Causal	
Discove	ry

Motivation MLRG Theme Example

Background ^{Task} Other approaches

Paper Setup Theory

Discussion

References

Causal Discovery UBC MLRG

Betty Shea

11 - Mar - 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Agenda

Causal Discovery

- Motivation MLRG Theme Example
- Background Task Other approaches
- Paper Setup Theory
- Discussion
- References

- **1** Motivation: Causal discovery
 - Within MLRG theme
 - An example
- 2 Background and Theory
 - Task description
 - Existing approaches
- 3 Paper: Hoyer et al. (2008)
 - Theoretical results
 - Experimental results

The story so far....

Causal Discovery

Motivation MLRG Theme Example

Background ^{Task} Other approaches

Paper Setup Theory

Discussion

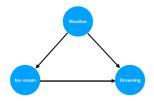
References

Inference, counterfactual reasoning, confounding factors

Classical inference techniques e.g. backdoor adjustment (Cathy)

Counterfactual inference (Ben)

- Instrumental variables (Aaron)
- Inference with VAEs (Wu)



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What if we don't have a graph?

Causal Discovery

Motivation MLRG Theme Example

Background Task Other approaches

Paper ^{Setup} Theory

Experiment

References

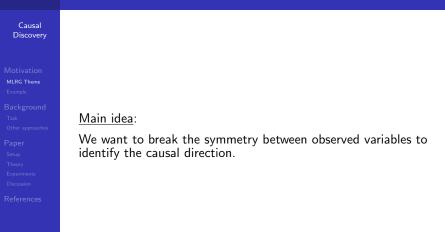
We need to find model structure. Causal discovery methods:

- Assume non-Gaussian noise and use independent component analysis (ICA)
- Other approaches
 - Use non-invertibility
 - Markov equivalent DAGs (Sun, Janzing & Schölkopf 2006)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

■ Today: Use (almost any) non-linearity

One weird trick... statisticians hate this



▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

An example: credit vs stocks

Causal Discovery

Motivation MLRG Theme Example

Background ^{Task} Other approaches

Paper Setup Theory Experime

Discussion

References

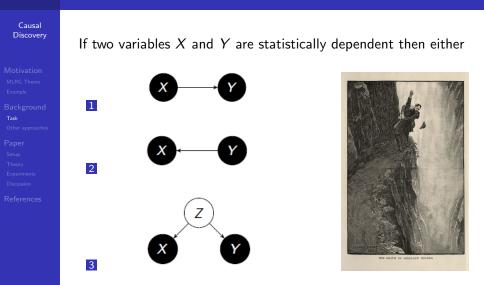
Observation: Credit spreads widen and stocks fall together.

Three competing theories:

- **1** Credit spreads widen \Rightarrow stock market selloff
- 2 Credit spreads widen \leftarrow stock market selloff
- **3** Something else causes both

Controlled randomized experiments could be unethical, too expensive or impossible.

Reichenbach's principle of common cause



Task description

Causal Discovery

- Motivation MLRG Theme Example
- Background Task Other approache
- Paper Setup Theory Experime
- Discussion
- References

• Every statistical dependence is due to a causal relation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- May have multiple parents, multiple causal relations.
- Find structure of causality.

General model

Causal Discovery

Motivation MLRG Theme Example

Background Task

Paper Setup Theory Experiment

References

Observed variable x_i is a node *i* in a directed acyclic graph with value $x_i := f_i(x_{pa(i)}) + n_i$ (1)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

where f_i is an arbitrary function,

 $x_{pa(i)}$ is a vector of elements that are parents of x_i , independent noise variables n_i with arbitrary probability densities p_{n_i}

Special case: Linear model with Gaussian noise

Causal Discovery

- Motivation MLRG Theme Example
- Background Task Other approache
- Paper Setup Theory
- Experiments
- Discussion
- References

- Observe joint distribution p(x, y)
- For linear-Gaussian models, p(y|x) is the same shape as p(x|y)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hard to distinguish between forward and backward causal directions

Linear model with non-Gaussian noise

Causal Discovery

- Motivation MLRG Theme Example
- Background ^{Task} Other approaches
- Paper Setup Theory
- Discussion
- References

- If f_i is linear, p_{n_i} is non-Gaussian (Shimizu et al. 2006)
 - **1** Run ICA (PCA using more than covariance information).
 - 2 Factorize X = AS. The rows of S contain the independent components. Set $W = A^{-1}$.
 - **3** ICA is not rotation-invariant (with non-Gaussian noise) and so can find factors *W*.
 - 4 ICA is permutation-invariant and so rows of *W* are in random order.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Networks with Gaussian priors

Causal Discovery

- Motivation MLRG Theme Example
- Background Task Other approaches
- Paper Setup Theory
- Experiments
- Discussion
- References

- If f_i is non-invertible, p_{n_i} is Gaussian (Friedman & Nachman 2000)
 - Continuous variable probabilistic networks that are based on Gaussian process priors.
 - Interpret learning as assessing the posterior probability of various network structures

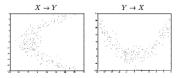


Figure 1: An example of a non-invertible dependence between X and Y. The explanation $X \rightarrow Y$ does not have a functional form, whereas $Y \rightarrow X$ can be explained as a noisy function.

