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The goal learn a function of signals/features on a graph 𝐺 = (𝑉, 𝐸)

A feature description 𝑥𝑖 for every node 𝑖; summarized in a 𝑁 × 𝐷 feature 

matrix 𝑋 (𝑁: number of nodes, 𝐷: number of input features) 

A representative description of the graph structure in matrix form; typically, 

in the form of an adjacency matrix 𝐴 (or some function thereof) 

Output is a node-level 𝑍 (an 𝑁 × 𝐹 feature matrix, where 𝐹 is the number 

of output features per node)



Every neural network layer can then be written as a non-linear 

function

For further reading and a more in-depth tutorial 

https://tkipf.github.io/graph-convolutional-networks/ by Thomas N.Kipf

𝐻(𝑙+1) = 𝑓(𝐻(𝑙), 𝐴)

with 𝐻(0) = 𝑋 𝑎𝑛𝑑 𝐻(𝐿) = 𝑍 (or 𝑧 for graph-level outputs), 𝐿 being the number 

of layers. The specific models then differ only in how 𝑓(⋅,⋅) is chosen and 

parameterized. 

https://tkipf.github.io/graph-convolutional-networks/




But when we talk about graphs and graph neural 
networks (GNNs), “spectral” implies eigen-

decomposition of the graph Laplacian L

decomposing a graph into a combination (usually, a 
sum) of simple elements (wavelets, graphlets). To have 
some nice properties of such a decomposition, these 
simple elements are usually orthogonal, i.e. mutually 

linearly independent, and therefore form a basis. 

https://en.wikipedia.org/wiki/Laplacian_matrix


Eigen 

Decomposition  

Let 𝑨 be a square 𝑛 × 𝑛 matrix with 𝑛
linearly independent eigenvectors 𝑞𝑖 (where 

𝑖 = 1,… , 𝑛). Then 𝑨 can be factorized as 

where 𝑸 is the square 𝑛 × 𝑛 matrix whose 

𝑖𝑡ℎ column is the eigenvector 𝑞𝑖 of 𝑨, and 𝚲
is the diagonal matrix whose diagonal 

elements are the corresponding 

eigenvalues, Λ𝑖𝑖 = 𝜆𝑖. Note that only 

diagonalizable matrices can be factorized in 

this way.

https://en.wikipedia.org/wiki/Linearly_independent
https://en.wikipedia.org/wiki/Matrix_decomposition
https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Diagonalizable_matrix


Graph Laplacian

 Intuitively, the graph Laplacian shows in what directions and how smoothly

the “energy” will diffuse over a graph if we put some “potential” in node i. 

 A typical use-case of Laplacian in mathematics and physics is to solve how a 

signal (wave) propagates in a dynamic system.

Given a simple graph (no self loops / no more than 1 edge between 2 nodes) 

𝐺 with 𝑛 vertices, its Laplacian matrix 𝐿𝑛×𝑛 is defined as:

L = 𝐷 − 𝐴

where 𝐷 is the degree matrix and 𝐴 is the adjacency matrix of the graph. Since 𝐺 is 

a simple graph, 𝐴 only contains 1s or 0s and its diagonal elements are all 0s. 

https://en.wikipedia.org/wiki/Simple_graph
https://en.wikipedia.org/wiki/Degree_matrix
https://en.wikipedia.org/wiki/Adjacency_matrix


For further reading and implementation:

https://towardsdatascience.com/spectral-graph-

convolution-explained-and-implemented-step-by-

step-2e495b57f801 by Boris Knyazev 

https://towardsdatascience.com/spectral-graph-convolution-explained-and-implemented-step-by-step-2e495b57f801




The problem

 classifying nodes (such as documents) in a graph (such as a citation network), 

where labels are only available for a small subset of nodes. This problem can 

be framed as graph-based semi-supervised learning, where label information 

is smoothed over the graph via some form of explicit graph-based 

regularization

 Key Assumption they made that connected nodes in the graph are likely to 

share the same label



The Model + 

Theory 



Loss Function 

 using a graph Laplacian regularization term in the loss function 

 ℒ0 denotes the supervised loss w.r.t. the labeled part of the graph

 𝑓(·) can be a neural network-like differentiable function,

 λ is a weighing factor 

 𝑋 is a matrix of node feature vectors 𝑋𝑖. 

 ∆ = 𝐷 − 𝐴 denotes the unnormalized graph Laplacian of an undirected graph 

𝐺 = (𝑉, 𝐸) with 𝑁 nodes 𝑣𝑖 ∈ 𝑉, edges(vi,vj)∈ E, 

 adjacency matrix A∈R^ N×N(binary or weighted)

 degree matrix 𝐷𝑖𝑖 = ∑𝑗𝐴𝑖𝑗. 



Fast Approximate Convolutions on 

Graphs

 ሚ𝐴 = 𝐴 + 𝐼𝑁 is the adjacency matrix of the undirected graph G with added self-

connections. 

 𝐼𝑁 is the identity matrix 

 Dii=∑j ̃Aij

 W(l)is a layer-specific trainable weight matrix

 H(l)∈R^N×D is the matrix of activations in the lth layer

 H(0)=X



Spectral Graph Convolutions 

 Filter 𝑔𝜃 = 𝑑𝑖𝑎𝑔(𝜃) parameterized by 𝜃 ∈ 𝑅𝑁

 𝑈 is the matrix of eigenvectors of the normalized graph Laplacian

𝐿 = 𝐼𝑁 − 𝐷−1/2𝐴𝐷−1/2 = 𝑈Λ𝑈𝑇 ,with a diagonal matrix of its eigenvalues Λ

 𝑈𝑇 𝑥 being the graph Fourier transform of 𝑥. 

