Causal Inference: Classical Approaches

Si Yi (Cathy) Meng Feb 5, 2020 UBC MLRG

Outline

• Potential Outcomes

- Confounding and Causal DAGs
- Granger Causality
- ICA for Causal Discovery

Associational Inference

- Universe U
- For each unit $u \in U$:
 - Attribute variable X(u)
 - Observed variable Y(u)
- Inference:
 - P(Y = y | X = x)

Associational Inference

- Universe U
- For each unit $u \in U$:
 - Attribute variable X(u)
 - Observed variable Y(u)
- Inference:
 - P(Y = y | X = x)

Causal Inference

- Universe U
- For each unit $u \in U$:
 - Treatment variable $T(u) \in \{1,0\}$
 - Potential outcome $Y_1(u)$, $Y_0(u)$
- Inference:
 - $Y_1(u) Y_0(u)$

Rubin's Framework

- For each unit $u \in U$:
 - Treatment variable $T(u) \in \{1,0\}$
 - Potential outcomes $Y_1(u)$, $Y_0(u)$
 - the outcome that would be observed if treatment was set to T = 0 or 1, on the same unit.
 - (before)
 - If T(u) is set to 1
 - $Y_1(u)$ is the observed outcome
 - $Y_0(u)$ is the counterfactual outcome
 - (after)

Causal Effects

- $Y_1(u) Y_0(u)$ is the **causal effect** of treatment 1 (relative to 0) on u.
 - Abbreviated as Y_1 and Y_0

Causal Effects

- $Y_1(u) Y_0(u)$ is the **causal effect** of treatment 1 (relative to 0) on u.
 - Abbreviated as Y_1 and Y_0

• Fundamental Problem of Causal Inference

• It is impossible to *observe* both Y₁ and Y₀ on the same unit, and therefore it is impossible to observe the causal effect.

THE END

- Assume temporal stability and causal transience
 - The value of Y_0 does not depend on when T = 0 is applied and measured.
 - The effect of T = 0 and the measurement process that gives rise to Y_0 does not change u enough to affect Y_1 measured later.

- Assume temporal stability and causal transience
 - The value of Y_0 does not depend on when T = 0 is applied and measured.
 - The effect of T = 0 and the measurement process that gives rise to Y_0 does not change u enough to affect Y_1 measured later.
 - With these two assumptions, we can simply measure both Y_0 and Y_1 by applying T = 0 then T = 1, taking the measurement after each exposure.
 - Widely used in experiments involving physical devices.

- Assume temporal stability and causal transience
 - The value of Y_0 does not depend on when T = 0 is applied and measured.
 - The effect of T = 0 and the measurement process that gives rise to Y_0 does not change u enough to affect Y_1 measured later.
 - With these two assumptions, we can simply measure both Y_0 and Y_1 by applying T = 0 then T = 1, taking the measurement after each exposure.
 - Widely used in experiments involving physical devices.
- Assume unit homogeneity
 - For two units u_1 and u_2 , we assume $Y_0(u_1) = Y_0(u_2)$ and $Y_1(u_1) = Y_1(u_2)$.

- Assume temporal stability and causal transience
 - The value of Y_0 does not depend on when T = 0 is applied and measured.
 - The effect of T = 0 and the measurement process that gives rise to Y_0 does not change u enough to affect Y_1 measured later.
 - With these two assumptions, we can simply measure both Y_0 and Y_1 by applying T = 0 then T = 1, taking the measurement after each exposure.
 - Widely used in experiments involving physical devices.
- Assume unit homogeneity
 - For two units u_1 and u_2 , we assume $Y_0(u_1) = Y_0(u_2)$ and $Y_1(u_1) = Y_1(u_2)$.
 - Causal effect can then be computed using $Y_1(u_1) Y_0(u_2)$.
 - Implies the constant effect assumption: $Y_1(u) Y_0(u)$ is the same for all $u \in U$.

- Assume temporal stability and causal transience
 - The value of Y_0 does not depend on when T = 0 is applied and measured.
 - The effect of T = 0 and the measurement process that gives rise to Y_0 does not change u enough to affect Y_1 measured later.
 - With these two assumptions, we can simply measure both Y_0 and Y_1 by applying T = 0 then T = 1, taking the measurement after each exposure.
 - Widely used in experiments involving physical devices.
- Assume unit homogeneity
 - For two units u_1 and u_2 , we assume $Y_0(u_1) = Y_0(u_2)$ and $Y_1(u_1) = Y_1(u_2)$.
 - Causal effect can then be computed using $Y_1(u_1) Y_0(u_2)$.
 - Implies the constant effect assumption: $Y_1(u) Y_0(u)$ is the same for all $u \in U$.
- It's very difficult to argue that these are valid...

 "What would have happened if I had not taken the flu shot" --> "What would the flu rate be if everyone got the flu shot vs if no one did?"

