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Causal Inference

* Universe U

* Foreach unitu € U:
 Treatment variable T (u) € {1,0}
* Potential outcome Y; (u), Yy (1)

* Inference:
* Vi(uw) —Yo(u)



Rubin’s Framework

 For each unitu € U:
* Treatment variable T (u) € {1,0}

* Potential outcomes Y; (u), Yy (1)

* the outcome that would be observed if treatment was setto T = 0 or 1, on the same unit.
e (before)

e IfT(u)issetto1

* Y,(u) is the observed outcome
* Y,(u) is the counterfactual outcome
e (after)
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Causal Effects

* Y;(u) — Yy(u) is the causal effect of treatment 1 (relative to 0) on wu.
* Abbreviated as Y; and Y,

* Fundamental Problem of Causal Inference

* lItis impossible to observe both Y; and Y, on the same unit, and therefore it is impossible to observe
the causal effect.



THE END
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* The value of Y does not depend on when T = 0 is applied and measured.

* The effect of T = 0 and the measurement process that gives rise to Yy does not change u
enough to affect Y; measured later.



Scientific solution to the Fundamental Problem

* Assume temporal stability and causal transience
* The value of Y does not depend on when T = 0 is applied and measured.

* The effect of T = 0 and the measurement process that gives rise to Y, does not change u
enough to affect Y; measured later.

* With these two assumptions, we can simply measure both Y, and Y; by applying T = 0 then
T = 1, taking the measurement after each exposure.

* Widely used in experiments involving physical devices.



Scientific solution to the Fundamental Problem

* Assume temporal stability and causal transience
* The value of Y does not depend on when T = 0 is applied and measured.

* The effect of T = 0 and the measurement process that gives rise to Y, does not change u
enough to affect Y; measured later.

* With these two assumptions, we can simply measure both Y, and Y; by applying T = 0 then
T = 1, taking the measurement after each exposure.

* Widely used in experiments involving physical devices.

* Assume unit homogeneity
* For two units u; and u,, we assume Yy(uq) = Yy(u,) and Y; (uq) = Y (uy).



Scientific solution to the Fundamental Problem

* Assume temporal stability and causal transience
* The value of Y does not depend on when T = 0 is applied and measured.

* The effect of T = 0 and the measurement process that gives rise to Y, does not change u
enough to affect Y; measured later.

* With these two assumptions, we can simply measure both Y, and Y; by applying T = 0 then
T = 1, taking the measurement after each exposure.

* Widely used in experiments involving physical devices.

* Assume unit homogeneity
* For two units u; and u,, we assume Yy(uq) = Yy(u,) and Y; (uq) = Y (uy).
* Causal effect can then be computed using Y; (1) — Yy (u,).
 Implies the constant effect assumption: Y; (1) — Yy (u) is the same for allu € U.



Scientific solution to the Fundamental Problem

* Assume temporal stability and causal transience
* The value of Y does not depend on when T = 0 is applied and measured.

* The effect of T = 0 and the measurement process that gives rise to Y, does not change u
enough to affect Y; measured later.

* With these two assumptions, we can simply measure both Y, and Y; by applying T = 0 then
T = 1, taking the measurement after each exposure.

* Widely used in experiments involving physical devices.

* Assume unit homogeneity

* For two units u; and u,, we assume Yy(uq) = Yy(u,) and Y; (uq) = Y (uy).
* Causal effect can then be computed using Y; (1) — Yy (u,).
 Implies the constant effect assumption: Y; (1) — Yy (u) is the same for allu € U.

* |t's very difficult to argue that these are valid...
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Statistical solution to the Fundamental Problem

* “What would have happened if | had not taken the flu shot” --> “What would the
flu rate be if everyone got the flu shot vs if no one did?”

* Average causal effect of T = 1 (relativeto T = 0) over U:
« E(Y; —Yp) = E(Y;) — E(Yp)
* Imagine parallel universes with the same population...
* Can’t observe this.

* Observed data can only give us information about the average of the outcome
over u € U exposedto T = t.

* EMIT =1) - E(Y|T = 0)
 Ingeneral, E(Y;) # E(Y;|T =1t)

* Independence assumption hold via randomized treatment assignment allows equality to hold,
which lets us compute the ACE above.



