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Example: kidney stones (Peters et al. (2017) )

Treatment= A | Treatment= B
Size of Stones=Small (32f = 0.51) | & = 0.93 ¢ =10.87
Size of Stones=Large (35 = 0.49) | 322 =0.73 2> =0.69
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P Pdo(T:A) :

Question: Compute Ego(7—a) [R], Ego(r=p) [R], where R € {0, 1}.
Eo(T—a) [R] 1= Pao(r=a)(R) x R
R

Notations:
Pao(1=2)(S) := P(S|do(T = A))
Pao(T=a)(S|T = A) := P(S|do(T = A))
Pao(T=4)(S, T = A) := P(S|do(T = A))
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Example: kidney stones

Ego(T=4) [R]
=Pyo(t=n)(R =1)
:Z Pao(t=a)(R=1,5 = w)

= Pao(r=a)(R =1|S = W)Pao(7_p)(S = w)

:Z Pao(t=a)(R =1|S = w, T = A)Pyo(1=2)(S = w)
=Y P(R=1|S=w,T =A)P(S =w)

:0.‘/2‘/332

Similarly, we have Eqo(7—pg) [R] = 0.782



Proxy Variable

From the above example, we can see S is a confounder.
Some confounders are hard to measure: personal preferences,

socio-economic status.
We can use some proxy variables to measure these confounders.

Socio-economic status: zip code and job type
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a treatment (eg, medication), where it is binary.

an outcome (eg, mortality)
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Proxy variable

a treatment (eg, medication), where it is binary.

: an outcome (eg, mortality)

an unobserved confounder (eg, socio-economic status)

noisy views of z (eg, income and place of residence)
P

Question: Pyo(r—1)(y[t = 1, x) z P(y|t =1,x)
Identities:

X NS o

Pdo(t:l) :

Pao(t=1)(¥It =1,2) = P(y|t = 1, 2)
Pdo(t:l)(z) = P(2); ’Ddo(tzl)(x|z) = P(x|z2)
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Proxy Variable

Note that Pyo(:—1)(2z|x) = P(z|x) due to the following equations.

Pao(t=1)(2, %) = Pao(t=1)(x|2) Pao(t=1)(2)
= P(x|2)P(2)
= p(z,x)

_ Pyo(e=1)(2,x)
PdO(t:]-)(Z‘X) - deo(t:]_)(Z,X)dZ

_ P(z,x)
| P(z,x)dz
= P(z|x)



Proxy Variable
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Proxy Variable

Pao(e=1)(¥|t = 1,x) = Pyo(e=1)(¥|x)
= / Pao(e=1)(v z|x)dz

— / Paoe—1)(¥12, X)Pao(e—y (2x)dz
:/Pdo(t—l)(yZ)Pdo(t—1)(Z!X)dZ

:/P(yyt: 1, 2)P(z|x)dz

P(ylt=1,x)= [ P(y,z|t =1,x)dz
P(y|t=1,z,x)P(z|t = 1,x)dz
P(ylt=1,z)P(z|t = 1,x)dz

Il
—— —



Issues of proxy variables

From above expressions, we have
Pao(t=1)(y[t = 1,x) # P(y|t = 1. x)

However, Pyo:—1)(y|t =1,2z) = P(y|t =1, 2)

Proxy variables (x) are not ordinary confounders (z).



The goal of casual inference

We would like to estimate the individual treatment effect (ITE)

ITE(K) := Eqot=1) [y|x = k] = Eqo(t=0) [y|x = K]

where we assume t is a binary variable.
Similarly, we would like to estimate the average treatment effect
(ATE):

ATE := E[ITE(k)]

We can approximate Egq(¢—1) [y|x = K] as

M
1
Eqo(e=1) ylx = kI = 1 > i
i=1

where y; is independently drawn from Pyq:—1)(y|t = 1, x = k).



Estimation problem

Clearly, we need to know Pgo(e—1)(y|t = 1,x = k).

Recall that Pyo(e—1)(y|t = 1, x) = [P(y|t =1,z)P(z|x)dz

Our goal is to estimate the posterior P(z|x) from the graph P.



Why VAE ?

