Causal Inference:
 Classical Approaches

Si Yi (Cathy) Meng

Feb 5, 2020
UBC MLRG

Outline

- Potential Outcomes
- Confounding and Causal DAGs
- Granger Causality
- ICA for Causal Discovery

Associational Inference

- Universe U
- For each unit $u \in U$:
- Attribute variable $X(u)$
- Observed variable $Y(u)$
- Inference:
- $P(Y=y \mid X=x)$

Associational Inference

- Universe U
- For each unit $u \in U$:
- Attribute variable X(u)
- Observed variable $Y(u)$
- Inference:
- $P(Y=y \mid X=x)$

Causal Inference

- Universe U
- For each unit $u \in U$:
- Treatment variable $T(u) \in\{1,0\}$
- Potential outcome $Y_{1}(u), Y_{0}(u)$
- Inference:
- $Y_{1}(u)-Y_{0}(u)$

Rubin's Framework

- For each unit $u \in U$:
- Treatment variable $T(u) \in\{1,0\}$
- Potential outcomes $Y_{1}(u), Y_{0}(u)$
- the outcome that would be observed if treatment was set to $T=0$ or 1 , on the same unit.
- (before)
- If $T(u)$ is set to 1
- $Y_{1}(u)$ is the observed outcome
- $Y_{0}(u)$ is the counterfactual outcome
- (after)

Causal Effects

- $Y_{1}(u)-Y_{0}(u)$ is the causal effect of treatment 1 (relative to 0) on u.
- Abbreviated as Y_{1} and Y_{0}

Causal Effects

- $Y_{1}(u)-Y_{0}(u)$ is the causal effect of treatment 1 (relative to 0) on u.
- Abbreviated as Y_{1} and Y_{0}
- Fundamental Problem of Causal Inference
- It is impossible to observe both Y_{1} and Y_{0} on the same unit, and therefore it is impossible to observe the causal effect.

THE END

Scientific solution to the Fundamental Problem

- Assume temporal stability and causal transience
- The value of Y_{0} does not depend on when $T=0$ is applied and measured.
- The effect of $T=0$ and the measurement process that gives rise to Y_{0} does not change u enough to affect Y_{1} measured later.

Scientific solution to the Fundamental Problem

- Assume temporal stability and causal transience
- The value of Y_{0} does not depend on when $T=0$ is applied and measured.
- The effect of $T=0$ and the measurement process that gives rise to Y_{0} does not change u enough to affect Y_{1} measured later.
- With these two assumptions, we can simply measure both Y_{0} and Y_{1} by applying $T=0$ then $T=1$, taking the measurement after each exposure.
- Widely used in experiments involving physical devices.

Scientific solution to the Fundamental Problem

- Assume temporal stability and causal transience
- The value of Y_{0} does not depend on when $T=0$ is applied and measured.
- The effect of $T=0$ and the measurement process that gives rise to Y_{0} does not change u enough to affect Y_{1} measured later.
- With these two assumptions, we can simply measure both Y_{0} and Y_{1} by applying $T=0$ then $T=1$, taking the measurement after each exposure.
- Widely used in experiments involving physical devices.
- Assume unit homogeneity
- For two units u_{1} and u_{2}, we assume $Y_{0}\left(u_{1}\right)=Y_{0}\left(u_{2}\right)$ and $Y_{1}\left(u_{1}\right)=Y_{1}\left(u_{2}\right)$.

Scientific solution to the Fundamental Problem

- Assume temporal stability and causal transience
- The value of Y_{0} does not depend on when $T=0$ is applied and measured.
- The effect of $T=0$ and the measurement process that gives rise to Y_{0} does not change u enough to affect Y_{1} measured later.
- With these two assumptions, we can simply measure both Y_{0} and Y_{1} by applying $T=0$ then $T=1$, taking the measurement after each exposure.
- Widely used in experiments involving physical devices.
- Assume unit homogeneity
- For two units u_{1} and u_{2}, we assume $Y_{0}\left(u_{1}\right)=Y_{0}\left(u_{2}\right)$ and $Y_{1}\left(u_{1}\right)=Y_{1}\left(u_{2}\right)$.
- Causal effect can then be computed using $Y_{1}\left(u_{1}\right)-Y_{0}\left(u_{2}\right)$.
- Implies the constant effect assumption: $Y_{1}(u)-Y_{0}(u)$ is the same for all $u \in U$.

Scientific solution to the Fundamental Problem

- Assume temporal stability and causal transience
- The value of Y_{0} does not depend on when $T=0$ is applied and measured.
- The effect of $T=0$ and the measurement process that gives rise to Y_{0} does not change u enough to affect Y_{1} measured later.
- With these two assumptions, we can simply measure both Y_{0} and Y_{1} by applying $T=0$ then $T=1$, taking the measurement after each exposure.
- Widely used in experiments involving physical devices.
- Assume unit homogeneity
- For two units u_{1} and u_{2}, we assume $Y_{0}\left(u_{1}\right)=Y_{0}\left(u_{2}\right)$ and $Y_{1}\left(u_{1}\right)=Y_{1}\left(u_{2}\right)$.
- Causal effect can then be computed using $Y_{1}\left(u_{1}\right)-Y_{0}\left(u_{2}\right)$.
- Implies the constant effect assumption: $Y_{1}(u)-Y_{0}(u)$ is the same for all $u \in U$.
- It's very difficult to argue that these are valid...

