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Associational Inference
• Universe 𝑈
• For each unit 𝑢 ∈ 𝑈:

• Attribute variable X(𝑢)
• Observed variable 𝑌(𝑢)

• Inference:
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Causal Inference
• Universe 𝑈
• For each unit 𝑢 ∈ 𝑈:

• Treatment variable 𝑇 𝑢 ∈ {1,0}
• Potential outcome 𝑌3 𝑢 , 𝑌4(𝑢)

• Inference:
• 𝑌3 𝑢 − 𝑌4(𝑢)



Rubin’s Framework
• For each unit 𝑢 ∈ 𝑈:

• Treatment variable 𝑇 𝑢 ∈ {1,0}
• Potential outcomes 𝑌3 𝑢 , 𝑌4(𝑢)

• the outcome that would be observed if treatment was set to 𝑇 = 0 or 1, on the same unit.
• (before)

• If 𝑇(𝑢) is set to 1
• 𝑌3 𝑢 is the observed outcome
• 𝑌4 𝑢 is the counterfactual outcome
• (after)



Causal Effects

• 𝑌3 𝑢 − 𝑌4 𝑢 is the causal effect of treatment 1 (relative to 0) on 𝑢.
• Abbreviated as 𝑌3 and 𝑌4



Causal Effects

• 𝑌3 𝑢 − 𝑌4 𝑢 is the causal effect of treatment 1 (relative to 0) on 𝑢.
• Abbreviated as 𝑌3 and 𝑌4

• Fundamental Problem of Causal Inference
• It is impossible to observe both 𝑌3 and 𝑌4 on the same unit, and therefore it is impossible to observe
the causal effect.



THE END



Scientific solution to the Fundamental Problem
• Assume temporal stability and causal transience

• The value of 𝑌4 does not depend on when 𝑇 = 0 is applied and measured.
• The effect of 𝑇 = 0 and the measurement process that gives rise to 𝑌4 does not change 𝑢

enough to affect 𝑌3 measured later.
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• The value of 𝑌4 does not depend on when 𝑇 = 0 is applied and measured.
• The effect of 𝑇 = 0 and the measurement process that gives rise to 𝑌4 does not change 𝑢

enough to affect 𝑌3 measured later.
• With these two assumptions, we can simply measure both 𝑌4 and 𝑌3 by applying 𝑇 = 0 then
𝑇 = 1, taking the measurement after each exposure.

• Widely used in experiments involving physical devices.

• Assume unit homogeneity
• For two units 𝑢3 and 𝑢6, we assume 𝑌4 𝑢3 = 𝑌4 𝑢6 and 𝑌3 𝑢3 = 𝑌3 𝑢6 .
• Causal effect can then be computed using 𝑌3 𝑢3 − 𝑌4 𝑢6 .
• Implies the constant effect assumption: 𝑌3 𝑢 − 𝑌4 𝑢 is the same for all 𝑢 ∈ 𝑈.

• It’s very difficult to argue that these are valid…
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Statistical solution to the Fundamental Problem
• “What would have happened if I had not taken the flu shot” --> “What would the

flu rate be if everyone got the flu shot vs if no one did?”
• Average causal effect of 𝑇 = 1 (relative to 𝑇 = 0) over 𝑈:

• 𝔼 𝑌3 − 𝑌4 = 𝔼 𝑌3) − 𝔼(𝑌4
• Imagine parallel universes with the same population…
• Can’t observe this.

• Observed data can only give us information about the average of the outcome
over 𝑢 ∈ 𝑈 exposed to 𝑇 = 𝑡.
• 𝔼 𝑌3|𝑇 = 1) − 𝔼(𝑌4|𝑇 = 0
• In general, 𝔼 𝑌:) ≠ 𝔼(𝑌:|𝑇 = t
• Independence assumption hold via randomized treatment assignment allows equality to hold,

which lets us compute the ACE above.



Other assumptions
• Stable Unit Treatment Value Assumption (SUVTA)

• No interference: units do not interact with each other.
• One version of treatment.