Other assumptions

» Stable Unit Treatment Value Assumption (SUVTA)
* No interference: units do not interact with each other.
* One version of treatment.

* Consistency

* The potential outcome Y; is equal to the observed outcome if the actual treatment
receivedis T =t.

* Positivity
e P(T(u) =t) > 0foralltandu.



Other assumptions

» Stable Unit Treatment Value Assumption (SUVTA)
* No interference: units do not interact with each other.
* One version of treatment.

* Consistency
* The potential outcome Y; is equal to the observed outcome if the actual treatment

receivedisT = t.
* Positivity
e P(T(u) =t)>0foralltandu.
* lgnorability (aka no unmeasured confounders assumption)
© Y, ¥y LT|X

* Among people with the same features X, we can think of treatment T as being
randomly assigned.
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» Useful for identifying dependencies and ways to factor and
simplify the joint distribution.
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DAGS

» Useful for identifying dependencies and ways to factor and
simplify the joint distribution.
* p(xq, e x0) = [Miz=py P (il X pa))
* Two variables A and B are d-separated by a set of variables
Z if A and B are conditionally independent given Z.
* p(4,B|Z) = p(A|Z)p(B|Z)
e Chain
* Fork
* Inverted fork

Soldier A Soldier B

T

Prisoner
D

Firing squad example [Pearl, 2018]



Causal DAGs

* DAGs where directions of the edges represent causal
relationships.

* In contrast to Rubin’s potential outcome framework, this is a
structural approach to causal inference which Pearl

advocates.
* They are shown to be mathematically equivalent.

Soldier A Soldier B

T

Prisoner
D

Firing squad example [Pearl, 2018]



Intervention and Pearl’s do-calculus

* do() operator signals an intervention on a variable.
* Replace that variable with the actual value that we assign.

 Removes all incoming edges to that node.
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Intervention and Pearl’s do-calculus

* do() operator signals an intervention on a variable.
* Replace that variable with the actual value that we assign.

 Removes all incoming edges to that node.

* Instead of p(D|A = 0)

* We want p(D|do(4 = 0))
* The causal effect of A = 0 on D.

N

Soldier B

L

Prisoner
D

Firing squad example [Pearl, 2018]



Confounding

* Confounders: variables that influences both treatment and outcome. °~>
* Want: identify a set of variables so that ignorability holds.
 We don’t need to identity specific confounders

* We just need to be able to control for confounding.

* Need to block backdoor paths from T to Y.

\
©
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Frontdoor paths
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* We are not concerned about frontdoor paths.

 We don’t want to control anything along the frontdoor paths.
* Unless we care about the magnitude of the causal effect...



Backdoor paths

* Begins with a parent of T and ends at'Y.
* Need to control these paths as they confound our causal effect.

* How?

* Identify the set of variables that blocks all backdoor paths from T
to?.
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2. It does not include any descendants of T'.
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Backdoor criterion

A set of variables C satisfies the backdoor criterion if
1. it blocks all backdoor paths from T to Y, and
2. Itdoes notinclude any descendants of T'.

C ={A,D}
 Alternatively, C = {B,D}, C = {A,B, D}

Controlling any of these sets allow us to control for confounding.

Backdoor Adjustment:

* |f a set of variables C satisfies the backdoor criterion relative to T ane Y, then the
causal effect of T on Y is given by

* P(Y[do(T = t)) = Xeec PYIT = £, c)P(c).

In Rubin’s framework, this is equivalent to the ignorability assumption:
* Treatment assignment is effectively randomized given C.
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Granger Causality

e Relationship between several time series.

* The Granger causality test is used to determine if the
past values of X(t) helps in predicting the future
values of Y (t).
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Granger Causality

e Relationship between several time series.

* The Granger causality test is used to determine if the
past values of X(t) helps in predicting the future
values of Y (t).

* Two principles/assumptions:
1. The cause happens prior to the effect.