- "What would have happened if I had not taken the flu shot" --> "What would the flu rate be if everyone got the flu shot vs if no one did?"
- Average causal effect of T = 1 (relative to T = 0) over U:
 - $\mathbb{E}(Y_1 Y_0) = \mathbb{E}(Y_1) \mathbb{E}(Y_0)$
 - Imagine parallel universes with the same population...
 - Can't observe this.
- Observed data can only give us information about the average of the outcome over u ∈ U exposed to T = t.
 - $\mathbb{E}(Y_1|T=1) \mathbb{E}(Y_0|T=0)$

- "What would have happened if I had not taken the flu shot" --> "What would the flu rate be if everyone got the flu shot vs if no one did?"
- Average causal effect of T = 1 (relative to T = 0) over U:
 - $\mathbb{E}(Y_1 Y_0) = \mathbb{E}(Y_1) \mathbb{E}(Y_0)$
 - Imagine parallel universes with the same population...
 - Can't observe this.
- Observed data can only give us information about the average of the outcome over u ∈ U exposed to T = t.
 - $\mathbb{E}(Y_1|T=1) \mathbb{E}(Y_0|T=0)$
 - In general, $\mathbb{E}(Y_t) \neq \mathbb{E}(Y_t|T = t)$

- "What would have happened if I had not taken the flu shot" --> "What would the flu rate be if everyone got the flu shot vs if no one did?"
- Average causal effect of T = 1 (relative to T = 0) over U:
 - $\mathbb{E}(Y_1 Y_0) = \mathbb{E}(Y_1) \mathbb{E}(Y_0)$
 - Imagine parallel universes with the same population...
 - Can't observe this.
- Observed data can only give us information about the average of the outcome over u ∈ U exposed to T = t.
 - $\mathbb{E}(Y_1|T=1) \mathbb{E}(Y_0|T=0)$
 - In general, $\mathbb{E}(Y_t) \neq \mathbb{E}(Y_t|T = t)$
 - Independence assumption hold via randomized treatment assignment allows equality to hold, which lets us compute the ACE above.

Other assumptions

- Stable Unit Treatment Value Assumption (SUVTA)
 - No interference: units do not interact with each other.
 - One version of treatment.
- Consistency
 - The potential outcome Y_t is equal to the observed outcome if the actual treatment received is T = t.
- Positivity
 - $\mathbb{P}(T(u) = t) > 0$ for all t and u.

Other assumptions

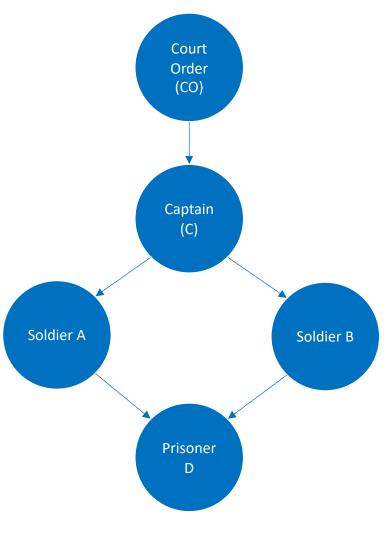
- Stable Unit Treatment Value Assumption (SUVTA)
 - No interference: units do not interact with each other.
 - One version of treatment.
- Consistency
 - The potential outcome Y_t is equal to the observed outcome if the actual treatment received is T = t.
- Positivity
 - $\mathbb{P}(T(u) = t) > 0$ for all t and u.
- Ignorability (aka no unmeasured confounders assumption)
 - $Y_0, Y_1 \perp \mathsf{T} | \mathsf{X}$
 - Among people with the same features X, we can think of treatment T as being randomly assigned.

Outline

- Potential Outcome
- Confounding and Causal DAGs
- Granger Causality
- ICA for Causal Discovery

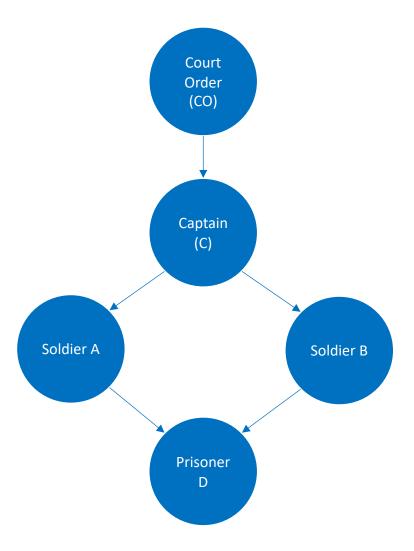
DAGs

- Useful for identifying dependencies and ways to factor and simplify the joint distribution.
- $p(x_1, ..., x_n) = \prod_{\{i=1\}}^n p(x_i | x_{\{pa(i)\}})$



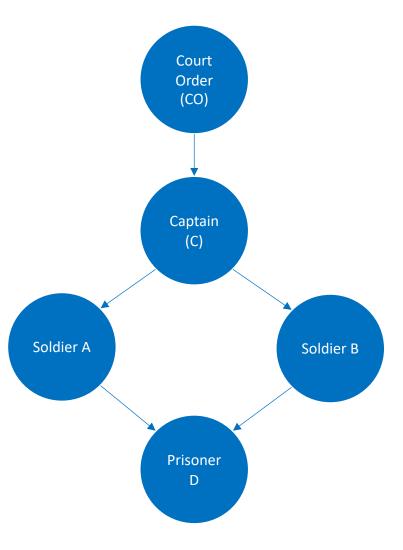
DAGs

- Useful for identifying dependencies and ways to factor and simplify the joint distribution.
- $p(x_1, ..., x_n) = \prod_{i=1}^n p(x_i | x_{pa(i)})$
- Two variables A and B are **d-separated** by a set of variables Z if A and B are conditionally independent given Z.
 - p(A, B|Z) = p(A|Z)p(B|Z)
 - Chain
 - Fork
 - Inverted fork



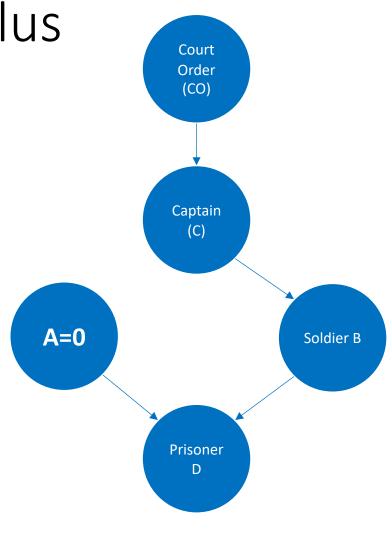
Causal DAGs

- DAGs where directions of the edges represent causal relationships.
- In contrast to Rubin's potential outcome framework, this is a structural approach to causal inference which Pearl advocates.
 - They are shown to be mathematically equivalent.