 However ! Evaluating this is computationally expensive, multiplication with 

the eigenvector matrix 𝑈 is 𝑂(𝑁2) and computing the eigen decomposition of 

𝐿 in the first place can be expensive for large graphs.



Chebyshev Polynomial Approximation

Rescaled ෩Λ =
2

𝜆m𝑎𝑥
Λ − 𝐼𝑁.

𝜆 max denotes the largest eigenvalue of 𝐿. 𝜃′ ∈ 𝑅𝐾 is now a vector of 

Chebyshev coefficients. 

The Chebyshev polynomials are recursively defined as

𝑇𝑘(𝑥) = 2𝑥𝑇_𝑘 − 1(𝑥) − 𝑇_𝑘 − 2(𝑥), with 𝑇0(𝑥) = 1 and 𝑇1(𝑥) = 𝑥. 



Chebyshev Polynomial Approximation

Where 𝐿 =
2

𝜆𝑚𝑎𝑥
𝐿 − 𝐼𝑁

can be verified by (𝑈Λ 𝑈𝑇 )𝑘= 𝑈Λ𝑘 𝑈𝑇.

Note that this expression is now K-localized since it is a Kth-order polynomial 

in the Laplacian, i.e. it depends only on nodes that are at maximum K steps 

away from the central node (Kth-order neighborhood).

The complexity of evaluating this is O(|E|), i.e. linear in the number of edges.



The Big Picture 

 stacking multiple convolutional layers of this form, each layer followed by a 

point-wise non-linearity. 

 limit the layer-wise convolution operation to K= 1, i.e. a function that is 

linear w.r.t. L and therefore a linear function on the graph Laplacian 

spectrum.



Further Approx. 

 further approximate λmax≈2, since neural network parameters will adapt to 

this change in scale during training

 two free parameters θ′0 and θ′1. The filter parameters can be shared over the 

whole graph.

 Successive application of filters of this form then effectively convolve the 

kth-order neighborhood of a node, where k is the number of successive 

filtering operations or convolutional layers in the neural network model



Further Approx. 

 single parameter θ= θ′0 =−θ′1

 𝐿 = 𝐼𝑁 − 𝐷−1/2𝐴𝐷−1/2 now has eigenvalues in the range [0,2] the suggest a 

renormalization trick, to address numerical instabilities, and/or 

vanishing/exploding gradients 







Output 

 Signal 𝑋 ∈ 𝑅𝑁×𝐶 with 𝐶 input channels (i.e. a C-dimensional feature vector for 

every node) and F filters or feature

 Θ ∈ 𝑅𝐶×𝐹is now a matrix of filter parameters and 𝑍 ∈ 𝑅𝑁×𝐹is the convolved 

signal matrix. This filtering operation has complexity O(|E|FC)



Semi-Supervised Node classification

 The forward model is then: 

 Where they first compute in pre-processing : 



 W(0)∈RC×H is an input-to-hidden weight matrix for a hidden layer with H 

feature maps. W(1)∈RH×F is a hidden-to-output weight matrix 

 For semi-supervised multi-class classification, they evaluate the cross-entropy 

error over all labeled examples 



Semi-Supervised Node classification



Experimental 

Set up



Implementation 

 TensorFlow for an efficient GPU-based 

implementation using sparse-dense 

matrix multiplications. The 

computational complexity of evaluating 

is then O(|E|CHF), i.e. linear in the 

number of graph edges. 

 trained using gradient descent. 

Perform batch gradient descent using 

the full dataset for every training 

iteration, which is a viable option if 

datasets fit in memory. (addressed 

later)



Datasets 

 Citation Networks - three citation (Citeseer, Cora, Pubmed),

sparse bag-of-words feature vectors for each document and a list of citation links between documents. 

treat the citation links as (undirected) edges and construct a binary, symmetric adjacency matrix A. 

Each document has a class label

 NELL - dataset extracted from the knowledge graph, 

assign separate relation nodes r1 and r2 for each entity pair (e1,r,e2) as (e1,r1) and (e2,r2). 

Entity nodes are described by sparse feature vectors. 

The semi-supervised task here considers the extreme case of only a single labeled example per class in 
the training set.

 Random graphs - For a dataset with N nodes create a random graph assigning 2N edges uniformly at 
random. 

Assign identity matrix IN as input feature matrix X, 

We add dummy labels Yi= 1 for every node.



Datasets - stats 



Results 



Semi-Supervised Node Classification

 GCN (rand. splits) - 10 randomly drawn dataset splits of the same size as in 

Yang et al. (2016). 



Evaluation of Propagation Model

mean classification accuracy for 100 repeated runs with random weight 

matrix initializations. 



Training Time Per Epoch 

mean training time per epoch (forward pass, cross-entropy calculation, 

backward pass) for 100 epochs on simulated random graphs, measured in 

seconds wall-clock time. 



Limitations 

 Memory requirement : In the current setup with full-batch gradient descent, 

memory requirement grows linearly in the size of the dataset. 

 Directed edges and edge features : The framework currently does not support 

edge features and is limited to undirected graphs

 Limiting Assumption: Through the approximations using the truncated 

expansion of Chebyshev polynomials , they implicitly assume locality 

(dependence on the Kth-order neighborhood for a GCN with K layers) and 

equal importance of self-connections vs. edges to neighboring nodes.



Questions?



Thank you 


