Neural Ordinary Differential Equations

MLRG Presentation By Jonathan Wilder Lavington March 28, 2021

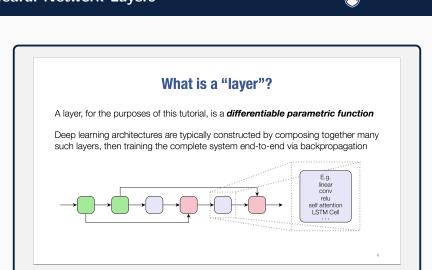
University of British Columbia, Department of Computer Science

What will we talk about today

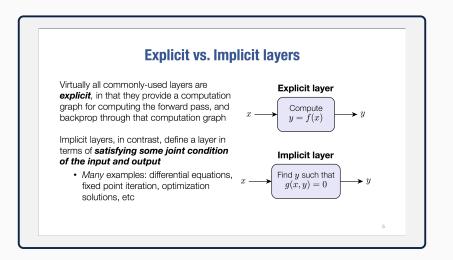
- 1. Implicit functions and Auto-diff
- 2. Deep Equilibrium Models
- 3. Neural ODEs

Important Note

These slides were built from my favorite parts of the Neurips 2020 tutorial found here: https: //www.youtube.com/watch?v=QxtlwOV3c9M&ab_ channel=ArtificialIntelligence

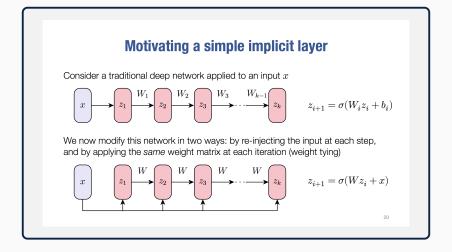


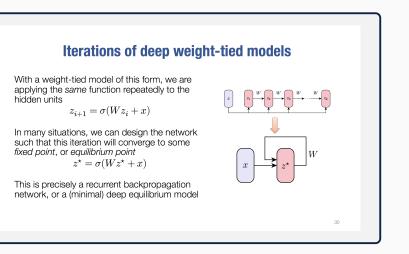
UNIVERSITY

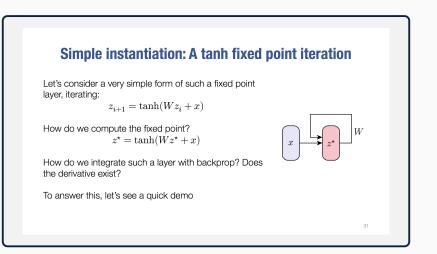


UNIVERSITY

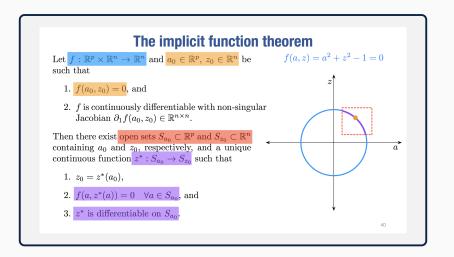
- 1. Powerful representations: compactly represent complex operations such as integrating differential equations, solving optimization problems, etc
- 2. Memory efficiency: no need to backpropagate through intermediate components, via implicit function theorem
- 3. Simplicity: Ease and elegance of designing architectures
- 4. Abstraction: Separate "what a layer should do" from "how to compute it", an abstraction that has been extremely valuable in many other settings