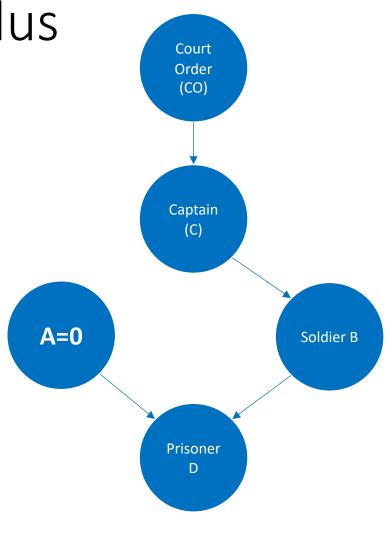
Intervention and Pearl's do-calculus

- *do*() operator signals an intervention on a variable.
 - Replace that variable with the actual value that we assign.
 - Removes all incoming edges to that node.



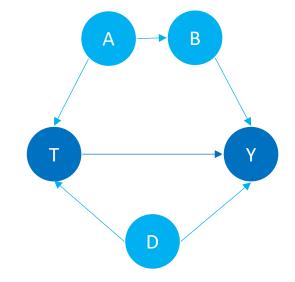
Intervention and Pearl's do-calculus

- *do*() operator signals an intervention on a variable.
 - Replace that variable with the actual value that we assign.
 - Removes all incoming edges to that node.
- Instead of p(D|A = 0)
- We want p(D|do(A = 0))
 - The causal effect of A = 0 on D.

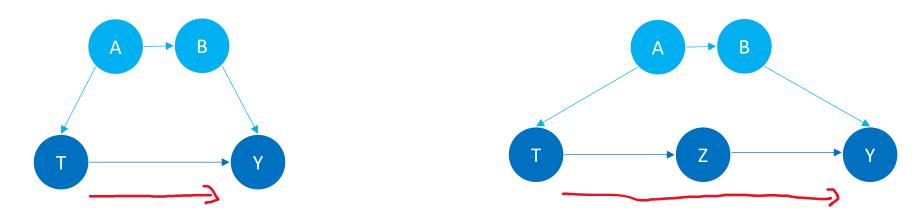


Confounding

- **Confounders**: variables that influences both treatment and outcome.
 - Want: identify a set of variables so that ignorability holds.
 - We don't need to identity specific confounders
 - We just need to be able to control for confounding.
- Need to block backdoor paths from T to Y.



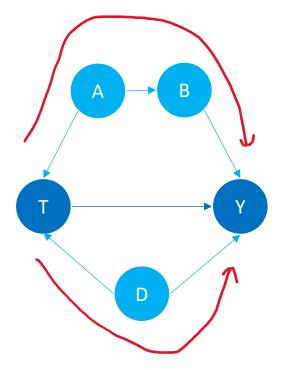
Frontdoor paths



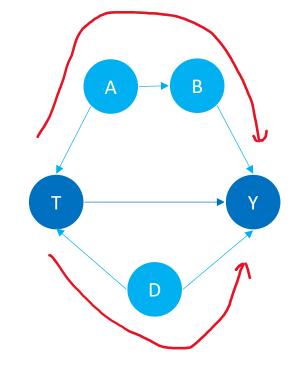
- We are not concerned about frontdoor paths.
- We don't want to control anything along the frontdoor paths.
 - Unless we care about the magnitude of the causal effect...

Backdoor paths

- Begins with a parent of T and ends at Y.
- Need to control these paths as they confound our causal effect.
- How?
 - Identify the set of variables that blocks all backdoor paths from *T* to *Y*.



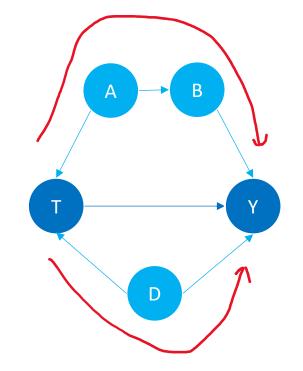
- A set of variables C satisfies the **backdoor criterion** if
 - 1. it blocks all backdoor paths from *T* to *Y*, and
 - 2. It does not include any descendants of *T*.



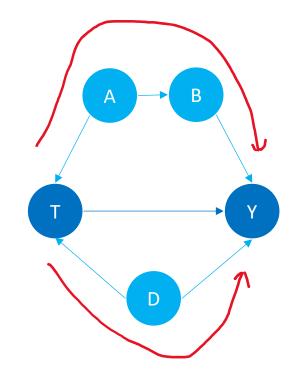
- A set of variables C satisfies the **backdoor criterion** if
 - 1. it blocks all backdoor paths from *T* to *Y*, and
 - 2. It does not include any descendants of *T*.

• $C = \{A, D\}$

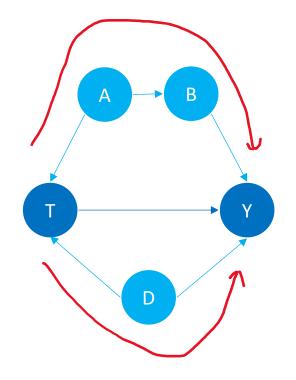
• Alternatively, $C = \{B, D\}, C = \{A, B, D\}$



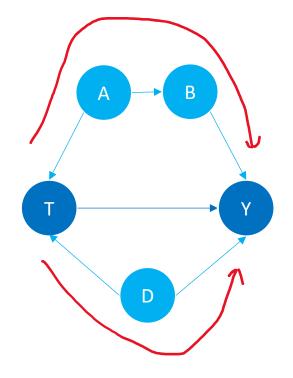
- A set of variables C satisfies the **backdoor criterion** if
 - 1. it blocks all backdoor paths from *T* to *Y*, and
 - 2. It does not include any descendants of *T*.
- $C = \{A, D\}$
 - Alternatively, $C = \{B, D\}, C = \{A, B, D\}$
- Controlling any of these sets allow us to control for confounding.



