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Setting of Causal Inference

Define the following:
e X the set of contexts
e 7T the set of possible actions
e ) the set of possible outcomes

For all t € T, denote Y;(x) € Y the potential outcome for x € X.

Fundamental problem of causal inference: we can only observe Y;(x)
for one specific value of t.



More setting

We will only look at the case where 7 = {0, 1}.
Two quantities of interest are then

e Individual Treatment Effect

ITE(x) = Yi(x) — Yo(x)

e Average Treatment Effect

ATE = Eyopn) {lTE(x)}



More settings

Finally, we define

e the observed outcome associated with x as the factual outcome,
denoted y (x).

e the unobserved outcome associated with x as the counterfactual
outcome, denoted yF(x).



Goal of The Paper

Come up with a framework to train models for factual and counterfactual
inference.
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A First Supervised Approach

e Given n samples {x;, t;, y[}7_;, where yf = £;Y1(x;) + (1 — t;) Yo(x))
e Learn a function h: X x 7 — Y such that

h(X,'7 t,') = yI-F

e To compute ITE on training data we could do

y,-F — h(X,', = 1) if =1
h(X,', 1-— t;) = y,-F ift; =0

ITE(x;) = {

What is the problem with this ?
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e We are training on the set

PF = {(xi, t1)}y
with PF ~ PF | the empirical factual distribution.

e We are inferring on the set
PF = {(xi,1— )}y

with PEF ~ PF | the empirical counterfactual distribution.

We do not want to make assumptions on the treatment assignment.
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The Approach Proposed

The authors propose a general approach for causal inference
e Learn a representation ¢ : X — RY.

e Learn a function h from a hypothesis class #, such that
h:RY x T — R predicts the outcome.
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The Approach Proposed

We want the built representation (®, h) to balance the trade-offs between

e being able to achieve low-error prediction on the factual outcomes

e being able to achieve low-error prediction on unobserved

counterfactual outcomes.

e the distribution of treatment populations under ® are
similar/balanced.
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How to evaluate performance of (®, h) on factual outcomes ?
e That is simple, we can simply compute

*Zlh — ¥

How to evaluate performance of ($, h) on counterfactual outcomes ?

e For any x;, compute

Jj(i) = arg min d(xi, x;)
Jje{1,...,n} with t; =1 — ¢;

e Then the error term is

1 n
s Z [h(P(xi), 1 — t;) — Yj?i)\
i=1
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counterfactual distributions P} and PSF?
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How to encourage similarity between the empirical factual and
counterfactual distributions P} and PSF?

e By controlling the discrepancy between them, namely given our
hypothesis class H and a loss function L, we have

discw(P5. P§) = max | E [L(B().8(2)]~ E_[L(B(2). 5()]

, A
B.BEH Loupr ~BgF

e In this paper we only deal L being the square loss
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How to encourage similarity between the empirical factual and
counterfactual distributions P and P§F?

e By controlling the discrepancy between them, namely given our
hypothesis class H and a loss function L, we have

discr(P. PSF) = max | E [LA).8 ()~ E_[L(3(), ()

e In this paper we only deal L being the square loss

e Discrepancy in the case of linear hypotheses class, namely
H c R has a closed form formula.

e From now on we restrict the study to linear hypotheses.
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This gives rise to the following objective function

Bi.or (P, h) Z|h —yF

Y
+o Z |h(®(x), 1 — 1) — yji
i=1

+adiscH(I5£, ﬁqu)

+
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This gives rise to the following objective function

Bi.or(®, h) = Z\h yF

VZ“’ (x) =Y

+adlscH(P¢, PgF)

+

Algorithm 1 Balancing counterfactual regression

1: Input: X, T, Y. H . N;a,v, A

2: ®* ¢" = argmin BHQW(¢> g9) (2
PeN geH

3: h* = argmingcqy Z?:l(h(@, ti) — yEF)2 + Al
4: Output: h*, ¢*

11



Theoretical Motivation behind Algorithm 1

e The former analysis gave an intuition on the form of the objective
function By o4 (®, h)
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Theoretical Motivation behind Algorithm 1

e The former analysis gave an intuition on the form of the objective
function By o (P, h)

e Existence of a theoretical bound
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A Theoretical Bound

Theorem 1. For a sample {(z,.t,.yF )}y, z, € X t; €
{0.1} and y: € Y, and a given representation function &
X > RY, let P = (B(x1),t1),.... (¥(za). 1), PEF =
(®(@1).1-t1)... ., (B(25). 1—t,). Weassume that X is a
‘metric space with metric d and that the potential outcome
functions Yo(x) and Y:(x) are Lipschitz continuous with
constants Ko and K, respeciively, such that d(z,.z5) <
= |Va(za) - Ya(zs)| < Ko 0

for
Let H;, C R be the space of linear func-
tions B @ X x {0.1} — Y, and for B € H
let Lp(B) = Egiyp[L(B(z.t),y)] be the ex-
pected loss of 3 over distribution P. Let r =
maz (Eqz g~ pr [[[2(2). t)ll2] \Ez.per [[[2 (). t]12])
be the maximum expected radius of the disiributions. For
A > 0. fet BF(®) = argminggy, Lpp(3) + NI
and 3°F (®) similarly for PG, ie. 3 (&) and °F (®)
are the ridge regression solutions for the factual and
counterfactual empirical distributions, respectively.