2. The cause has unique information about the future values
of its effect.
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Granger Causality

: : . . ) , A
» Relationship between several time series. : / AT A
o EARAL Yo e
* The Granger causality test is used to determine if the | VI N W
past values of X (t) helps in predicting the future B e
values of Y (¢t). . " "-,
. . . 2 *" ‘I!A
* Two principles/assumptions: S N /\ ,A/\/\f ) [\
1. The cause happens prior to the effect. B VVV \ \ % \/ ™ \“\/ V\/
2. The cause has unique information about the future values R S
of its effect. https://en.wikipedia.org/wiki/Granger causality

* Hypothesis test:
« P(Y(t+ D) = P(Y(E+ D|l—x (D))

I(t) all information up to time t
I_xy(t) all information up to time t with X excluded.
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Granger Causality

* Hypothesis test:
« P(Y(t+ D) #=P(Y(t+ D|l—x3 (D)

I(t) all information up to time t

I_xy(t) all information up to time t with X excluded.

* Steps:

Ve = Qg + A1Yt—1 + AVt + €
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Granger Causality

* Hypothesis test:
« P(Y(t+ D) #=P(Y(t+ D|l—x3 (D)

I(t) all information up to time t

I_xy(t) all information up to time t with X excluded.
* Steps:

* Ye=0ap Tt A1Yr—1 T AYt—2 T €
* Ye=00+ a1Vi—1 T AV t biXe_q + boxep + €
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Granger Causality

* Hypothesis test:
« PY(t+ D) = P(Y(E+ DIy (D)) ><:Z

I(t) all information up to time t

I_xy(t) all information up to time t with X excluded.

* Steps: 2
* Ve =00+ a1Yt-1 + Ay + € >
* Ye=0ao+ a1YVe—1 + a2Yp—2 + Dixe 1 + boxe o + € 2
+ Hy:Allby = =b,=0

* H;: Atleast oneis non-zero.

* Null hypothesis: X does not Granger cause Y iff no lagged
values of x are retained.
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* Conditional independence.
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* Granger causes are “temporary”.

* Adding more lags may change the overall Granger
causes.



Remarks about GC

Holland Pearl
* GC formulation does not necessarily require g Judea Pearl @yudapearl - Jan 24 v
. . . Replying to @nntaleb and @HarryDCrane
the time-series settl ng adOpted. 1/ This one is easy. In 1991, | had a quiet dinner with Clive Granger in

* Time is only used to split up the variables. Uppsala, Sweden. Between the 2nd and 3rd glass of wine, he confessed to
me that he feels embarrassed by the name: "Granger causality”, since it has
nothing to do with causality, but he can't stop people from

e Can be reformulated using Rubin’s framework.
O 1 M 3 Q 54 &

* Conditional independence.

* In a randomized experiment Granger noncausality g Judea Pearl @yudapearl - Jan 24 v

. . . . 2/3 using it; they need some way to express what they wish to estimate. |
|mpI|es zero ACE on all SprOpU|atlonS defined by think we should honor him by echoing his understanding. An easy way to

the values of {Yt—l } see that GC has nothing to do with causality is to look at the defining
equations and note that they comprise only conditional
* Granger causes are “temporary”. O 1 . O 2 2
* Adding more lags may change the overall Granger
causes. g Judea Pearl @yudapearl - Jan 24 v
3/3 probabilities, no do(x) expressions, nor counterfactual terms Y_x. Bingo!

We are done! Whenever a concept is defined in terms of a distribution of
observable variables it can't be "causal". No causes in - no causes out (N.
Cartwright) #Bookofwhy

QO 3 () QO 23 5
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Independent Component Analysis (ICA)
e PCA: X = ZW where Z isnXkand WiskXxd, k < d

* Factor analysis, data compression, etc.
* |nvariant to rotation.

e ICA: X = ZW usually with k = d

* Require the components of each z; to be independent, and at most one can be normally
distributed.

* Independence is measured by non-normality.

2
e W = argmaxyy Z{LlZ;‘:l kurt(w{ x;)? where kurt(u) = E(u*) — 3(E(u?))
* Up to permutation and scaling, we can identify the factors W.
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* Randomized control trials are not always feasible.
* Cost, ethics, etc.



Causal Discovery

* Randomized control trials are not always feasible.
* Cost, ethics, etc.

» Structural equation modeling (SEM): path analysis integrating factor analysis and latent variables
for non-experimental data.

e But requires background knowledge BEFORE collecting and analyzing data.

* Normality constraints.

e Causal directions are often unknown.

* Model 1: x; = b1,x, + €1 and Model 2: x, = by1x1 + €1, both are saturated with the same covariance matrix.



Causal Discovery

* Randomized control trials are not always feasible.
* Cost, ethics, etc.