- A set of variables C satisfies the **backdoor criterion** if
 - 1. it blocks all backdoor paths from *T* to *Y*, and
 - 2. It does not include any descendants of *T*.
- $C = \{A, D\}$
 - Alternatively, $C = \{B, D\}, C = \{A, B, D\}$
- Controlling any of these sets allow us to control for confounding.
- Backdoor Adjustment:
 - If a set of variables *C* satisfies the backdoor criterion relative to *T* ane *Y*, then the causal effect of *T* on *Y* is given by
 - $\mathbb{P}(Y|do(T = t)) = \sum_{c \in C} \mathbb{P}(Y|T = t, c)\mathbb{P}(c).$



- A set of variables C satisfies the **backdoor criterion** if
 - 1. it blocks all backdoor paths from *T* to *Y*, and
 - 2. It does not include any descendants of *T*.
- $C = \{A, D\}$
 - Alternatively, $C = \{B, D\}, C = \{A, B, D\}$
- Controlling any of these sets allow us to control for confounding.
- Backdoor Adjustment:
 - If a set of variables *C* satisfies the backdoor criterion relative to *T* ane *Y*, then the causal effect of *T* on *Y* is given by
 - $\mathbb{P}(Y|do(T = t)) = \sum_{c \in C} \mathbb{P}(Y|T = t, c)\mathbb{P}(c).$
- In Rubin's framework, this is equivalent to the ignorability assumption:
 - Treatment assignment is effectively randomized given C.

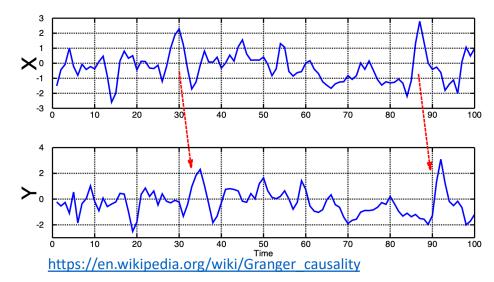


Outline

- Potential Outcomes
- Confounding and Causal DAGs
- Granger Causality
- ICA for Causal Discovery

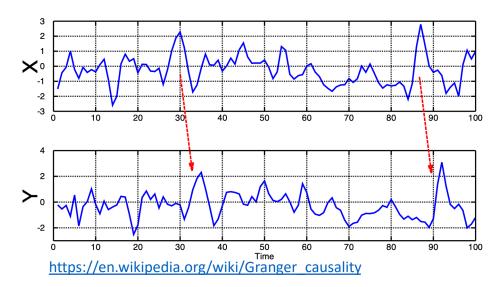
Granger Causality

- Relationship between several time series.
- The Granger causality test is used to determine if the past values of *X*(*t*) helps in predicting the future values of *Y*(*t*).

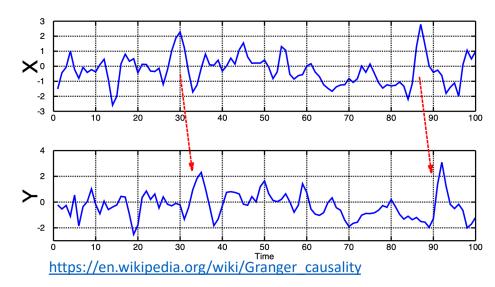


Granger Causality

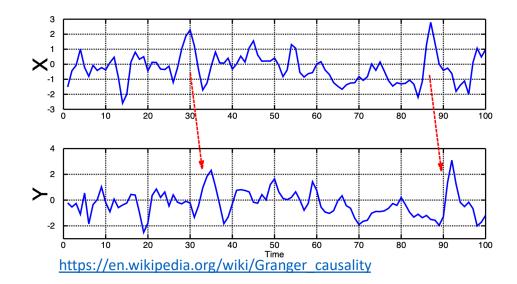
- Relationship between several time series.
- The Granger causality test is used to determine if the past values of X(t) helps in predicting the future values of Y(t).
- Two principles/assumptions:
 - 1. The cause happens prior to the effect.
 - 2. The cause has unique information about the future values of its effect.



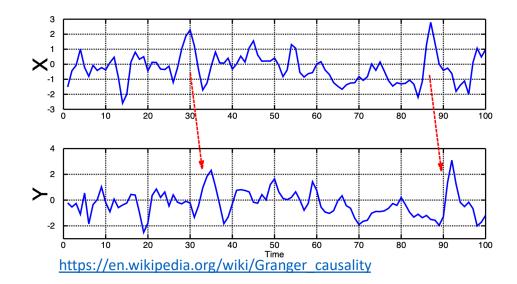
- Relationship between several time series.
- The Granger causality test is used to determine if the past values of X(t) helps in predicting the future values of Y(t).
- Two principles/assumptions:
 - 1. The cause happens prior to the effect.
 - 2. The cause has unique information about the future values of its effect.
- Hypothesis test:
 - $\mathbb{P}(Y(t+1)|I(t)) \neq \mathbb{P}(Y(t+1)|I_{\{-X\}}(t))$
 - I(t) all information up to time t
 - $I_{\{-X\}}(t)$ all information up to time t with X excluded.