Let §F(®,h) = hT[®(z;),t;] and §CF(®.h) =
hT[®(z:). 1 = t:] be the ourputs of the hypothesis h €
Hi over the representarion ®(z;) for the factal and
counterfactual settings of t, mpmneh, Finally, for
each i.j € {1.. r)) let di; = d(z:.x;) and j(i) €
argmin, s _¢, d(x;, ;) be the nearest neigh-
bor in X nj ; amang the group that received the oppo-
site treatment from unit i. Then for both Q = P* and
Q = PF we have.

A

b Lqo(5F (@) = Lo(F°F (@)

dmm\[".[’( )+ ®

he

min 1 (1F (@.h) — uF | + [5EF (@, h) — sFF|) <
\n
=

@

disey, (P, PEF)+

1y F F CF F
pin =% (198 @.1) — u1 + 157 @) — o5, ) +

3)

()
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A Theoretical Bound

e Let ® be any representation function.
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A Theoretical Bound

Let ® be any representation function.

Let H, = RY*! be the space of linear functions.

Let BF(d)) =argmin E [L(B(X, t)7y)} + B
BEH, (x,t,y)~PE

regression solutions for the factual empirical distributions.

Define 3F (®) similarly

%, the ridge
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A Theoretical Bound

e Let ® be any representation function.
o Let H, = R9*! be the space of linear functions.

o Let BF(®) =argmin E _[L(B(x,t),y)| +All8]
BEH, (x,t,y)~P§
regression solutions for the factual empirical distributions.

e Define FF (o) similarly

2, the ridge

e The theorem then states that for both @ = PF and Q = PF€, we
have

a (co(éw)) - cQ(BCF«b)))
<m|n72\h — |+ [h((x i)’l_t")_yjl(rf)|

heH, N

+discm(P¢, P<I> )
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A Theoretical Bound

The theorem states that for both @ = PF and Q@ = PFC, we have

a (cQ(BF(¢)) - ca(BCF«b)))

< - h(® h 1—t)—yF
hrg;genZ\ —y{ |+ |h(®(x:), )—yi |

—|—discm(P¢7 P )

LK
Z d(xi, X)) + — Z d(xi, xj(i))

(o= iit;=0

Which is close to

B,y (P, h) = Z\h yi |

i
+o Z |h(®(x), 1 — 1)) — yjinl+
i=1

+adiscH(ﬁ’£, ﬁ’g’:)
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e Two approaches are proposed.
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How to Choose the Representation function ¢ ?

e Two approaches are proposed.
e First one is by directly re-weighting the features of X, namely
d(x) = Wk

where W is a diagonal matrix with w; > 0, Zi w; = 1.

e One can then show that

discy, (PL, PST) ~ ||W(p Zx, l—p)Zx,Hg

iti=1 it;=0

Features that differ a lot between treatment groups will receive a
smaller weight

16
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e Two approaches are proposed.

e Second is with Neural Networks

x .
d,

L () P — e —— [ disc(@,_,. @,_))

]

N I——G loss(h (D, 1), y)

d,

o0

Figure 2. Neural network architecture.
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How to Choose the Representation function ¢ ?

e Two approaches are proposed.

e Second is with Neural Networks

x .
d,

L [ e [ disc(@,_,. @,_)

@

- I——Cl loss(h (@, 1), y)

d,

o0

Figure 2. Neural network architecture.

e First d, layers learn the representation ¢
e The d, layers learn h given t

e Given @, the discrepancy is calculated

17



e We don't have the data !

e Need to simulate

18



News Dataset

e The units x; are news items in NV, i.e. word counts from the NY
Times corpus, with n = 5000.
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News Dataset

e The units x; are news items in NV, i.e. word counts from the NY
Times corpus, with n = 5000.

e The representation ®(x;) € R% is the topic distribution of x;,
obtained using a LDA model with 50 topics.

e The treatment t; represents what device was used to read the news
item.

t; = 1 for mobile, t; = 0 for desktop.

e the factual outcome yf(x;) € R is the readers experience of x;