Statistical solution to the Fundamental Problem

- "What would have happened if I had not taken the flu shot" --> "What would the flu rate be if everyone got the flu shot vs if no one did?"

Statistical solution to the Fundamental Problem

- "What would have happened if I had not taken the flu shot" --> "What would the flu rate be if everyone got the flu shot vs if no one did?"
- Average causal effect of $T=1$ (relative to $T=0$) over U :
- $\mathbb{E}\left(Y_{1}-Y_{0}\right)=\mathbb{E}\left(Y_{1}\right)-\mathbb{E}\left(Y_{0}\right)$
- Imagine parallel universes with the same population...
- Can't observe this.
- Observed data can only give us information about the average of the outcome over $u \in U$ exposed to $T=t$.
- $\mathbb{E}\left(Y_{1} \mid T=1\right)-\mathbb{E}\left(Y_{0} \mid T=0\right)$

Statistical solution to the Fundamental Problem

- "What would have happened if I had not taken the flu shot" --> "What would the flu rate be if everyone got the flu shot vs if no one did?"
- Average causal effect of $T=1$ (relative to $T=0$) over U :
- $\mathbb{E}\left(Y_{1}-Y_{0}\right)=\mathbb{E}\left(Y_{1}\right)-\mathbb{E}\left(Y_{0}\right)$
- Imagine parallel universes with the same population...
- Can't observe this.
- Observed data can only give us information about the average of the outcome over $u \in U$ exposed to $T=t$.
- $\mathbb{E}\left(Y_{1} \mid T=1\right)-\mathbb{E}\left(Y_{0} \mid T=0\right)$
- In general, $\mathbb{E}\left(Y_{t}\right) \neq \mathbb{E}\left(Y_{t} \mid T=\mathrm{t}\right)$

Statistical solution to the Fundamental Problem

- "What would have happened if I had not taken the flu shot" --> "What would the flu rate be if everyone got the flu shot vs if no one did?"
- Average causal effect of $T=1$ (relative to $T=0$) over U :
- $\mathbb{E}\left(Y_{1}-Y_{0}\right)=\mathbb{E}\left(Y_{1}\right)-\mathbb{E}\left(Y_{0}\right)$
- Imagine parallel universes with the same population...
- Can't observe this.
- Observed data can only give us information about the average of the outcome over $u \in U$ exposed to $T=t$.
- $\mathbb{E}\left(Y_{1} \mid T=1\right)-\mathbb{E}\left(Y_{0} \mid T=0\right)$
- In general, $\mathbb{E}\left(Y_{t}\right) \neq \mathbb{E}\left(Y_{t} \mid T=\mathrm{t}\right)$
- Independence assumption hold via randomized treatment assignment allows equality to hold, which lets us compute the ACE above.

Other assumptions

- Stable Unit Treatment Value Assumption (SUVTA)
- No interference: units do not interact with each other.
- One version of treatment.
- Consistency
- The potential outcome Y_{t} is equal to the observed outcome if the actual treatment received is $T=t$.
- Positivity
- $\mathbb{P}(T(u)=t)>0$ for all t and u.

Other assumptions

- Stable Unit Treatment Value Assumption (SUVTA)
- No interference: units do not interact with each other.
- One version of treatment.
- Consistency
- The potential outcome Y_{t} is equal to the observed outcome if the actual treatment received is $T=t$.
- Positivity
- $\mathbb{P}(T(u)=t)>0$ for all t and u.
- Ignorability (aka no unmeasured confounders assumption)
- $Y_{0}, Y_{1} \perp \mathrm{~T} \mid \mathrm{X}$
- Among people with the same features X, we can think of treatment T as being randomly assigned.

Outline

- Potential Outcome
- Confounding and Causal DAGs
- Granger Causality
- ICA for Causal Discovery

DAGs

- Useful for identifying dependencies and ways to factor and simplify the joint distribution.
- $p\left(x_{1}, \ldots, x_{n}\right)=\prod_{\{i=1\}}^{n} p\left(x_{i} \mid x_{\{p a(i)\}}\right)$

Firing squad example [Pearl, 2018]

DAGs

- Useful for identifying dependencies and ways to factor and simplify the joint distribution.
- $p\left(x_{1}, \ldots, x_{n}\right)=\prod_{\{i=1\}}^{n} p\left(x_{i} \mid x_{\{p a(i)\}}\right)$
- Two variables A and B are d-separated by a set of variables Z if A and B are conditionally independent given Z.
- $p(A, B \mid Z)=p(A \mid Z) p(B \mid Z)$
- Chain

Causal DAGs

- DAGs where directions of the edges represent causal relationships.
- In contrast to Rubin's potential outcome framework, this is a structural approach to causal inference which Pearl advocates.
- They are shown to be mathematically equivalent.