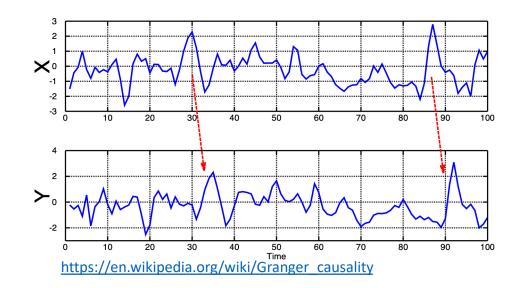
- Hypothesis test:
 - $\mathbb{P}(Y(t+1)|I(t)) \neq \mathbb{P}(Y(t+1)|I_{\{-X\}}(t))$
 - I(t) all information up to time t
 - $I_{\{-X\}}(t)$ all information up to time t with X excluded.
- Steps:
 - $y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + \epsilon_t$



- Hypothesis test:
 - $\mathbb{P}(Y(t+1)|I(t)) \neq \mathbb{P}(Y(t+1)|I_{\{-X\}}(t))$
 - I(t) all information up to time t
 - $I_{\{-X\}}(t)$ all information up to time t with X excluded.
- Steps:
 - $y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + \epsilon_t$
 - $y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + b_1 x_{t-1} + b_2 x_{t-2} + \epsilon_t$



- Hypothesis test:
 - $\mathbb{P}(Y(t+1)|I(t)) \neq \mathbb{P}(Y(t+1)|I_{\{-X\}}(t))$
 - I(t) all information up to time t
 - $I_{\{-X\}}(t)$ all information up to time t with X excluded.
- Steps:
 - $y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + \epsilon_t$
 - $y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + b_1 x_{t-1} + b_2 x_{t-2} + \epsilon_t$
 - H_0 : All $b_1 = \dots = b_p = 0$
 - H_1 : At least one is non-zero.
- Null hypothesis: X does not Granger cause Y iff no lagged values of x are retained.



Holland

- GC formulation does not necessarily require the time-series setting adopted.
 - Time is only used to split up the variables.

Holland

- GC formulation does not necessarily require the time-series setting adopted.
 - Time is only used to split up the variables.
- Can be reformulated using Rubin's framework.
 - Conditional independence.
 - In a randomized experiment Granger noncausality implies zero ACE on all subpopulations defined by the values of {y_{t-1}...}.

Holland

- GC formulation does not necessarily require the time-series setting adopted.
 - Time is only used to split up the variables.
- Can be reformulated using Rubin's framework.
 - Conditional independence.
 - In a randomized experiment Granger noncausality implies zero ACE on all subpopulations defined by the values of {y_{t-1}...}.
- Granger causes are "temporary".
 - Adding more lags may change the overall Granger causes.

Holland

- GC formulation does not necessarily require the time-series setting adopted.
 - Time is only used to split up the variables.
- Can be reformulated using Rubin's framework.
 - Conditional independence.
 - In a randomized experiment Granger noncausality implies zero ACE on all subpopulations defined by the values of {y_{t-1}...}.
- Granger causes are "temporary".
 - Adding more lags may change the overall Granger causes.

Pearl

	Judea Pearl @yudapearl · Jan 24 Replying to @nntaleb and @HarryDCrane 1/ This one is easy. In 1991, I had a quiet dinner with Clive Granger in Uppsala, Sweden. Between the 2nd and 3rd glass of wine, he confessed to me that he feels embarrassed by the name: "Granger causality", since it has nothing to do with causality, but he can't stop people from				
	Q 1	1J 3	♡ 54	\uparrow	
9	2/3 using it; th think we shou see that GC h	Pearl @yudapearl · Jan 24 ing it; they need some way to express what they wish to estimate. I we should honor him by echoing his understanding. An easy way to at GC has nothing to do with causality is to look at the defining ons and note that they comprise only conditional			
	♀ 1	t]	♡ 21	<u>↑</u>	
	3/3 probabiliti We are done! observable va	lea Pearl @yudapearl · Jan 24 > probabilities, no do(x) expressions, nor counterfactual terms Y_x. Bingo! are done! Whenever a concept is defined in terms of a distribution of ervable variables it can't be "causal". No causes in - no causes out (N. twright) #Bookofwhy 3 1 Yes 23			

Outline

- Potential Outcomes
- Confounding and Causal DAGs
- Granger Causality
- ICA for Causal Discovery

Independent Component Analysis (ICA)

• PCA: X = ZW where Z is $n \times k$ and W is $k \times d$, $k \le d$

- Factor analysis, data compression, etc.
- Invariant to rotation.

Independent Component Analysis (ICA)

• PCA: X = ZW where Z is $n \times k$ and W is $k \times d$, $k \leq d$

- Factor analysis, data compression, etc.
- Invariant to rotation.
- ICA: X = ZW usually with k = d
 - Require the components of each z_i to be independent, and at most one can be normally distributed.
 - Independence is measured by non-normality.
 - $W = \operatorname{argmax}_{W} \sum_{i=1}^{n} \sum_{j=1}^{k} kurt(w_{j}^{T} x_{i})^{2}$ where $kurt(u) = \mathbb{E}(u^{4}) 3(\mathbb{E}(u^{2}))^{2}$
 - Up to permutation and scaling, we can identify the factors W.

Causal Discovery

- Randomized control trials are not always feasible.
 - Cost, ethics, etc.

Causal Discovery

- Randomized control trials are not always feasible.
 - Cost, ethics, etc.
- Structural equation modeling (SEM): path analysis integrating factor analysis and latent variables for non-experimental data.
 - But requires background knowledge BEFORE collecting and analyzing data.
 - Normality constraints.
 - Causal directions are often unknown.
 - Model 1: $x_1 = b_{12}x_2 + \epsilon_1$ and Model 2: $x_2 = b_{21}x_1 + \epsilon_1$, both are saturated with the same covariance matrix.