» Structural equation modeling (SEM): path analysis integrating factor analysis and latent variables
for non-experimental data.
* But requires background knowledge BEFORE collecting and analyzing data.
* Normality constraints.

e Causal directions are often unknown.
* Model 1: x; = bix5 + €1 and Model 2: x, = by1x1 + €1, both are saturated with the same covariance matrix.

e With non-normality, ICA can be used to find the causal ordering of any number of observed
variables based on non-experimental data. (Shimizu et al. 2006)



Causal Order

* Causality (a causal order) from a random variable x; to another random variable x, , denoted by
X1 — X, is confirmed if the following holds:

* x, = f(x4,€) Where €, is some perturbation independently distributed from x;.

* Assume f(xq,€5) = by1Xxq + €.
* Boils down to finding b,1.
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Causal Order

* Causality (a causal order) from a random variable x; to another random variable x, , denoted by
X1 — X, is confirmed if the following holds:

* x, = f(x4,€) Where €, is some perturbation independently distributed from x;.

* Assume f(xq,€5) = by1Xxq + €.

Boils down to finding b,1.

* Note that we can’t just have uncorrelatedness from x; and €5:

Independence: IE(g(x)h(y)) = E(g(x))E(h(y)) for any deterministic functions g and h.
Uncorrelatedness (covariance is 0): E(xy) = E(x)E(y), weaker assumption.
If x; and €, are only uncorrelated, then there could exist unobserved confounder z that affects both x; and x,.

Suppose x; = az + €; and x, = Bz + by1x1 + €,, then Cov(xq,x,) = by1Var(xy) + aBVar(z) can be non-zero
even if byq is 0.



Finding a Causal Order

* Suppose we have N measurements of x; and x,.
. x_12 = %Z?Ll xfl-, similarly forg and XX,
* Model 1: X1 = blzxz —+ €1

* Model 2: Xy = b21x1 + €y
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Finding a Causal Order

* Suppose we have N measurements of x; and x,.

— 1 . o —
. x2= NZ%V=1 xfl-, similarly for xZ and X7 %,

e Model 1: X1 = blzxz + €1

e Model 2: Xy = b21x1 + €y

* Second order moments of Model 1:

2} b, B(23) + E(€7)
T1ZTo | = blgE(.’L'g)
A | B@

which we denote by E[ms] = o(13)
Ty = [E(23), E(§}), ba]”

e Symmetric for Model 2.

* Undistinguishable.

e Fourth order moments for Model 1 and assume
the residuals are NOT normally distributed:

bioE(x3) + 61, E(23) E(€7) + E (&)
b3, E(x3) + 3bi2 E(23) E(£7)
bl E(x3) + E(23) E(€7)
b2 E(z3)
E(z3)

which we denote l;y Elmy] = o4(14),

T4 =[r3, E(23), E(&)]".



Finding a Causal Order

* Suppose we have N measurements of x; and x,.
. x_l2 = %Z?Ll xfl-, similarly forgandm

* Model 1: x; = biyx + €4

* Model 2: x, = by1x1 + €,

* Second order moments of Model 1:

2 | |bhE() + ()
TiZs | = b E(z2) which we denote by E[my| = o3(73)
3 E(x?) Ty = [E(23), E(£}), bio]”

e Symmetric for Model 2.

* Undistinguishable.

e Fourth order moments for Model 1 and assume
the residuals are NOT normally distributed:

o | [bh,E(e) + 663, B B(E) + B(ED) |
T3z, b3, E(x3) + 3bio E(23) E(£})
E |23 | = b, E(xl) + E(a3)E(€)
x T3 bioE(x3)
4| | E(a})

which we denote t;y Elmy] = o4(14),

T4 =[r3, E(23), E(&)]".

T
T—N ma B 02(‘7‘2) M ma B 0’2(‘7'2) ’
my 04 (‘7'4) my 0'4(‘7'4)
* Measure of model fit = distance between data and
the model used

 Compare T for the two models which will imply
causal direction.



Causal ordering - more than 2 variables

* Suppose we have n variables, and we want to find an ordering i(1), ..., i(n) such that
* X)) = {;11 bijyic)Xik) T €i¢jy forall j =1, ..., n, with nonzero coefficients and €;(;y non-normal, independent from x; ) for k < j.
* “xj(j) can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error.”