Firing squad example [Pearl, 2018]

Intervention and Pearl's do-calculus

- $d o()$ operator signals an intervention on a variable.
- Replace that variable with the actual value that we assign.
- Removes all incoming edges to that node.

Intervention and Pearl's do-calculus

- $d o()$ operator signals an intervention on a variable.
- Replace that variable with the actual value that we assign.
- Removes all incoming edges to that node.
- Instead of $p(D \mid A=0)$
- We want $p(D \mid d o(A=0))$
- The causal effect of $A=0$ on D.

Confounding

- Confounders: variables that influences both treatment and outcome.
- Want: identify a set of variables so that ignorability holds.
- We don't need to identity specific confounders
- We just need to be able to control for confounding.
- Need to block backdoor paths from T to Y.

Frontdoor paths

- We are not concerned about frontdoor paths.
- We don't want to control anything along the frontdoor paths.
- Unless we care about the magnitude of the causal effect...

Backdoor paths

- Begins with a parent of T and ends at Y.
- Need to control these paths as they confound our causal effect.
- How?
- Identify the set of variables that blocks all backdoor paths from T to Y.

Backdoor criterion

- A set of variables C satisfies the backdoor criterion if

1. it blocks all backdoor paths from T to Y, and
2. It does not include any descendants of T.

Backdoor criterion

- A set of variables C satisfies the backdoor criterion if

1. it blocks all backdoor paths from T to Y, and
2. It does not include any descendants of T.

- $C=\{A, D\}$
- Alternatively, $C=\{B, D\}, C=\{A, B, D\}$

Backdoor criterion

- A set of variables C satisfies the backdoor criterion if

1. it blocks all backdoor paths from T to Y, and
2. It does not include any descendants of T.

- $C=\{A, D\}$
- Alternatively, $C=\{B, D\}, C=\{A, B, D\}$
- Controlling any of these sets allow us to control for confounding.

Backdoor criterion

- A set of variables C satisfies the backdoor criterion if

1. it blocks all backdoor paths from T to Y, and
2. It does not include any descendants of T.

- $C=\{A, D\}$
- Alternatively, $C=\{B, D\}, C=\{A, B, D\}$
- Controlling any of these sets allow us to control for confounding.
- Backdoor Adjustment:
- If a set of variables C satisfies the backdoor criterion relative to T ane Y, then the causal effect of T on Y is given by

- $\mathbb{P}(Y \mid d o(T=t))=\sum_{c \in C} \mathbb{P}(Y \mid T=t, c) \mathbb{P}(c)$.

Backdoor criterion

- A set of variables C satisfies the backdoor criterion if

1. it blocks all backdoor paths from T to Y, and
2. It does not include any descendants of T.

- $C=\{A, D\}$
- Alternatively, $C=\{B, D\}, C=\{A, B, D\}$
- Controlling any of these sets allow us to control for confounding.
- Backdoor Adjustment:
- If a set of variables C satisfies the backdoor criterion relative to T ane Y, then the causal effect of T on Y is given by

- $\mathbb{P}(Y \mid d o(T=t))=\sum_{c \in C} \mathbb{P}(Y \mid T=t, c) \mathbb{P}(c)$.
- In Rubin's framework, this is equivalent to the ignorability assumption:
- Treatment assignment is effectively randomized given C.

Outline

- Potential Outcomes
- Confounding and Causal DAGs
- Granger Causality
- ICA for Causal Discovery

Granger Causality

- Relationship between several time series.
- The Granger causality test is used to determine if the past values of $X(t)$ helps in predicting the future values of $Y(t)$.

Granger Causality

- Relationship between several time series.
- The Granger causality test is used to determine if the past values of $X(t)$ helps in predicting the future values of $Y(t)$.
- Two principles/assumptions:

1. The cause happens prior to the effect.
2. The cause has unique information about the future values of its effect.

Granger Causality

- Relationship between several time series.
- The Granger causality test is used to determine if the past values of $X(t)$ helps in predicting the future values of $Y(t)$.
- Two principles/assumptions:

1. The cause happens prior to the effect.
2. The cause has unique information about the future values of its effect.

- Hypothesis test:
- $\mathbb{P}(Y(t+1) \mid I(t)) \neq \mathbb{P}\left(Y(t+1) \mid I_{\{-x\}}(t)\right)$
- $\quad I(t)$ all information up to time t
- $\quad I_{\{-X\}}(t)$ all information up to time t with X excluded.