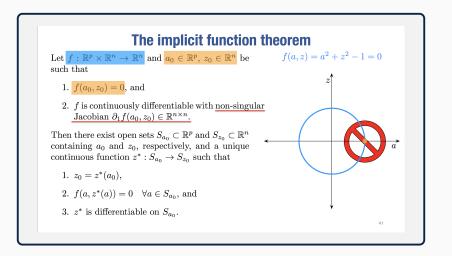






UNIVE

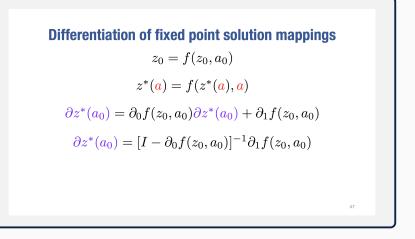


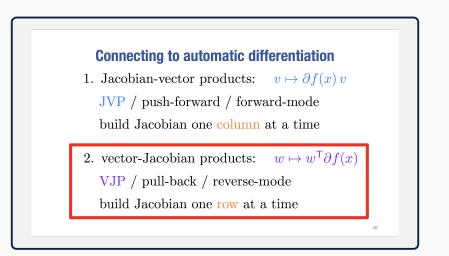


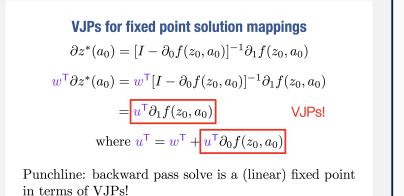
The implicit function theorem: derivative expression $f(a, z^*(a)) = 0 \quad \forall a \in S_{a_0}$ $\partial_0 f(a, z^*(a)) + \partial_1 f(a, z^*(a)) \partial z^*(a) = 0 \quad \forall a \in S_{a_0}$ $\partial_0 f(a_0, z_0) + \partial_1 f(a_0, z_0) \partial z^*(a_0) = 0$ $\partial z^*(a_0) = -[\partial_1 f(a_0, z_0)]^{-1} \partial_0 f(a_0, z_0)$

Punchline: can express Jacobian matrix of solution mapping z^* in terms of Jacobian matrices of f at solution point (a_0, z_0) .