19



The News Dataset

The outcomes are generated as follows

e Pick two centroids in topic space, z; at random, and z; is the
average of topic distribution
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The outcomes are generated as follows
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average of topic distribution
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The News Dataset

The outcomes are generated as follows

e Pick two centroids in topic space, z; at random, and z; is the
average of topic distribution

e The generated outcome of x; with treatment t; is then
_ T T
y(x) = C(z(x;)" z0 + tiz(x;) ' 1)

e Finally, we assume that the assignment of a news item x; to a device
t; is biased towards the preferred devices, i.e.

eﬁz(x,')rzl
p(ti=1]x) =

erz(xi) Tz + ernz(x)Tz1

20



The authors compare

e The balanced linear regression model (BLR), i.e. ®(x) = Wx.
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The authors compare
e The balanced linear regression model (BLR), i.e. ®(x) = Wx.

e A neural network with 4 layers to learn the representation, and a
single linear output layer, BNN-4-0.

e A neural network with 2 layers to learn the representation, followed
by 2 ReLU layers and a single layer. (BNN-2-2)

e Different classical supervised learning regression algorithms like
linear regression, doubly robust linear regression, BART, etc..
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The quantities measured to evaluate the models are

e The RMSE of the estimated individual treatment effect

1 4
N ITE(x)?
n; (xi)

€ITE —
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The quantities measured to evaluate the models are

e The RMSE of the estimated individual treatment effect

1 4
N ITE(x)?
n; (xi)

€ITE =

e the absolute error in estimated average treatment effect

[
== ITE(x;
EATE " ; (xi)
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The quantities measured to evaluate the models are

e The RMSE of the estimated individual treatment effect

e the absolute error in estimated average treatment effect
1 n
€aTE = — Z; ITE(x;)
=

e The Precision in Estimation of Heterogeneous Effect,

PEHE = | > (yl(x,-) = Jo(xi) = (Valxi) — Yo(Xf)))2

22



Table 2. News. Results and standard errors for 50 repeated exper-
iments. (Lower is better.) Proposed methods: BLR, BNN-4-0
and BNN-2-2. { (Chipman et al., 2010)

€EITE €EATE PEHE

LINEAR OUTCOME

OLS 3.1+£0.2 02=+00 3.3+0.2
DouBLY RoBusT 3.1+£0.2 0.24£00 3.3+0.2
LASSO + RIDGE 22401 06+00 34+02

BLR 224+0.1 06+0.0 3.3+0.2
BNN-4-0 21+0.0 03+00 3.4+0.2
NON-LINEAR OUTCOME

NN-4 28400 1.1+00 38402
BART' 58402 02400 32402

BNN-2-2 20+£00 0300 2.0£0.1
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IDHP Dataset

e A similar experiment was conducted on clinical data from the Infant
Health and Devlopment Program (IDHP).
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IDHP Dataset

e A similar experiment was conducted on clinical data from the Infant
Health and Devlopment Program (IDHP).

e randomized treatment assignment

e introduced imbalance by removing a nonrandom portion of the
treatment group.

€ITE €EATE PEHE

LINEAR OUTCOME

OLS 46+02 0700 58=%0.3
DouBLY RoBusT 3.0+£0.1 0.2+0.0 57+£0.3
LASSO + RIDGE 28+0.1 0200 57+£0.2

BLR 28+01 024+£00 5.7+0.3
BNN-4-0 3.0£00 03+£00 56+0.3
NON-LINEAR OUTCOME

NN-4 20+£00 054+£00 194+0.1
BART' 21+£02 0200 1.7+£0.2

BNN-2-2 1.7+£00 03+00 1.6+0.1

24



IDHP Dataset

e A similar experiment was conducted on clinical data from the Infant
Health and Devlopment Program (IDHP).

e randomized treatment assignment

e introduced imbalance by removing a nonrandom portion of the
treatment group.

4 4

——PEHE ——Factual RMSE
—ITE — Counterfactual RMSE
3.5L|= «ITE (BART] 351~ -Counterfactual RMSE (BART

10 107 10" 10? 0 10* 10?7 10" 107
Imbalance penalty, « (log-scale) Imbalance penalty, a (log-scale)

Figure 4. Error in estimated treatment effect (ITE, PEHE) and
counterfactual response (RMSE) on the IHDP dataset. Sweep
over « for the BNN-2-2 neural network model.
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for counterfactual inference, based on practical and theoretical
evidence
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Conclusion

e This paper introduced models learning balanced representations
for counterfactual inference, based on practical and theoretical
evidence

Some open questions
e generalize this for more than 2 treatments
e allow for other distribution measures

e allow for non-linear hypotheses
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Any questions?



Thank youl!