Causal Discovery

- Randomized control trials are not always feasible.
 - Cost, ethics, etc.
- Structural equation modeling (SEM): path analysis integrating factor analysis and latent variables for non-experimental data.
 - But requires background knowledge BEFORE collecting and analyzing data.
 - Normality constraints.
 - Causal directions are often unknown.
 - Model 1: $x_1 = b_{12}x_2 + \epsilon_1$ and Model 2: $x_2 = b_{21}x_1 + \epsilon_1$, both are saturated with the same covariance matrix.
- With non-normality, ICA can be used to find the causal ordering of any number of observed variables based on non-experimental data. (Shimizu et al. 2006)

Causal Order

- Causality (a causal order) from a random variable x_1 to another random variable x_2 , denoted by $x_1 \rightarrow x_2$ is confirmed if the following holds:
 - $x_2 = f(x_1, \epsilon_2)$ where ϵ_2 is some perturbation **independently** distributed from x_1 .
 - Assume $f(x_1, \epsilon_2) = b_{21}x_1 + \epsilon_2$.
 - Boils down to finding b_{21} .

Causal Order

- Causality (a causal order) from a random variable x_1 to another random variable x_2 , denoted by $x_1 \rightarrow x_2$ is confirmed if the following holds:
 - $x_2 = f(x_1, \epsilon_2)$ where ϵ_2 is some perturbation **independently** distributed from x_1 .
 - Assume $f(x_1, \epsilon_2) = b_{21}x_1 + \epsilon_2$.
 - Boils down to finding b_{21} .
- Note that we can't just have uncorrelatedness from x_1 and ϵ_2 :
 - Independence: $\mathbb{E}(g(x)h(y)) = \mathbb{E}(g(x))\mathbb{E}(h(y))$ for any deterministic functions g and h.
 - Uncorrelatedness (covariance is 0): $\mathbb{E}(xy) = \mathbb{E}(x)\mathbb{E}(y)$, weaker assumption.

Causal Order

- Causality (a causal order) from a random variable x_1 to another random variable x_2 , denoted by $x_1 \rightarrow x_2$ is confirmed if the following holds:
 - $x_2 = f(x_1, \epsilon_2)$ where ϵ_2 is some perturbation **independently** distributed from x_1 .
 - Assume $f(x_1, \epsilon_2) = b_{21}x_1 + \epsilon_2$.
 - Boils down to finding b_{21} .
- Note that we can't just have uncorrelatedness from x_1 and ϵ_2 :
 - Independence: $\mathbb{E}(g(x)h(y)) = \mathbb{E}(g(x))\mathbb{E}(h(y))$ for any deterministic functions g and h.
 - Uncorrelatedness (covariance is 0): $\mathbb{E}(xy) = \mathbb{E}(x)\mathbb{E}(y)$, weaker assumption.
 - If x_1 and ϵ_2 are only uncorrelated, then there could exist unobserved confounder z that affects both x_1 and x_2 .
 - Suppose $x_1 = \alpha z + \epsilon_1$ and $x_2 = \beta z + b_{21}x_1 + \epsilon_2$, then $Cov(x_1, x_2) = b_{21}Var(x_1) + \alpha\beta Var(z)$ can be non-zero even if b_{21} is 0.

- Suppose we have *N* measurements of x_1 and x_2 .
 - $\overline{x_1^2} = \frac{1}{N} \sum_{i=1}^N x_{1i}^2$, similarly for $\overline{x_2^2}$ and $\overline{x_1 x_2}$
- Model 1: $x_1 = b_{12}x_2 + \epsilon_1$
- Model 2: $x_2 = b_{21}x_1 + \epsilon_2$

- Suppose we have *N* measurements of x_1 and x_2 .
 - $\overline{x_1^2} = \frac{1}{N} \sum_{i=1}^N x_{1i}^2$, similarly for $\overline{x_2^2}$ and $\overline{x_1 x_2}$
- Model 1: $x_1 = b_{12}x_2 + \epsilon_1$
- Model 2: $x_2 = b_{21}x_1 + \epsilon_2$
- Second order moments of Model 1:

$$E\begin{bmatrix} \overline{x_1^2} \\ \overline{x_1x_2} \\ \overline{x_2^2} \end{bmatrix} = \begin{bmatrix} b_{12}^2 E(x_2^2) + E(\xi_1^2) \\ b_{12}E(x_2^2) \\ E(x_2^2) \end{bmatrix} \quad \text{which we denote by} \quad E[\boldsymbol{m}_2] = \boldsymbol{\sigma}_2(\boldsymbol{\tau}_2) \\ \boldsymbol{\tau}_2 = [E(x_2^2), \ E(\xi_1^2), \ b_{12}]^T$$

- Symmetric for Model 2.
- Undistinguishable.

- Suppose we have *N* measurements of x_1 and x_2 .
 - $\overline{x_1^2} = \frac{1}{N} \sum_{i=1}^N x_{1i}^2$, similarly for $\overline{x_2^2}$ and $\overline{x_1 x_2}$
- Model 1: $x_1 = b_{12}x_2 + \epsilon_1$
- Model 2: $x_2 = b_{21}x_1 + \epsilon_2$
- Second order moments of Model 1:

$$E\begin{bmatrix}\overline{x_1^2}\\\overline{x_1x_2}\\\overline{x_2^2}\end{bmatrix} = \begin{bmatrix}b_{12}^2 E(x_2^2) + E(\xi_1^2)\\b_{12}E(x_2^2)\\E(x_2^2)\end{bmatrix} \quad \text{which we denote by} \quad E[\boldsymbol{m}_2] = \boldsymbol{\sigma}_2(\boldsymbol{\tau}_2)\\\boldsymbol{\tau}_2 = [E(x_2^2), \ E(\xi_1^2), \ b_{12}]^T$$

- Symmetric for Model 2.
- Undistinguishable.