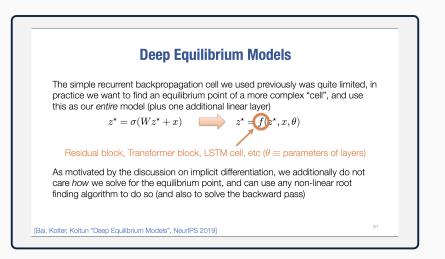
45

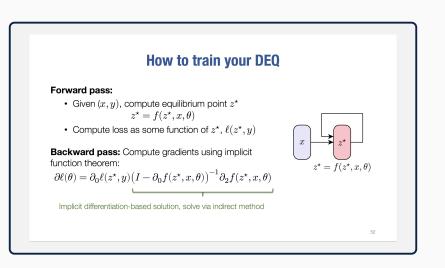


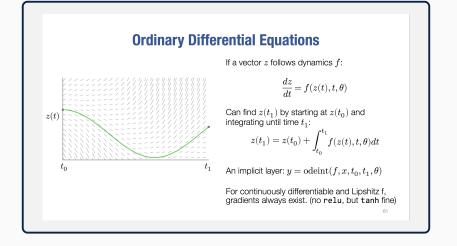


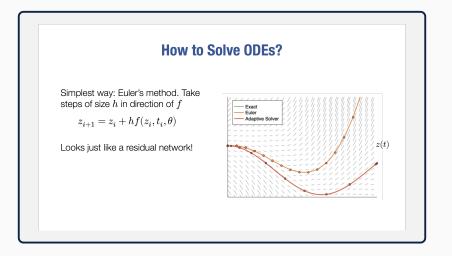


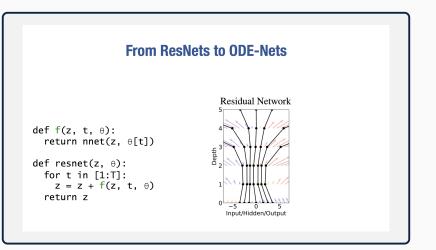
14

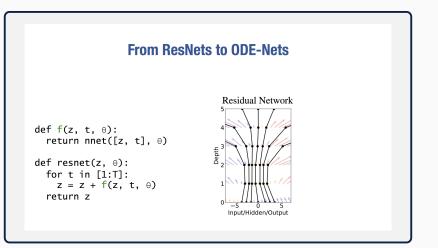


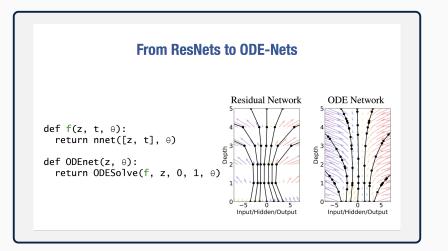


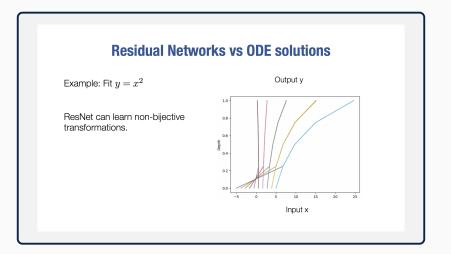




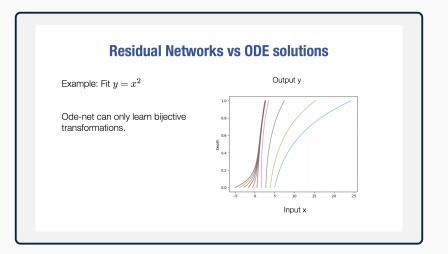




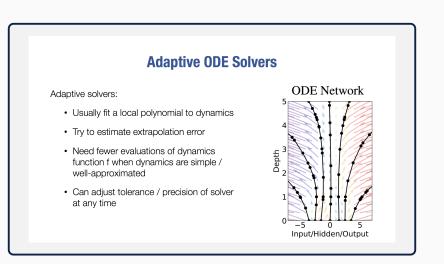




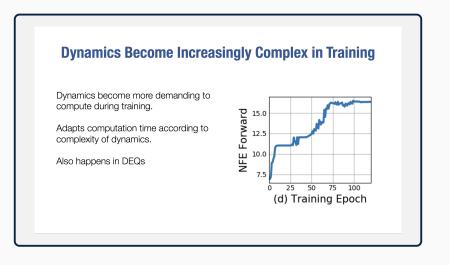
UNIVE

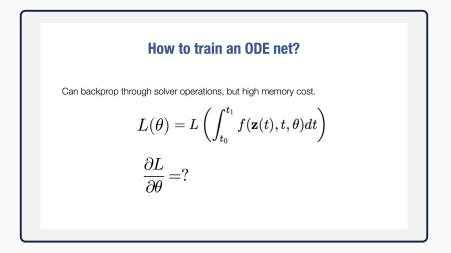


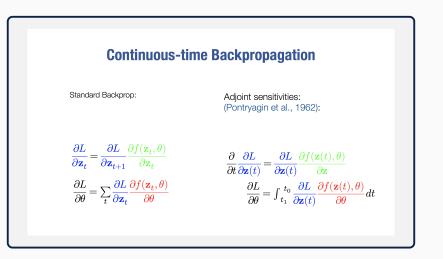
THE UNIVERSITY OF BRITISH COLUMBIA



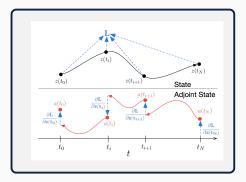
UNIVERSITY





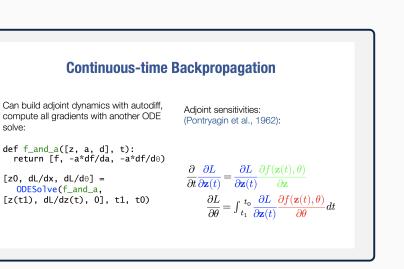


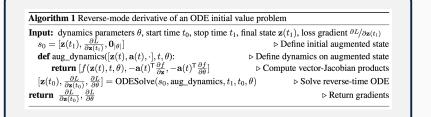
$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$
(3)