Granger Causality

- Hypothesis test:
- $\mathbb{P}(Y(t+1) \mid I(t)) \neq \mathbb{P}\left(Y(t+1) \mid I_{\{-x\}}(t)\right)$
- $I(t)$ all information up to time t
- $\quad I_{\{-X\}}(t)$ all information up to time t with X excluded.
- Steps:
- $y_{t}=a_{0}+a_{1} y_{\mathrm{t}-1}+a_{2} y_{t-2}+\epsilon_{t}$

Granger Causality

- Hypothesis test:
- $\mathbb{P}(Y(t+1) \mid I(t)) \neq \mathbb{P}\left(Y(t+1) \mid I_{\{-x\}}(t)\right)$
- $I(t)$ all information up to time t
- $\quad I_{\{-X\}}(t)$ all information up to time t with X excluded.
- Steps:
- $y_{t}=a_{0}+a_{1} y_{\mathrm{t}-1}+a_{2} y_{t-2}+\epsilon_{t}$
- $y_{t}=a_{0}+a_{1} y_{\mathrm{t}-1}+a_{2} y_{t-2}+b_{1} x_{t-1}+b_{2} x_{t-2}+\epsilon_{t}$

Granger Causality

- Hypothesis test:
- $\mathbb{P}(Y(t+1) \mid I(t)) \neq \mathbb{P}\left(Y(t+1) \mid I_{\{-x\}}(t)\right)$
- $I(t)$ all information up to time t
- $\quad I_{\{-X\}}(t)$ all information up to time t with X excluded.
- Steps:
- $y_{t}=a_{0}+a_{1} y_{\mathrm{t}-1}+a_{2} y_{t-2}+\epsilon_{t}$
- $y_{t}=a_{0}+a_{1} y_{\mathrm{t}-1}+a_{2} y_{t-2}+b_{1} x_{t-1}+b_{2} x_{t-2}+\epsilon_{t}$
- H_{0} : All $b_{1}=\cdots=b_{p}=0$

- H_{1} : At least one is non-zero.
- Null hypothesis: X does not Granger cause Y iff no lagged values of x are retained.

Remarks about GC

Holland

- GC formulation does not necessarily require the time-series setting adopted.
- Time is only used to split up the variables.

Remarks about GC

Holland

- GC formulation does not necessarily require the time-series setting adopted.
- Time is only used to split up the variables.
- Can be reformulated using Rubin's framework.
- Conditional independence.
- In a randomized experiment Granger noncausality implies zero ACE on all subpopulations defined by the values of $\left\{y_{t-1} \ldots\right\}$.

Remarks about GC

Holland

- GC formulation does not necessarily require the time-series setting adopted.
- Time is only used to split up the variables.
- Can be reformulated using Rubin's framework.
- Conditional independence.
- In a randomized experiment Granger noncausality implies zero ACE on all subpopulations defined by the values of $\left\{y_{t-1} \ldots\right\}$.
- Granger causes are "temporary".
- Adding more lags may change the overall Granger causes.

Remarks about GC

Holland

- GC formulation does not necessarily require the time-series setting adopted.
- Time is only used to split up the variables.
- Can be reformulated using Rubin's framework.
- Conditional independence.
- In a randomized experiment Granger noncausality implies zero ACE on all subpopulations defined by the values of $\left\{y_{t-1} \ldots\right\}$.
- Granger causes are "temporary".
- Adding more lags may change the overall Granger causes.

Pearl

Judea Pearl @yudapearl • Jan 24

Replying to @nntaleb and @HarryDCrane
1/ This one is easy. In 1991, I had a quiet dinner with Clive Granger in Uppsala, Sweden. Between the 2nd and 3rd glass of wine, he confessed to me that he feels embarrassed by the name: "Granger causality", since it has nothing to do with causality, but he can't stop people from
$\bigcirc 1$
〔】 3
O 54

Judea Pearl @yudapearl • Jan 24
$2 / 3$ using it; they need some way to express what they wish to estimate. I think we should honor him by echoing his understanding. An easy way to see that GC has nothing to do with causality is to look at the defining equations and note that they comprise only conditional
Q 1
$\uparrow \downarrow$
O 21
\uparrow

Judea Pearl @yudapearl • Jan 24
$3 / 3$ probabilities, no do (x) expressions, nor counterfactual terms $Y _x$. Bingo! We are done! Whenever a concept is defined in terms of a distribution of observable variables it can't be "causal". No causes in - no causes out (N . Cartwright) \#Bookofwhy
Q 3
$\uparrow\urcorner$
023
↔

Outline

- Potential Outcomes
- Confounding and Causal DAGs
- Granger Causality
- ICA for Causal Discovery

Independent Component Analysis (ICA)

- PCA: $X=Z W$ where Z is $n \times k$ and W is $k \times d, k \leq d$
- Factor analysis, data compression, etc.
- Invariant to rotation.

