predictive control (MPC)
- combining MPC with reinforcement learning

Presentation 6:

Read "End-to-End Training of Deep Visuomotor Policies" - link

- Partial Observation
- High dimensional control
- Learning from Images
- Asymmetric Information

Presentation 7: Learning online in high dimensional statespaces with simple control algorithms

Read "Combining Optimal control and Learning for Visual Navigation in Novel Environments" - link

- Trajectory planning
- Learning perception
- online navigation in environments

Lawrence Evans Mini-Textbook

Partial textbook provided for free online at https://math. berkeley.edu/~evans/control.course.pdf.

Bertsekas RL+OC slides

http://web.mit.edu/dimitrib/www/RLbook.html

Two interesting control theory papers

- Lyapunov Functions and Feedback in Nonlinear Control link
- The O.D.E. Method for Convergence of Stochastic Approximation and Reinforcement Learning - link

Control BootCamp (Engineering)

YouTube series:link

Nice tutorial from the perspective of control

Tour of Reinforcement Learning and Control - link