• Consistency
• The potential outcome 𝑌: is equal to the observed outcome if the actual treatment

received is 𝑇 = 𝑡.

• Positivity
• ℙ(𝑇(𝑢) = 𝑡) > 0 for all 𝑡 and 𝑢.



Other assumptions
• Stable Unit Treatment Value Assumption (SUVTA)

• No interference: units do not interact with each other.
• One version of treatment.

• Consistency
• The potential outcome 𝑌: is equal to the observed outcome if the actual treatment

received is 𝑇 = 𝑡.
• Positivity

• ℙ(𝑇(𝑢) = 𝑡) > 0 for all 𝑡 and 𝑢.

• Ignorability (aka no unmeasured confounders assumption)
• 𝑌4, 𝑌3 ⊥ T|X
• Among people with the same features X, we can think of treatment T as being

randomly assigned.
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DAGs

• Useful for identifying dependencies and ways to factor and
simplify the joint distribution.

• 𝑝 𝑥3, … , 𝑥B = ∏ DE3
B 𝑝(𝑥D|𝑥 FG D )
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Order
(CO)

Captain
(C)

Soldier A Soldier B
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D

Firing squad example [Pearl, 2018]



DAGs

• Useful for identifying dependencies and ways to factor and
simplify the joint distribution.

• 𝑝 𝑥3, … , 𝑥B = ∏ DE3
B 𝑝(𝑥D|𝑥 FG D )

• Two variables 𝐴 and 𝐵 are d-separated by a set of variables
𝑍 if 𝐴 and 𝐵 are conditionally independent given 𝑍.
• 𝑝 𝐴, 𝐵|𝑍 = 𝑝 𝐴 𝑍 𝑝(𝐵|𝑍)
• Chain
• Fork
• Inverted fork

Court
Order
(CO)

Captain
(C)

Soldier A Soldier B

Prisoner
D

Firing squad example [Pearl, 2018]



Causal DAGs

• DAGs where directions of the edges represent causal
relationships.

• In contrast to Rubin’s potential outcome framework, this is a
structural approach to causal inference which Pearl
advocates.
• They are shown to be mathematically equivalent.

Court
Order
(CO)

Captain
(C)

Soldier A Soldier B

Prisoner
D

Firing squad example [Pearl, 2018]



Intervention and Pearl’s do-calculus

• 𝑑𝑜() operator signals an intervention on a variable.
• Replace that variable with the actual value that we assign.
• Removes all incoming edges to that node.
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Intervention and Pearl’s do-calculus

• 𝑑𝑜() operator signals an intervention on a variable.
• Replace that variable with the actual value that we assign.
• Removes all incoming edges to that node.

• Instead of 𝑝 𝐷 𝐴 = 0
• We want 𝑝 𝐷 𝑑𝑜(𝐴 = 0 )

• The causal effect of 𝐴 = 0 on D.

Court
Order
(CO)

Captain
(C)

A=0 Soldier B

Prisoner
D

Firing squad example [Pearl, 2018]



Confounding

• Confounders: variables that influences both treatment and outcome.
• Want: identify a set of variables so that ignorability holds.
• We don’t need to identity specific confounders
• We just need to be able to control for confounding.

• Need to block backdoor paths from 𝑇 to 𝑌.
T Y

A B

D



Frontdoor paths

• We are not concerned about frontdoor paths.

• We don’t want to control anything along the frontdoor paths.
• Unless we care about the magnitude of the causal effect…

T Y

A B

T Y

A B

Z



Backdoor paths

• Begins with a parent of 𝑻 and ends at 𝒀.
• Need to control these paths as they confound our causal effect.

• How?
• Identify the set of variables that blocks all backdoor paths from 𝑇

to 𝑌. T Y

A B

D



Backdoor criterion
• A set of variables 𝐶 satisfies the backdoor criterion if

1. it blocks all backdoor paths from 𝑇 to 𝑌, and
2. It does not include any descendants of 𝑇.
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• A set of variables 𝐶 satisfies the backdoor criterion if

1. it blocks all backdoor paths from 𝑇 to 𝑌, and
2. It does not include any descendants of 𝑇.