Independent Component Analysis (ICA)

- PCA: $X=Z W$ where Z is $n \times k$ and W is $k \times d, k \leq d$
- Factor analysis, data compression, etc.
- Invariant to rotation.
-ICA: $X=Z W$ usually with $k=d$
- Require the components of each z_{i} to be independent, and at most one can be normally distributed.
- Independence is measured by non-normality.
- $W=\operatorname{argmax}_{\mathrm{W}} \sum_{i=1}^{n} \sum_{j=1}^{k} \operatorname{kurt}\left(w_{j}^{T} x_{i}\right)^{2}$ where $\operatorname{kurt}(u)=\mathbb{E}\left(u^{4}\right)-3\left(\mathbb{E}\left(u^{2}\right)\right)^{2}$
- Up to permutation and scaling, we can identify the factors W .

Causal Discovery

- Randomized control trials are not always feasible.
- Cost, ethics, etc.

Causal Discovery

- Randomized control trials are not always feasible.
- Cost, ethics, etc.
- Structural equation modeling (SEM): path analysis integrating factor analysis and latent variables for non-experimental data.
- But requires background knowledge BEFORE collecting and analyzing data.
- Normality constraints.
- Causal directions are often unknown.
- Model 1: $x_{1}=b_{12} x_{2}+\epsilon_{1}$ and Model 2: $x_{2}=b_{21} x_{1}+\epsilon_{1}$, both are saturated with the same covariance matrix.

Causal Discovery

- Randomized control trials are not always feasible.
- Cost, ethics, etc.
- Structural equation modeling (SEM): path analysis integrating factor analysis and latent variables for non-experimental data.
- But requires background knowledge BEFORE collecting and analyzing data.
- Normality constraints.
- Causal directions are often unknown.
- Model 1: $x_{1}=b_{12} x_{2}+\epsilon_{1}$ and Model 2: $x_{2}=b_{21} x_{1}+\epsilon_{1}$, both are saturated with the same covariance matrix.
- With non-normality, ICA can be used to find the causal ordering of any number of observed variables based on non-experimental data. (Shimizu et al. 2006)

Causal Order

- Causality (a causal order) from a random variable x_{1} to another random variable x_{2}, denoted by $x_{1} \rightarrow x_{2}$ is confirmed if the following holds:
- $x_{2}=f\left(x_{1}, \epsilon_{2}\right)$ where ϵ_{2} is some perturbation independently distributed from x_{1}.
- Assume $f\left(x_{1}, \epsilon_{2}\right)=b_{21} x_{1}+\epsilon_{2}$.
- Boils down to finding b_{21}.

Causal Order

- Causality (a causal order) from a random variable x_{1} to another random variable x_{2}, denoted by $x_{1} \rightarrow x_{2}$ is confirmed if the following holds:
- $x_{2}=f\left(x_{1}, \epsilon_{2}\right)$ where ϵ_{2} is some perturbation independently distributed from x_{1}.
- Assume $f\left(x_{1}, \epsilon_{2}\right)=b_{21} x_{1}+\epsilon_{2}$.
- Boils down to finding b_{21}.
- Note that we can't just have uncorrelatedness from x_{1} and ϵ_{2} :
- Independence: $\mathbb{E}(g(x) h(y))=\mathbb{E}(g(x)) \mathbb{E}(h(y))$ for any deterministic functions g and h.
- Uncorrelatedness (covariance is 0): $\mathbb{E}(x y)=\mathbb{E}(x) \mathbb{E}(y)$, weaker assumption.

Causal Order

- Causality (a causal order) from a random variable x_{1} to another random variable x_{2}, denoted by $x_{1} \rightarrow x_{2}$ is confirmed if the following holds:
- $x_{2}=f\left(x_{1}, \epsilon_{2}\right)$ where ϵ_{2} is some perturbation independently distributed from x_{1}.
- Assume $f\left(x_{1}, \epsilon_{2}\right)=b_{21} x_{1}+\epsilon_{2}$.
- Boils down to finding b_{21}.
- Note that we can't just have uncorrelatedness from x_{1} and ϵ_{2} :
- Independence: $\mathbb{E}(g(x) h(y))=\mathbb{E}(g(x)) \mathbb{E}(h(y))$ for any deterministic functions g and h.
- Uncorrelatedness (covariance is 0): $\mathbb{E}(x y)=\mathbb{E}(x) \mathbb{E}(y)$, weaker assumption.
- If x_{1} and ϵ_{2} are only uncorrelated, then there could exist unobserved confounder z that affects both x_{1} and x_{2}.
- Suppose $x_{1}=\alpha z+\epsilon_{1}$ and $x_{2}=\beta z+b_{21} x_{1}+\epsilon_{2}$, then $\operatorname{Cov}\left(x_{1}, x_{2}\right)=b_{21} \operatorname{Var}\left(x_{1}\right)+\alpha \beta \operatorname{Var}(z)$ can be non-zero even if b_{21} is 0 .