イロト 不得 トイヨト イヨト

э

Hoyer et al. (2008)

Causal Discovery

- Motivation MLRG Theme Example
- Background Task Other approaches
- Paper Setup Theory Experimen
- Discussion
- References

Nonlinear causal discovery with additive noise models

P.O. Hoyer, D. Janzing, J.M. Mooij, J. Peters and B. Schölkopf. (2008) In Advances in Neural Information Processing Systems 21: 689-696

Extends non-invertibility results to any non-linear function

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Noise can follow arbitrary distribution

Structure of the paper

Causal Discovery

- Motivation MLRG Theme Example
- Background ^{Task} Other approaches
- Paper
- Setup
- Theory
- Experiments
- Discussion
- References

- Theoretical analysis for 2-variable case. Assumes:
 - strictly positive density functions
 - all functions are thrice differentiable.
- Experimental analysis
 - Simulation with tunable levels of non-linearity
 - Three real world datasets with known causal direction

Theorem 1

Causal Discovery

Motivation MLRG Theme Example

Background Task Other approaches

Paper Setup Theory Experiment

References

Let the joint probability density of x and y be given by

$$p(x, y) = p_n(y - f(x))p_x(x)$$

where p_n, p_x are probability densities on \mathbb{R} . If there is a backward model of the same form, i.e.

$$p(x, y) = p_{\tilde{n}}(x - g(y))p_y(y)$$

then denoting $\nu := \log p_n$ and $\xi := \log p_x$, the triple (f, p_x, p_n) must satisfy the following differential equation for all x, y with $\nu''(y - f(x))f'(x) \neq 0$:

$$\xi''' = \xi'' \left(-\frac{\nu'''f'}{\nu''} + \frac{f''}{f'} \right) - 2\nu''f''f' + \nu'f''' + \frac{\nu'\nu'''f''f'}{\nu''} - \frac{\nu'(f'')^2}{f'}$$
(2)

where we have skipped the arguments y - f(x) for ν , x for ξ , and x for f and their derivatives. Moreover, if for a fixed pair (f, ν) there exists $y \in \mathbb{R}$ such that $\nu''(y - f(x))f'(x) \neq 0$ for all but a countable set of points $x \in \mathbb{R}$, the set of all p_x for which p has a backward model is contained in a 3-dimensional affine space.

Theorem 1 - TLDR

Causal Discovery

- Motivation MLRG Theme Example
- Background ^{Task} Other approaches
- Paper Setup Theory
- Experiments
- Discussion
- References

- The space of all possible log-marginals ξ is infinite dimensional.
- Fixing ξ, ξ' and ξ" at some arbitrary point x₀ will completely determine ξ
- ξ has a 3-dimensional space of solutions.
- Therefore, forward model cannot be inverted and true model (causality direction) is identifiable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary 1

Causal Discovery

Motivation MLRG Theme Example

Background Task Other approaches

Paper Setup Theory Experiment: Discussion

References

Assume that $\nu''' = \xi''' = 0$ everywhere.

If a backward model exists, then *f* is linear.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Experimental goal

Causal Discovery

- Motivation MLRG Theme Example
- Background ^{Task} Other approaches
- Paper Setup Theory Experiments
- Discussion
- References

Empirical tests try to distinguish these four scenarios:

- observable variables are mutually independent (1)
- observable variables are dependent and
 - there are conflicting causal directions (2)

- there are no causal direction (3)
- there is only one causal direction (4)

Experimental procedure

Causal Discovery

Motivation MLRG Theme Example

Background Task Other approaches

Paper Setup Theory Experiments Discussion

References

For each DAG G_i (forward and backward)

1 non-linear regression of each variable on its parents to learn \hat{f}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 test for independence of residual $\hat{n} = y - \hat{f}(x)$ with x

3 Reject G_i if any independence test fails. Accept otherwise.

Feasible for only very small networks.

Suffers from the problem of multiple hypothesis testing

Simulations

Causal Discovery

- Motivation MLRG Theme Example
- Background ^{Task} Other approaches
- Paper Setup Theory
- Experiments
- Discussion
- References

• Data simulated using $y = x + bx^3 + n$

- x and n are sampled from Gaussian distribution
- x and n raised to the power q while keeping original sign

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- b controls strength of non-linearity.
- q controls how close to Gaussian the noise is
- Hypothesis testing with 2% significance level
- For each combination of *b* and *q*, repeat experiment 100×

Simulation results

Motivation MLRG Theme Example

Background Task Other approache

Paper Setup Theory Experiments

Discussion

References

Figure 2: Results of simulations (see main text for details): (a) The proportion of times the forward and the reverse model were accepted, p_{accept} , as a function of the non-Gaussianity parameter q (for b = 0), and (b) as a function of the nonlinearity parameter b (for q = 1).