• 𝐶 = 𝐴,𝐷
• Alternatively, 𝐶 = 𝐵,𝐷 , 𝐶 = 𝐴, 𝐵, 𝐷

• Controlling any of these sets allow us to control for confounding.
• Backdoor Adjustment:
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Backdoor criterion
• A set of variables 𝐶 satisfies the backdoor criterion if

1. it blocks all backdoor paths from 𝑇 to 𝑌, and
2. It does not include any descendants of 𝑇.

• 𝐶 = 𝐴,𝐷
• Alternatively, 𝐶 = 𝐵,𝐷 , 𝐶 = 𝐴, 𝐵, 𝐷

• Controlling any of these sets allow us to control for confounding.
• Backdoor Adjustment:

• If a set of variables 𝐶 satisfies the backdoor criterion relative to 𝑇 ane 𝑌, then the
causal effect of 𝑇 on 𝑌 is given by

• ℙ 𝑌 𝑑𝑜 𝑇 = 𝑡 = ∑R∈S ℙ(𝑌|𝑇 = 𝑡, 𝑐)ℙ(𝑐).

• In Rubin’s framework, this is equivalent to the ignorability assumption:
• Treatment assignment is effectively randomized given 𝐶.

T Y

A B

D
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Granger Causality

• Relationship between several time series.

• The Granger causality test is used to determine if the
past values of 𝑋(𝑡) helps in predicting the future
values of 𝑌(𝑡).

https://en.wikipedia.org/wiki/Granger_causality
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• The Granger causality test is used to determine if the
past values of 𝑋(𝑡) helps in predicting the future
values of 𝑌(𝑡).

• Two principles/assumptions:
1. The cause happens prior to the effect.
2. The cause has unique information about the future values

of its effect.

• Hypothesis test:
• ℙ 𝑌 𝑡 + 1 𝐼 𝑡 ≠ ℙ 𝑌 𝑡 + 1 𝐼 WX (𝑡)
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Granger Causality

• Hypothesis test:
• ℙ 𝑌 𝑡 + 1 𝐼 𝑡 ≠ ℙ 𝑌 𝑡 + 1 𝐼 WX (𝑡)

• 𝐼 𝑡 all information up to time 𝑡
• 𝐼 WX (𝑡) all information up to time 𝑡 with 𝑋 excluded.

• Steps:
• 𝑦: = 𝑎4 + 𝑎3𝑦ZW3 + 𝑎6𝑦:W6 + 𝜖:
• 𝑦: = 𝑎4 + 𝑎3𝑦ZW3 + 𝑎6𝑦:W6 + 𝑏3𝑥:W3 + 𝑏6𝑥:W6 + 𝜖:
• 𝐻4: All 𝑏3 = ⋯ = 𝑏F = 0
• 𝐻3: At least one is non-zero.

• Null hypothesis: 𝑋 does not Granger cause 𝑌 iff no lagged
values of 𝑥 are retained.

https://en.wikipedia.org/wiki/Granger_causality
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• GC formulation does not necessarily require

the time-series setting adopted.
• Time is only used to split up the variables.

• Can be reformulated using Rubin’s framework.
• Conditional independence.
• In a randomized experiment Granger noncausality

implies zero ACE on all subpopulations defined by
the values of {𝑦:W3… }.

• Granger causes are “temporary”.
• Adding more lags may change the overall Granger

causes.

Pearl
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Independent Component Analysis (ICA)
• PCA: 𝑋 = 𝑍𝑊 where 𝑍 is 𝑛×𝑘 and 𝑊 is 𝑘×𝑑, 𝑘 ≤ 𝑑

• Factor analysis, data compression, etc.
• Invariant to rotation.



Independent Component Analysis (ICA)
• PCA: 𝑋 = 𝑍𝑊 where 𝑍 is 𝑛×𝑘 and 𝑊 is 𝑘×𝑑, 𝑘 ≤ 𝑑

• Factor analysis, data compression, etc.
• Invariant to rotation.