Finding a Causal Order

- Suppose we have N measurements of x_{1} and x_{2}.
- $\overline{x_{1}^{2}}=\frac{1}{N} \sum_{i=1}^{N} x_{1 i}^{2}$, similarly for $\overline{x_{2}^{2}}$ and $\overline{x_{1} x_{2}}$
- Model 1: $x_{1}=b_{12} x_{2}+\epsilon_{1}$
- Model 2: $x_{2}=b_{21} x_{1}+\epsilon_{2}$

Finding a Causal Order

- Suppose we have N measurements of x_{1} and x_{2}.
- $\overline{x_{1}^{2}}=\frac{1}{N} \sum_{i=1}^{N} x_{1 i}^{2}$, similarly for $\overline{x_{2}^{2}}$ and $\overline{x_{1} x_{2}}$
- Model 1: $x_{1}=b_{12} x_{2}+\epsilon_{1}$
- Model 2: $x_{2}=b_{21} x_{1}+\epsilon_{2}$
- Second order moments of Model 1:
$E\left[\begin{array}{c}\overline{x_{1}^{2}} \\ \overline{x_{1} x_{2}} \\ \overline{x_{2}^{2}}\end{array}\right]=\left[\begin{array}{c}b_{12}^{2} E\left(x_{2}^{2}\right)+E\left(\xi_{1}^{2}\right) \\ b_{12} E\left(x_{2}^{2}\right) \\ E\left(x_{2}^{2}\right)\end{array}\right] \begin{aligned} & \text { which we denote by } \\ & \left.\boldsymbol{\tau}_{2}=\left[E\left(x_{2}^{2}\right), E\left(\xi_{1}^{2}\right), b_{12}\right]^{T}\right]=\boldsymbol{\sigma}_{2}\left(\boldsymbol{\tau}_{2}\right)\end{aligned}$
- Symmetric for Model 2.
- Undistinguishable.

Finding a Causal Order

- Suppose we have N measurements of x_{1} and x_{2}.
- $\overline{x_{1}^{2}}=\frac{1}{N} \sum_{i=1}^{N} x_{1 i}^{2}$, similarly for $\overline{x_{2}^{2}}$ and $\overline{x_{1} x_{2}}$
- Model 1: $x_{1}=b_{12} x_{2}+\epsilon_{1}$
- Model 2: $x_{2}=b_{21} x_{1}+\epsilon_{2}$
- Second order moments of Model 1:
- Fourth order moments for Model 1 and assume the residuals are NOT normally distributed:

which we denote by $E\left[\boldsymbol{m}_{4}\right]=\boldsymbol{\sigma}_{4}\left(\boldsymbol{\tau}_{4}\right)$,

$$
\boldsymbol{\tau}_{4}=\left[\boldsymbol{\tau}_{2}^{T}, E\left(x_{2}^{4}\right), E\left(\xi_{1}^{4}\right)\right]^{T} .
$$

$E\left[\begin{array}{c}\overline{x_{1}^{2}} \\ \overline{x_{1} x_{2}} \\ \overline{x_{2}^{2}}\end{array}\right]=\left[\begin{array}{c}b_{12}^{2} E\left(x_{2}^{2}\right)+E\left(\xi_{1}^{2}\right) \\ b_{12} E\left(x_{2}^{2}\right) \\ E\left(x_{2}^{2}\right)\end{array}\right] \begin{aligned} & \text { which we denote by } E\left[\boldsymbol{m}_{2}\right]=\boldsymbol{\sigma}_{2}\left(\boldsymbol{\tau}_{2}\right) \\ & \boldsymbol{\tau}_{2}=\left[E\left(x_{2}^{2}\right), E\left(\xi_{1}^{2}\right), b_{12}\right]^{T}\end{aligned}$

- Symmetric for Model 2.
- Undistinguishable.

Finding a Causal Order

- Suppose we have N measurements of x_{1} and x_{2}.
- $\overline{x_{1}^{2}}=\frac{1}{N} \sum_{i=1}^{N} x_{1 i}^{2}$, similarly for $\overline{x_{2}^{2}}$ and $\overline{x_{1} x_{2}}$
- Model 1: $x_{1}=b_{12} x_{2}+\epsilon_{1}$
- Model 2: $x_{2}=b_{21} x_{1}+\epsilon_{2}$
- Second order moments of Model 1:

$$
E\left[\begin{array}{c}
\overline{x_{1}^{2}} \\
\overline{x_{1} x_{2}} \\
\overline{x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{c}
b_{12}^{2} E\left(x_{2}^{2}\right)+E\left(\xi_{1}^{2}\right) \\
b_{12} E\left(x_{2}^{2}\right) \\
E\left(x_{2}^{2}\right)
\end{array}\right] \begin{aligned}
& \\
& \text { which we denote by } \\
& \boldsymbol{\tau}_{2}=\left[E\left(x_{2}^{2}\right), E\left(\xi_{1}^{2}\right), b_{12}\right]^{T}
\end{aligned}
$$