(日) (四) (日) (日) (日)

Model able to infer the correct causal direction either when distributions are sufficiently non-Gaussian

distributions are sufficiently non-linear

Real-world data

Causal Discovery

- Motivation MLRG Theme Example
- Background ^{Task} Other approaches
- Paper Setup
- Experiments
- Discussion

References

Datasets:

- Old Faithful: duration of an eruption and the time interval between subsequent eruptions
- Abalone: number of rings in the shell and length of the shell
- Altitude-temperature: altitude above sea level and local yearly average outdoor temperature

Real-world data results

Motivation MLRG Theme Example

Background Task Other approaches

Pape

Setup

Theory

Experiments

Discussion

References

Method picks:

- forward model "current duration causes next interval length" and not backward model "next interval length causes current duration"
- age causes length of shell and not length of shell causes age

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

altitude causes temperature over vice versa

Real-world data results

Causal Discovery

- Motivation MLRG Theme Example
- Background Task Other approaches
- Pape
-
- Experiments
- Discussion
- References

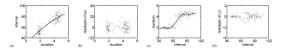


Figure 3: The Old Faithful Geyser data: (a) forward fit corresponding to "current duration causes next interval length"; (b) residuals for forward fit; (c) backward fit corresponding to "next interval length causes current duration"; (d) residuals for backward fit.

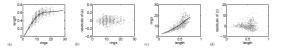


Figure 4: Abalone data: (a) forward fit corresponding to "age (rings) causes length"; (b) residuals for forward fit; (c) backward fit corresponding to "length causes age (rings)"; (d) residuals for backward fit.

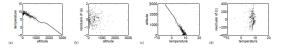


Figure 5: Altitude-temperature data. (a) forward fit corresponding to "altitude causes temperature"; (b) residuals for forward fit; (c) backward fit corresponding to "temperature causes altitude"; (d) residuals for backward fit.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Some questions

Causal Discovery

- Motivation MLRG Theme Example
- Background ^{Task} Other approaches
- Paper ^{Setup} Theory
- Experiments
- Discussion
- References

- Does real world data fit the criteria of non-linear f or non-Gaussian residuals?
- How do we pick value for acceptance of null hypothesis?
- Is the thrice differentiable requirement reasonable?
- How realistic is it to assume that noise is independent?

References

Causal Discovery

- Motivation MLRG Theme Example
- Background ^{Task} Other approaches
- Paper Setup Theory Experimen
- Discussion

References

Chaves, R., Luft, I., Maciel, T.O., Gross, D., Janzing, D. & Schökopf, B. (2014) Inferring latent structures via information inequalities. UAI

Friedman, N. & Nachman, I. (2000) Gaussian process networks. In *Proc. of the* 16th Annual Conference on Uncertainty in Artificial Intelligence: 211-219

Hoyer, P.O., Janzing, D., Mooij, J.M., Peters, J. & Schölkopf, B. (2008) Nonlinear causal discovery with additive noise models. In *Advances in Neural Information Processing Systems* 21: 689-696.

Janzing, D. (2019) Non-statistical notions of independence in causal discovery. https://www.groups.ma.tum.de/fileadmin/w00ccg/statistics/ veranstaltungen/Graphical_Models__Conditional_Independence_and_ Algebraic_Structures/Janzing__Dominik.pdf

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

Causal Discovery

- Motivation MLRG Theme Example
- Background Task Other approaches
- Paper Setup Theory Experiment
- DISCUSSION

References

Peters, J., Janzing, D. & Schölkopf, B. (2017) Elements of Causal Inference. Available through Open Access: https://mitpress.mit.edu/books/elements-causal-inference

Shimizu, S., Hoyer, P.O., Hyvärinen, A. & Kerminen, A.J. (2006) A linear non-Gaussian acyclic model for causal discovery. *Journal of Machine Learning Research*, **7**: 2003-2030.

Steudel, B., Janzing, D. & Schölkopf. (2010) Causal Markov condition for submodular information measures. *COLT 2010*: 464-476

Sun, X., Janzing, D. & Schölkopf, B. (2006) Causal inference by choosing graphs with most plausible Markov kernels. In *Proceedings of the 9th Int. Symp. Art. Int. and Math.*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Causal Discovery

Motivation MLRG Theme Example

Background Task Other approaches

Paper Setup Theory Experime Discussion

References