• ICA: 𝑋 = 𝑍𝑊 usually with 𝑘 = 𝑑
• Require the components of each 𝒛𝒊 to be independent, and at most one can be normally
distributed.

• Independence is measured by non-normality.

• 𝑊 = argmaxl∑DE3B ∑mE3n 𝑘𝑢𝑟𝑡(𝑤mq𝑥D)6 where 𝑘𝑢𝑟𝑡 𝑢 = 𝔼 𝑢r − 3 𝔼 𝑢6 6

• Up to permutation and scaling, we can identify the factors W.
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for non-experimental data.
• But requires background knowledge BEFORE collecting and analyzing data.
• Normality constraints.
• Causal directions are often unknown.
• Model 1: 𝑥3 = 𝑏36𝑥6 + 𝜖3 and Model 2: 𝑥6 = 𝑏63𝑥3 + 𝜖3 , both are saturated with the same covariance matrix.



Causal Discovery

• Randomized control trials are not always feasible.
• Cost, ethics, etc.

• Structural equation modeling (SEM): path analysis integrating factor analysis and latent variables
for non-experimental data.
• But requires background knowledge BEFORE collecting and analyzing data.
• Normality constraints.
• Causal directions are often unknown.
• Model 1: 𝑥3 = 𝑏36𝑥6 + 𝜖3 and Model 2: 𝑥6 = 𝑏63𝑥3 + 𝜖3 , both are saturated with the same covariance matrix.

• With non-normality, ICA can be used to find the causal ordering of any number of observed
variables based on non-experimental data. (Shimizu et al. 2006)



Causal Order

• Causality (a causal order) from a random variable 𝑥3 to another random variable 𝑥6 , denoted by
𝑥3 → 𝑥6 is confirmed if the following holds:

• 𝑥6 = 𝑓(𝑥3, 𝜖6) where 𝝐𝟐 is some perturbation independently distributed from 𝒙𝟏.

• Assume 𝑓 𝑥3, 𝜖6 = 𝑏63𝑥3 + 𝜖6.
• Boils down to finding 𝑏63.
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• Causality (a causal order) from a random variable 𝑥3 to another random variable 𝑥6 , denoted by
𝑥3 → 𝑥6 is confirmed if the following holds:

• 𝑥6 = 𝑓(𝑥3, 𝜖6) where 𝝐𝟐 is some perturbation independently distributed from 𝒙𝟏.

• Assume 𝑓 𝑥3, 𝜖6 = 𝑏63𝑥3 + 𝜖6.
• Boils down to finding 𝑏63.

• Note that we can’t just have uncorrelatedness from 𝑥3 and 𝜖6:
• Independence: 𝔼 𝑔 𝑥 ℎ 𝑦 = 𝔼(𝑔 𝑥 )𝔼(ℎ 𝑦 ) for any deterministic functions 𝑔 and ℎ.
• Uncorrelatedness (covariance is 0): 𝔼 𝑥𝑦 = 𝔼 𝑥 𝔼 𝑦 , weaker assumption.
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• Causality (a causal order) from a random variable 𝑥3 to another random variable 𝑥6 , denoted by
𝑥3 → 𝑥6 is confirmed if the following holds:

• 𝑥6 = 𝑓(𝑥3, 𝜖6) where 𝝐𝟐 is some perturbation independently distributed from 𝒙𝟏.

• Assume 𝑓 𝑥3, 𝜖6 = 𝑏63𝑥3 + 𝜖6.
• Boils down to finding 𝑏63.