- Symmetric for Model 2.
- Undistinguishable.
- Fourth order moments for Model 1 and assume the residuals are NOT normally distributed:

$$
E\left[\begin{array}{c}
\overline{x_{1}^{4}} \\
\overline{x_{1}^{3} x_{2}} \\
\overline{x_{1}^{2} x_{2}^{2}} \\
\overline{x_{1} x_{2}^{3}} \\
\overline{x_{2}^{4}}
\end{array}\right]=\left[\begin{array}{c}
b_{12}^{4} E\left(x_{2}^{4}\right)+6 b_{12}^{2} E\left(x_{2}^{2}\right) E\left(\xi_{1}^{2}\right)+E\left(\xi_{1}^{4}\right) \\
b_{12}^{3} E\left(x_{2}^{4}\right)+3 b_{12} E\left(x_{2}^{2}\right) E\left(\xi_{1}^{2}\right) \\
b_{12}^{2} E\left(x_{2}^{4}\right)+E\left(x_{2}^{2}\right) E\left(\xi_{1}^{2}\right) \\
b_{12} E\left(x_{2}^{4}\right) \\
E\left(x_{2}^{4}\right)
\end{array}\right]
$$

$$
\text { which we denote by } E\left[\boldsymbol{m}_{4}\right]=\boldsymbol{\sigma}_{4}\left(\boldsymbol{\tau}_{4}\right) \text {, }
$$

$$
\boldsymbol{\tau}_{4}=\left[\boldsymbol{\tau}_{2}^{T}, E\left(x_{2}^{4}\right), E\left(\xi_{1}^{4}\right)\right]^{T}
$$

$$
T=N\left(\left[\begin{array}{l}
\boldsymbol{m}_{2} \\
\boldsymbol{m}_{4}
\end{array}\right]-\left[\begin{array}{l}
\boldsymbol{\sigma}_{2}\left(\hat{\boldsymbol{\tau}}_{2}\right) \\
\boldsymbol{\sigma}_{4}\left(\widehat{\boldsymbol{\tau}}_{4}\right)
\end{array}\right]\right)^{T} \hat{M}\left(\left[\begin{array}{l}
\boldsymbol{m}_{2} \\
\boldsymbol{m}_{4}
\end{array}\right]-\left[\begin{array}{l}
\boldsymbol{\sigma}_{2}\left(\hat{\boldsymbol{\tau}}_{2}\right) \\
\boldsymbol{\sigma}_{4}\left(\hat{\boldsymbol{\tau}}_{4}\right)
\end{array}\right]\right),
$$

- Measure of model fit \approx distance between data and the model used
- Compare T for the two models which will imply causal direction.

Causal ordering - more than 2 variables

- Suppose we have n variables, and we want to find an ordering $i(1), \ldots, i(n)$ such that
- $x_{i(j)}=\sum_{k=1}^{j-1} b_{i(j), i(k)} x_{i(k)}+\epsilon_{i(j)}$ for all $j=1, \ldots, n$, with nonzero coefficients and $\epsilon_{i(j)}$ non-normal, independent from $x_{i(k)}$ for $k<j$.
- " $x_{i(j)}$ can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error."
- Causal ordering $x_{i(1)} \rightarrow x_{i(2)} \rightarrow \cdots \rightarrow x_{i(n)}$

Causal ordering - more than 2 variables

- Suppose we have n variables, and we want to find an ordering $i(1), \ldots, i(n)$ such that
- $x_{i(j)}=\sum_{k=1}^{j-1} b_{i(j), i(k)} x_{i(k)}+\epsilon_{i(j)}$ for all $j=1, \ldots, n$, with nonzero coefficients and $\epsilon_{i(j)}$ non-normal, independent from $x_{i(k)}$ for $k<j$.
- " $x_{i(j)}$ can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error."
- Causal ordering $x_{i(1)} \rightarrow x_{i(2)} \rightarrow \cdots \rightarrow x_{i(n)}$
- Assuming such model exists, we need find the correct mapping $i(j)$ for $j=1, \ldots, n$.
- $\tilde{x}=B \tilde{x}+\tilde{\epsilon}$ where B is lower triangular and \tilde{x} is a vector of the observed variables with the desired ordering.

Causal ordering - more than 2 variables

- Suppose we have n variables, and we want to find an ordering $i(1), \ldots, i(n)$ such that
- $x_{i(j)}=\sum_{k=1}^{j-1} b_{i(j), i(k)} x_{i(k)}+\epsilon_{i(j)}$ for all $j=1, \ldots, n$, with nonzero coefficients and $\epsilon_{i(j)}$ non-normal, independent from $x_{i(k)}$ for $k<j$.
- " $x_{i(j)}$ can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error."
- Causal ordering $x_{i(1)} \rightarrow x_{i(2)} \rightarrow \cdots \rightarrow x_{i(n)}$
- Assuming such model exists, we need find the correct mapping $i(j)$ for $j=1, \ldots, n$.
- $\tilde{x}=B \tilde{x}+\tilde{\epsilon}$ where B is lower triangular and \tilde{x} is a vector of the observed variables with the desired ordering.
- Normalize the above so that the errors have unit variance using
- $w_{i(j), i(j)}=1 / \sqrt{ } \operatorname{Var}\left(\epsilon_{i(j)}\right)$ and $w_{i(j), i(k)}=-b_{i(j), i(k)} / \sqrt{ } \operatorname{Var}\left(\epsilon_{i(j)}\right)$ for $k \neq j$
- $\operatorname{diag}(W) \tilde{x}=-\operatorname{offdiag}(W) \tilde{x}+\tilde{\epsilon}^{*}$, or $W \tilde{x}=\tilde{\epsilon}^{*}$