We would like to make predictions given only x; is observed
without performing inference on the graph P at the test time.

The framework of VAE can achieve that thanks to the amortized
inference.

Note that when only x; is observed, we have to inference t;, z;, and
Yi-

To this end, we consider the following structured inference network.

q(z, t,y,x) = q(z|t,y, x)q(y|t, x)q(t|x)



The key idea

A VAE can be used to approximate P(z|x) as shown below.
P(z|x) ~ q(z|x)

=Z/q(z, t, y|x)dy
t

:Z/q(zu,y,x)q(t,yX)dy
t

= Z/q(z|t,y,X)q(y’t>X)Q(t’X)dy
t

Now, our goal is to build an inference network to learn g(z|t, y, x),
q(y|t, x), and g(t|x) simultaneously.



Objective function

Given observations, {x},y;, tj} [, the Evidence Lower BOund
(ELBO) i

ZlogP ti, Xj, Yj)

N
P(t;, x;, ¥}, zj)
Z og/ qa(zltj, x5, ) — 22K dz

a(zltj, x5, vj)

v

N
ZEq(zﬂtj,XJ,yj) [|Og 'D(tjaxja)/jvzj) - Iog q(zj|tjvxj’yj)] =L
j=1

To estimate g(y|t,x) and q(t|x), additional terms are included
in the objective function of the VAE denoted by FcevaEe.

N
FCEVAE = L +Z['°g q(yjlxj, tj) + log q(tj|x;)]
~—~— ‘
max the ELBO /=1

max the log-likelihood



Model Network

p(xlz)
—_ — — P:
n(z) [EE—
> .. — p(ylt=0,2)
ﬁ—» »ﬁ [ p(ylt=1.2)
B p(FZ)

We can read the model factorization from graph P as
P(t,x,y,z) = P(2)P(t|z)P(x|z) P(y|t, 2)



Model Network
D,
z) = [[NV(z10,1);  p(xilz) pr,,|z,

j=1

p(ti|zi) = Bern(o(fi(z;)))

where p(x;j|z;) is an appropriate distribution to model the proxy x;.
Bernoulli Output:

plyilti,zi) = Bern(m = #;) & = o(tif2(z) + (1 — t1)f5(2)),
Continuous Output:

pyilti,zi) = N(p = pi,o® = 0)  pi = tifa(z) + (1 — 1) ()
Each f(-) is a neural network parametrized by its own parameters.

TARnet (Shalit et al. (2017)) is used to model the individual
treatment effect.



Inference Network

p(x) q(ylt=0,x)  q(zIt=0,y,x)

q(tlx) q(ylt=1,x) q(zlt=1,y,x)

Y

Y

Recall that we need to learn q(t|x), g(y|t, x), and q(z|t, y, x).



Inference Network

D,
q(zilxi, ti,yi) = [ [N (w)j = g, 07 = 57)
=1

fij = tpe=oi + (1 — tijue=1; 67 = tﬁ?:o,i +(1- ti)”?:l,i
Mt:o,i,U?:o,,- = g2 0 g1(xi, i) Mr:l,iﬂf:n = g3 0 g1(xi, yi)
q(ti|x;) = Bern(m = o(ga(x)))
Bernoulli OQutput:
q(y,-|x;, t,') = Bern(w = 77‘,')
i = ti(ge © g5(xi)) + (1 — t;)(&7 © g5(xi))
Continuous Output:
q(yilxi tr) = N'(u = fij, 0 = ¥)
i = ti(ge o gs(x;)) + (1 — t;)(&7 o gs5(x;))

TARnet is also used in the inference network.



Results on a toy example
When z; is a binary variable, we consider the following data
generating process.
zj ~ Bern (0.5)
Xilzi ~ N (z;, aﬁlz,- + aﬁo(l —2z)); tilzi ~Bern(0.75z; + 0.25(1 — z))

yi|ti, zi ~ Bern (Sigmoid (3(z; + 2(2t; — 1))))
The results obtain by the proposed method:
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Results on the Twins dataset

The authors also talk about how to generate the dataset as a
benchmark and how to create proxy variables.
The results obtain by the proposed method:
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