• Note that we can’t just have uncorrelatedness from 𝑥3 and 𝜖6:
• Independence: 𝔼 𝑔 𝑥 ℎ 𝑦 = 𝔼(𝑔 𝑥 )𝔼(ℎ 𝑦 ) for any deterministic functions 𝑔 and ℎ.
• Uncorrelatedness (covariance is 0): 𝔼 𝑥𝑦 = 𝔼 𝑥 𝔼 𝑦 , weaker assumption.
• If 𝑥3 and 𝜖6 are only uncorrelated, then there could exist unobserved confounder 𝑧 that affects both 𝑥3 and 𝑥6.
• Suppose 𝑥3 = 𝛼𝑧 + 𝜖3 and 𝑥6 = 𝛽𝑧 + 𝑏63𝑥3 + 𝜖6, then 𝐶𝑜𝑣 𝑥3, 𝑥6 = 𝑏63𝑉𝑎𝑟 𝑥3 + 𝛼𝛽𝑉𝑎𝑟 𝑧 can be non-zero

even if 𝑏63 is 0.



Finding a Causal Order

• Suppose we have 𝑁 measurements of 𝑥3 and 𝑥6.
• 𝑥36 = 3

�∑DE3
� 𝑥3D6 , similarly for 𝑥66 and 𝑥3𝑥6

• Model 1: 𝑥3 = 𝑏36𝑥6 + 𝜖3
• Model 2: 𝑥6 = 𝑏63𝑥3 + 𝜖6
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• Suppose we have 𝑁 measurements of 𝑥3 and 𝑥6.
• 𝑥36 = 3

�∑DE3
� 𝑥3D6 , similarly for 𝑥66 and 𝑥3𝑥6

• Model 1: 𝑥3 = 𝑏36𝑥6 + 𝜖3
• Model 2: 𝑥6 = 𝑏63𝑥3 + 𝜖6
• Second order moments of Model 1:

• Symmetric for Model 2.

• Undistinguishable.

• Fourth order moments for Model 1 and assume
the residuals are NOT normally distributed:

• Measure of model fit ≈ distance between data and
the model used

• Compare 𝑻 for the two models which will imply
causal direction.



Causal ordering - more than 2 variables
• Suppose we have 𝑛 variables, and we want to find an ordering 𝑖 1 , … , 𝑖 𝑛 such that

• 𝑥D m = ∑nE3
mW3 𝑏D m ,D(n)𝑥D n + 𝜖D m for all 𝑗 = 1,… , 𝑛, with nonzero coefficients and 𝜖D m non-normal, independent from 𝑥D n for 𝑘 < 𝑗.

• “𝑥D m can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error.”
• Causal ordering 𝑥D 3 → 𝑥D 6 → ⋯ → 𝑥D B
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• Normalize the above so that the errors have unit variance using
• 𝑤D m ,D(m) = 1/√𝑉𝑎𝑟(𝜖D m ) and 𝑤D m ,D(n) = −𝑏D m ,D(n)/√𝑉𝑎𝑟(𝜖D m ) for 𝑘 ≠ 𝑗

• diag 𝑊 �𝑥 = −offdiag 𝑊 �𝑥 + ̃𝜖∗, or 𝑊�𝑥 = ̃𝜖∗
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• We can also estimate B, depending whether we care about the coefficients or just the causal ordering.



Summary (and References)
• Rubin’s framework

• Potential outcomes and counterfactuals.
• Holland, P. W. Statistics and Causal Inference. Journal of the American statistical Association, 1986.
• Roy, J. A Crash course in Causality.

• Pearl’s framework
• Utilizing causal DAGs, do-operator, backdoor adjustment.

• Pearl, J. Causality. Cambridge University Press, 2009.
• Pearl, J. and Mackenzie D. The book of why: the new sciences of cause and effect. 2018

• Granger Causality
• Using past values of one variable to predict future values of another.

• Granger, C. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica, 1969.

• ICA for Causal Discovery (Shimizu et al.)
• With the non-normality assumption and independence assumption, can find causal directions of a set of

variables using non-experimental data.
• Shimizu, S., Shimizu, S., Hyvärinen, A., Hoyer, P.O. and Kano, Y. Finding a causal ordering via independent component 

analysis. Computational Statistics & Data Analysis, 2006.

https://www.youtube.com/playlist%3Flist=PL_onPhFCkVQimvhuSAFrC8VWLEyNygQR5


Thank you