Causal ordering - more than 2 variables

- Suppose we have n variables, and we want to find an ordering $i(1), \ldots, i(n)$ such that
- $x_{i(j)}=\sum_{k=1}^{j-1} b_{i(j), i(k)} x_{i(k)}+\epsilon_{i(j)}$ for all $j=1, \ldots, n$, with nonzero coefficients and $\epsilon_{i(j)}$ non-normal, independent from $x_{i(k)}$ for $k<j$.
- " $x_{i(j)}$ can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error."
- Causal ordering $x_{i(1)} \rightarrow x_{i(2)} \rightarrow \cdots \rightarrow x_{i(n)}$
- Assuming such model exists, we need find the correct mapping $i(j)$ for $j=1, \ldots, n$.
- $\tilde{x}=B \tilde{x}+\tilde{\epsilon}$ where B is lower triangular and \tilde{x} is a vector of the observed variables with the desired ordering.
- Normalize the above so that the errors have unit variance using
- $w_{i(j), i(j)}=1 / \sqrt{ } \operatorname{Var}\left(\epsilon_{i(j)}\right)$ and $w_{i(j), i(k)}=-b_{i(j), i(k)} / \sqrt{\operatorname{Var}}\left(\epsilon_{i(j)}\right)$ for $k \neq j$
- $\operatorname{diag}(W) \tilde{x}=-\operatorname{offdiag}(W) \tilde{x}+\tilde{\epsilon}^{*}$, or $W \tilde{x}=\tilde{\epsilon}^{*}$
- We can use ICA to estimate W !
- And there exists a unique permutation to make W lower triangular if the coefficients in B are non-zero.

Causal ordering - more than 2 variables

- Suppose we have n variables, and we want to find an ordering $i(1), \ldots, i(n)$ such that
- $x_{i(j)}=\sum_{k=1}^{j-1} b_{i(j), i(k)} x_{i(k)}+\epsilon_{i(j)}$ for all $j=1, \ldots, n$, with nonzero coefficients and $\epsilon_{i(j)}$ non-normal, independent from $x_{i(k)}$ for $k<j$.
- " $x_{i(j)}$ can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error."
- Causal ordering $x_{i(1)} \rightarrow x_{i(2)} \rightarrow \cdots \rightarrow x_{i(n)}$
- Assuming such model exists, we need find the correct mapping $i(j)$ for $j=1, \ldots, n$.
- $\tilde{x}=B \tilde{x}+\tilde{\epsilon}$ where B is lower triangular and \tilde{x} is a vector of the observed variables with the desired ordering.
- Normalize the above so that the errors have unit variance using
- $w_{i(j), i(j)}=1 / \sqrt{ } \operatorname{Var}\left(\epsilon_{i(j)}\right)$ and $w_{i(j), i(k)}=-b_{i(j), i(k)} / \sqrt{\operatorname{Var}}\left(\epsilon_{i(j)}\right)$ for $k \neq j$
- $\operatorname{diag}(W) \tilde{x}=-\operatorname{offdiag}(W) \tilde{x}+\tilde{\epsilon}^{*}$, or $W \tilde{x}=\tilde{\epsilon}^{*}$
- We can use ICA to estimate W !
- And there exists a unique permutation to make W lower triangular if the coefficients in B are non-zero.
- We can also estimate B, depending whether we care about the coefficients or just the causal ordering.

Summary (and References)

- Rubin's framework
- Potential outcomes and counterfactuals.
- Holland, P. W. Statistics and Causal Inference. Journal of the American statistical Association, 1986.
- Roy, J. A Crash course in Causality.
- Pearl's framework
- Utilizing causal DAGs, do-operator, backdoor adjustment.
- Pearl, J. Causality. Cambridge University Press, 2009
- Pearl, J. and Mackenzie D. The book of why: the new sciences of cause and effect. 2018
- Granger Causality
- Using past values of one variable to predict future values of another.
- Granger, C. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica, 1969.
- ICA for Causal Discovery (Shimizu et al.)
- With the non-normality assumption and independence assumption, can find causal directions of a set of variables using non-experimental data.
- Shimizu, S., Shimizu, S., Hyvärinen, A., Hoyer, P.O. and Kano, Y. Finding a causal ordering via independent component analysis. Computational Statistics \& Data Analysis, 2006.

Thank you