• Fourth order moments for Model 1 and assume the residuals are NOT normally distributed:

$$E\begin{bmatrix}\overline{x_1^4}\\\overline{x_1^3x_2}\\\overline{x_1^2x_2^2}\\\overline{x_1x_2^3}\\\overline{x_2^4}\end{bmatrix} = \begin{bmatrix}b_{12}^4E(x_2^4) + 6b_{12}^2E(x_2^2)E(\xi_1^2) + E(\xi_1^4)\\b_{12}^3E(x_2^4) + 3b_{12}E(x_2^2)E(\xi_1^2)\\b_{12}^2E(x_2^4) + E(x_2^2)E(\xi_1^2)\\b_{12}E(x_2^4)\\E(x_2^4)\end{bmatrix}$$
which we denote by $E[\mathbf{m}_4] = \boldsymbol{\sigma}_4(\boldsymbol{\tau}_4),$ $\boldsymbol{\tau}_4 = [\boldsymbol{\tau}_2^T, \ E(x_2^4), \ E(\xi_1^4)]^T.$

- Suppose we have *N* measurements of *x*₁ and *x*₂.
 - $\overline{x_1^2} = \frac{1}{N} \sum_{i=1}^N x_{1i}^2$, similarly for $\overline{x_2^2}$ and $\overline{x_1 x_2}$
- Model 1: $x_1 = b_{12}x_2 + \epsilon_1$
- Model 2: $x_2 = b_{21}x_1 + \epsilon_2$
- Second order moments of Model 1:

$$E\begin{bmatrix}\overline{x_1^2}\\\overline{x_1x_2}\\\overline{x_2^2}\end{bmatrix} = \begin{bmatrix}b_{12}^2 E(x_2^2) + E(\xi_1^2)\\b_{12}E(x_2^2)\\E(x_2^2)\end{bmatrix} \quad \text{which we denote by} \quad E[\boldsymbol{m}_2] = \boldsymbol{\sigma}_2(\boldsymbol{\tau}_2)\\\boldsymbol{\tau}_2 = [E(x_2^2), \ E(\xi_1^2), \ b_{12}]^T$$

- Symmetric for Model 2.
- Undistinguishable.

• Fourth order moments for Model 1 and assume the residuals are NOT normally distributed:

$$E\begin{bmatrix} \overline{x_1^4} \\ \overline{x_1^3 x_2} \\ \overline{x_1^2 x_2^2} \\ \overline{x_1^2 x_2^2} \\ \overline{x_1^2} \\ \overline{x_2^4} \end{bmatrix} = \begin{bmatrix} b_{12}^4 E(x_2^4) + 6b_{12}^2 E(x_2^2) E(\xi_1^2) \\ b_{12}^3 E(x_2^4) + 3b_{12} E(x_2^2) E(\xi_1^2) \\ b_{12}^2 E(x_2^4) + E(x_2^2) E(\xi_1^2) \\ b_{12} E(x_2^4) \\ E(x_2^4) \end{bmatrix}$$

which we denote by $E[\mathbf{m}_4] = \mathbf{\sigma}_4(\mathbf{\tau}_4),$
 $\mathbf{\tau}_4 = [\mathbf{\tau}_2^T, \ E(x_2^4), \ E(\xi_1^4)]^T.$

)
$$T = N\left(\begin{bmatrix} \boldsymbol{m}_2\\ \boldsymbol{m}_4 \end{bmatrix} - \begin{bmatrix} \boldsymbol{\sigma}_2(\hat{\boldsymbol{\tau}}_2)\\ \boldsymbol{\sigma}_4(\hat{\boldsymbol{\tau}}_4) \end{bmatrix} \right)^T \hat{M}\left(\begin{bmatrix} \boldsymbol{m}_2\\ \boldsymbol{m}_4 \end{bmatrix} - \begin{bmatrix} \boldsymbol{\sigma}_2(\hat{\boldsymbol{\tau}}_2)\\ \boldsymbol{\sigma}_4(\hat{\boldsymbol{\tau}}_4) \end{bmatrix} \right),$$

- Measure of model fit \approx distance between data and the model used
- Compare *T* for the two models which will imply causal direction.

- Suppose we have n variables, and we want to find an ordering i(1), ..., i(n) such that
 - $x_{i(j)} = \sum_{k=1}^{j-1} b_{i(j),i(k)} x_{i(k)} + \epsilon_{i(j)}$ for all j = 1, ..., n, with nonzero coefficients and $\epsilon_{i(j)}$ non-normal, independent from $x_{i(k)}$ for k < j.
 - " $x_{i(j)}$ can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error."
 - Causal ordering $x_{i(1)} \rightarrow x_{i(2)} \rightarrow \cdots \rightarrow x_{i(n)}$

- Suppose we have n variables, and we want to find an ordering i(1), ..., i(n) such that
 - $x_{i(j)} = \sum_{k=1}^{j-1} b_{i(j),i(k)} x_{i(k)} + \epsilon_{i(j)}$ for all j = 1, ..., n, with nonzero coefficients and $\epsilon_{i(j)}$ non-normal, independent from $x_{i(k)}$ for k < j.
 - " $x_{i(j)}$ can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error."
 - Causal ordering $x_{i(1)} \rightarrow x_{i(2)} \rightarrow \cdots \rightarrow x_{i(n)}$
- Assuming such model exists, we need find the correct mapping i(j) for j = 1, ..., n.
- $\tilde{x} = B\tilde{x} + \tilde{\epsilon}$ where B is lower triangular and \tilde{x} is a vector of the observed variables with the desired ordering.