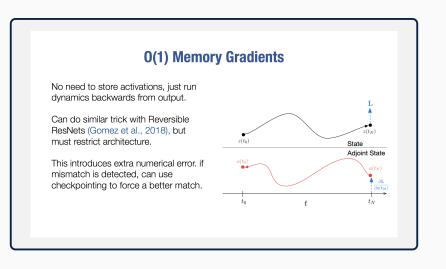


$$\frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}$$
(4)
$$\frac{dL}{d\theta} = -\int_{t_1}^{t_0} \mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta} dt$$
(5)

Where $a(t) = \partial L / \partial z(t)$







 \bigcirc

Table 1: Performance on MNIST. [†] From LeCun
et al. (1998).

	Test Error	# Params	Memory	Time
1-Layer MLP [†]	1.60%	0.24 M	-	-
ResNet	0.41%	0.60 M	$\mathcal{O}(L)$	$\mathcal{O}(L)$
RK-Net	0.47%	0.22 M	$\mathcal{O}(\tilde{L})$	$\mathcal{O}(\tilde{L})$
ODE-Net	0.42%	0.22 M	$\mathcal{O}(1)$	$\mathcal{O}(ilde{L})$

Figure 9: Data-space trajectories decoded from varying one dimension of z_{t_0} . Color indicates progression through time, starting at purple and ending at red. Note that the trajectories on the left are counter-clockwise, while the trajectories on the right are clockwise.

Change of variables theorem:

$$x_1 = F(x_0) \implies p(x_1) = p(x_0) \left| \det \frac{\partial F}{\partial x_0} \right|^{-1}$$

Determinant is $O(D^3)$ cost

Must design architectures to have structured Jacobian

(Low rank) (Sparse) (Lower triangular)

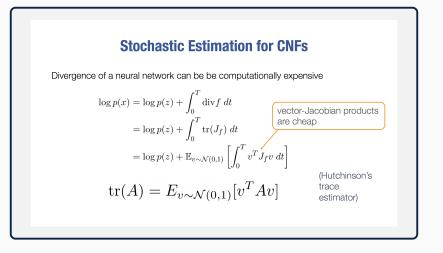
Instantaneous change of variables:

$$\frac{dx}{dt} = f(x(t), t) \implies \frac{\partial \log p(x(t))}{\partial t} = -\mathrm{tr}\left(\frac{\partial f}{\partial x(t)}\right)$$

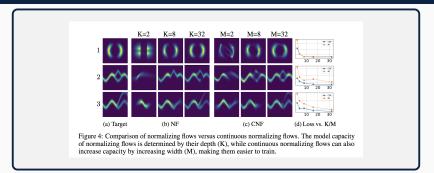
Trace is always O(D) cost.

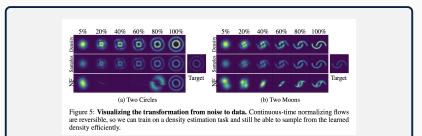
Trace allows flows at linear cost.

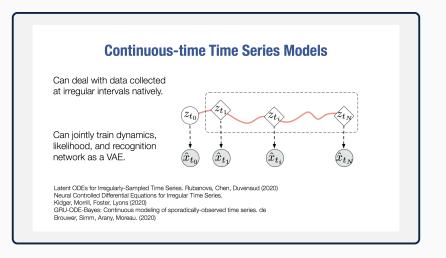
(Arbitrary)



Continuous Time Normalizing Flows Results







$$\mathbf{z}_{t_1}, \mathbf{z}_{t_2}, \dots, \mathbf{z}_{t_N} = \text{ODESolve}(\mathbf{z}_{t_0}, f, \theta_f, t_0, \dots, t_N)$$
(12)

each
$$\mathbf{x}_{t_i} \sim p(\mathbf{x}|\mathbf{z}_{t_i}, \theta_{\mathbf{x}})$$
 (13)