* Causal ordering x;(1) = Xj2) = ** = Xin)
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e X = BXx 4+ € where B is lower triangular and X is a vector of the observed variables with the desired ordering.



Causal ordering - more than 2 variables

Suppose we have n variables, and we want to find an ordering i(1), ..., i(n) such that
* X)) = {;11 bijyic)Xik) T €i¢jy forall j =1, ..., n, with nonzero coefficients and €;(;y non-normal, independent from x; ) for k < j.
* “xj(j) can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error.”

* Causal ordering x;(1) = Xj2) = ** = Xin)

Assuming such model exists, we need find the correct mapping i(j) forj =1, ..., n.

X = BXx 4+ € where B is lower triangular and X is a vector of the observed variables with the desired ordering.

Normalize the above so that the errors have unit variance using
® Wl(]),l(]) = 1/\/V(17"(El(])) and Wi(j),i(k) = —bi(j),i(k)/\/Var(ei(j)) for k :/:]

diag(W)x = —offdiag(W)x + €*,or WX = "



Causal ordering - more than 2 variables

Suppose we have n variables, and we want to find an ordering i(1), ..., i(n) such that
* X)) = Z{c_:ll bijyic)Xik) T €i¢jy forall j =1, ..., n, with nonzero coefficients and €;(;y non-normal, independent from x; ) for k < j.
“x;i(jy can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error.”

* Causal ordering x;(1) = Xj2) = ** = Xin)
* Assuming such model exists, we need find the correct mapping i(j) forj = 1, ..., n.
e X = BXx 4+ € where B is lower triangular and X is a vector of the observed variables with the desired ordering.

* Normalize the above so that the errors have unit variance using
® Wl(]),l,(]) = 1/\/VCU"(EL(])) and Wi(j),i(k) = —bi(j),i(k)/\/Var(ei(j)) for k :/:]

o diag(W)x = —offdiag(W)Xx + €*,or Wi = €"
e We can use ICA to estimate /|

* And there exists a unique permutation to make W lower triangular if the coefficients in B are non-zero.



Causal ordering - more than 2 variables

Suppose we have n variables, and we want to find an ordering i(1), ..., i(n) such that
* X)) = Z{c_:ll bijyic)Xik) T €i¢jy forall j =1, ..., n, with nonzero coefficients and €;(;y non-normal, independent from x; ) for k < j.
“x;i(jy can be written as a linear combination of its preceding variables in that order plus an (mutually) independent error.”

* Causal ordering x;(1) = Xj2) = ** = Xin)
* Assuming such model exists, we need find the correct mapping i(j) forj = 1, ..., n.
e X = BX + € where B is lower triangular and X is a vector of the observed variables with the desired ordering.

* Normalize the above so that the errors have unit variance using
® Wl(]),l(]) = 1/\/VClT(El(])) and Wi(j),i(k) = —bi(j),i(k)/\/Var(ei(j)) for k :/:]

o diag(W)x = —offdiag(W)Xx + €*,or Wi = €"
* We can use ICA to estimate W/
e And there exists a unique permutation to make W lower triangular if the coefficients in B are non-zero.

* We can also estimate B, depending whether we care about the coefficients or just the causal ordering.



Summary (and References)

Rubin’s framework

e Potential outcomes and counterfactuals.

* Holland, P. W. Statistics and Causal Inference. Journal of the American statistical Association, 1986.
* Roy, J. A Crash course in Causality.

Pearl’s framework

e Utilizing causal DAGs, do-operator, backdoor adjustment.
* Pearl, J. Causality. Cambridge University Press, 2009.
* Pearl, J. and Mackenzie D. The book of why: the new sciences of cause and effect. 2018

Granger Causality

* Using past values of one variable to predict future values of another.
* Granger, C. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica, 1969.

ICA for Causal Discovery (Shimizu et al.)
e With the non-normality assumption and independence assumption, can find causal directions of a set of
variables using non-experimental data.

* Shimizu, S., Shimizu, S., Hyvarinen, A., Hoyer, P.O. and Kano, Y. Finding a causal ordering via independent component
analysis. Computational Statistics & Data Analysis, 2006.


https://www.youtube.com/playlist%3Flist=PL_onPhFCkVQimvhuSAFrC8VWLEyNygQR5

Thank you