- Suppose we have n variables, and we want to find an ordering i(1), ..., i(n) such that
 - $x_{i(j)} = \sum_{k=1}^{j-1} b_{i(j),i(k)} x_{i(k)} + \epsilon_{i(j)}$ for all j = 1, ..., n, with nonzero coefficients and $\epsilon_{i(j)}$ non-normal, independent from $x_{i(k)}$ for k < j.
 - " $x_{i(j)}$ can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error."
 - Causal ordering $x_{i(1)} \rightarrow x_{i(2)} \rightarrow \cdots \rightarrow x_{i(n)}$
- Assuming such model exists, we need find the correct mapping i(j) for j = 1, ..., n.
- $\tilde{x} = B\tilde{x} + \tilde{\epsilon}$ where B is lower triangular and \tilde{x} is a vector of the observed variables with the desired ordering.
- Normalize the above so that the errors have unit variance using
 - $w_{i(j),i(j)} = 1/\sqrt{Var(\epsilon_{i(j)})}$ and $w_{i(j),i(k)} = -b_{i(j),i(k)}/\sqrt{Var(\epsilon_{i(j)})}$ for $k \neq j$
- diag(W) $\tilde{x} = -\text{offdiag}(W)\tilde{x} + \tilde{\epsilon}^*$, or $W\tilde{x} = \tilde{\epsilon}^*$

- Suppose we have n variables, and we want to find an ordering i(1), ..., i(n) such that
 - $x_{i(j)} = \sum_{k=1}^{j-1} b_{i(j),i(k)} x_{i(k)} + \epsilon_{i(j)}$ for all j = 1, ..., n, with nonzero coefficients and $\epsilon_{i(j)}$ non-normal, independent from $x_{i(k)}$ for k < j.
 - " $x_{i(j)}$ can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error."
 - Causal ordering $x_{i(1)} \rightarrow x_{i(2)} \rightarrow \cdots \rightarrow x_{i(n)}$
- Assuming such model exists, we need find the correct mapping i(j) for j = 1, ..., n.
- $\tilde{x} = B\tilde{x} + \tilde{\epsilon}$ where B is lower triangular and \tilde{x} is a vector of the observed variables with the desired ordering.
- Normalize the above so that the errors have unit variance using
 - $w_{i(j),i(j)} = 1/\sqrt{Var(\epsilon_{i(j)})}$ and $w_{i(j),i(k)} = -b_{i(j),i(k)}/\sqrt{Var(\epsilon_{i(j)})}$ for $k \neq j$
- diag(W) $\tilde{x} = -\text{offdiag}(W)\tilde{x} + \tilde{\epsilon}^*$, or $W\tilde{x} = \tilde{\epsilon}^*$
- We can use ICA to estimate *W*!
- And there exists a unique permutation to make W lower triangular if the coefficients in B are non-zero.

- Suppose we have n variables, and we want to find an ordering i(1), ..., i(n) such that
 - $x_{i(j)} = \sum_{k=1}^{j-1} b_{i(j),i(k)} x_{i(k)} + \epsilon_{i(j)}$ for all j = 1, ..., n, with nonzero coefficients and $\epsilon_{i(j)}$ non-normal, independent from $x_{i(k)}$ for k < j.
 - " $x_{i(j)}$ can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error."
 - Causal ordering $x_{i(1)} \rightarrow x_{i(2)} \rightarrow \cdots \rightarrow x_{i(n)}$
- Assuming such model exists, we need find the correct mapping i(j) for j = 1, ..., n.
- $\tilde{x} = B\tilde{x} + \tilde{\epsilon}$ where B is lower triangular and \tilde{x} is a vector of the observed variables with the desired ordering.
- Normalize the above so that the errors have unit variance using
 - $w_{i(j),i(j)} = 1/\sqrt{Var(\epsilon_{i(j)})}$ and $w_{i(j),i(k)} = -b_{i(j),i(k)}/\sqrt{Var(\epsilon_{i(j)})}$ for $k \neq j$
- diag(W) $\tilde{x} = -\text{offdiag}(W)\tilde{x} + \tilde{\epsilon}^*$, or $W\tilde{x} = \tilde{\epsilon}^*$
- We can use ICA to estimate *W*!
- And there exists a unique permutation to make W lower triangular if the coefficients in B are non-zero.
- We can also estimate B, depending whether we care about the coefficients or just the causal ordering.

Summary (and References)

- Rubin's framework
 - Potential outcomes and counterfactuals.
 - Holland, P. W. Statistics and Causal Inference. *Journal of the American statistical Association,* 1986.
 - Roy, J. <u>A Crash course in Causality</u>.
- Pearl's framework
 - Utilizing causal DAGs, do-operator, backdoor adjustment.
 - Pearl, J. *Causality*. Cambridge University Press, 2009.
 - Pearl, J. and Mackenzie D. The book of why: the new sciences of cause and effect. 2018
- Granger Causality
 - Using past values of one variable to predict future values of another.
 - Granger, C. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. *Econometrica*, 1969.
- ICA for Causal Discovery (Shimizu et al.)
 - With the non-normality assumption and independence assumption, can find causal directions of a set of variables using non-experimental data.
 - Shimizu, S., Shimizu, S., Hyvärinen, A., Hoyer, P.O. and Kano, Y. Finding a causal ordering via independent component analysis. *Computational Statistics & Data Analysis*, 2006.

Thank you