Neural Ordinary Differential Equations

MLRG Presentation By Jonathan Wilder Lavington
March 28, 2021

University of British Columbia,
Department of Computer Science

THE UNIVERSITY

Introduction OF BRITISH COLUMBIA

What will we talk about today

1. Implicit functions and Auto-diff

2. Deep Equilibrium Models
3. Neural ODEs

Important Note

These slides were built from my favorite parts
of the Neurips 2020 tutorial found here: https:
//www . youtube . com/watch?v=Qxt1w0V3cOM&ab_
channel=ArtificialIntelligence

https://www.youtube.com/watch?v=QxtlwOV3c9M&ab_channel=ArtificialIntelligence
https://www.youtube.com/watch?v=QxtlwOV3c9M&ab_channel=ArtificialIntelligence
https://www.youtube.com/watch?v=QxtlwOV3c9M&ab_channel=ArtificialIntelligence

THE UNIVERSITY

Neural Network Layers) OF BRITIsH coLumsia

What is a “layer”?

A layer, for the purposes of this tutorial, is a differentiable parametric function

Deep learning architectures are typically constructed by composing together many
such layers, then training the complete system end-to-end via backpropagation

Eg.

linear
conv

relu
—> D—> D—> self attention
LSTM Cell

Neural Network Layers

THE UNIVERSITY
W OF BRITISH COLUMBIA

Virtually all commonly-used layers are
explicit, in that they provide a computation
graph for computing the forward pass, and
backprop through that computation graph

Implicit layers, in contrast, define a layer in
terms of satisfying some joint condition
of the input and output
* Many examples: differential equations,
fixed point iteration, optimization
solutions, etc

T

Explicit vs. Implicit layers

Explicit layer

Compute

y = f(z)

Implicit layer

Find y such that
9(z,y) =0

.

THE UNIVERSITY

Neural Network Layers) OF BRITIsH coLumsia

Why use implicit layers?

1. Powerful representations: compactly represent complex operations such as
integrating differential equations, solving optimization problems, etc

2. Memory efficiency: no need to backpropagate through intermediate
components, via implicit function theorem

3. Simplicity: Ease and elegance of designing architectures

4. Abstraction: Separate “what a layer should do” from “how to compute it”, an
abstraction that has been extremely valuable in many other settings

THE UNIVERSITY

Implicit Layers W OF BRITISH COLUMBIA

Motivating a simple implicit layer

Consider a traditional deep network applied to an input =

W1 W2 W3 Wk—l
z “ 22 2 ik 2z =0(Wiz; + b;)

We now modify this network in two ways: by re-injecting the input at each step,
and by applying the same weight matrix at each iteration (weight tying)

' '—.—._ j —

THE UNIVERSITY

Implicit Layers W OF BRITISH COLUMBIA

Iterations of deep weight-tied models

With a weight-tied model of this form, we are

applying the same function repeatedly to the , , A

hidden units l"
21 =0(Wz, + 1)

In many situations, we can design the network

such that this iteration will converge to some

fixed point, or equilibrium point
=o0(Wz+zx)

This is precisely a recurrent backpropagation
network, or a (minimal) deep equilibrium model

THE UNIVERSITY

Implicit Layers OF BRITISH COLUMBIA

Simple instantiation: A tanh fixed point iteration

Let’s consider a very simple form of such a fixed point
layer, iterating:
zpy1 = tanh(Wz; +)

How do we compute the fixed point?
2* =tanh(W2z* + z)

How do we integrate such a layer with backprop? Does
the derivative exist?

To answer this, let’s see a quick demo

THE UNIVERSITY

Auto-Diff in Implicit Layers OF BRITISH COLUMBIA

The implicit function theorem

Let [f T REXRE =SSR and ay € RP, 29 € R” be fla,2)=a®>+2°-1=0
such that

1. f(ao,20) =0, and
2. f is continuously differentiable with non-singular
Jacobian 8, f(ag, z0) € R™™™.
Then there exist open sets Sg, € R? and S., € R™

containing ao and zp, respectively, and a unique a
continuous function 2* : 8,, —+ S, such that

1. 20 = 2*(ao),

2. f(a,2z*(a)) =0 Va € S,,, and

3. z* is differentiable on S, .

THE UNIVERSITY

Auto-Diff in Impllcit Layers OF BRITISH COLUMBIA

The implicit function theorem

Let [f * R X R®™ =5 R™ and ag € R?, z € R” be fla,2)=a*+2°—1=0
such that

1. f(ao,20) =0, and

2. fis continuously differentiable with non-singular
Jacobian 0, f(ag, z0) € R™*".

Then there exist open sets So, C RP and S,, C R™
containing ap and zp, respectively, and a unique a
continuous function z* : S, — S, such that

1. 29 = z*(ap),

2. f(a,z*(a)) =0 Vae€ S,,, and

3. z* is differentiable on Sg,,.

10

THE UNIVERSITY

Auto-Diff in Impllcit Layers OF BRITISH COLUMBIA

The implicit function theorem: derivative expression
fla,z*(a)) =0 VaeS,,

0o f(a,z*(a))+ 0 f(a,2*(a))0z"(a) =0 Va € Sq,
0o f(ao, 20) + 01 f(ao, 20)02*(ap) = 0
0z*(ag) = —[01f (ao, 20)] 0o f (a0, z0)

Punchline: can express Jacobian matrix of solution mapping z*
in terms of Jacobian matrices of f at solution point (ag, 2o)-

11

UBC| THE UNIVERSITY

Auto-Diff in Impllcit Layers Qg oF BriTisH coLumsia

Differentiation of fixed point solution mappings
20 = f(20, a0)
2*(a) = f(2*(), a)
0z*(ag) = 0o f (20, a0)02" (ag) + 01.f (20, ao)
9z (ag) = [I — 3o f(20,a0)]~'01 f (20, a0)

12

THE UNIVERSITY

Auto-Diff in Fixed Point Equations OF BRITISH COLUMBIA

Connecting to automatic differentiation
1. Jacobian-vector products: v+ Jf(x)v
JVP / push-forward / forward-mode

build Jacobian one at a time

2. vector-Jacobian products: w > w'df(x)
VJP / pull-back / reverse-mode

build Jacobian one at a time

13

THE UNIVERSITY

Auto-Diff in Fixed Point Equations OF BRITISH COLUMBIA

VJPs for fixed point solution mappings
dz*(ao) = [I — dof(20,a0)] 01 f (20, a0)
w'dz* (ag) = w'[I — 8o f(20,a0)] 01 f (20, ao)

=|u"01 f (20, a0) VJPs!

where v = w" Hu 0y f (20, a0)

Punchline: backward pass solve is a (linear) fixed point
in terms of VJPs!

14

THE UNIVERSITY

Auto-Diff in Fixed Point Equations NP ©F BRITIsH coLumBia

Deep Equilibrium Models

The simple recurrent backpropagation cell we used previously was quite limited, in
practice we want to find an equilibrium point of a more complex “cell”, and use
this as our entire model (plus one additional linear layer)

2 =oc(Wz*+ 1) 20 = fe*,z,0)

As motivated by the discussion on implicit differentiation, we additionally do not
care how we solve for the equilibrium point, and can use any non-linear root
finding algorithm to do so (and also to solve the backward pass)

[Bai, Kolter, Koltun “Deep Equilibrium Models”, NeurlPS 2019]

ii5)

Deep Equilibrium Models

THE UNIVERSITY
OF BRITISH COLUMBIA

How to train your DEQ

Forward pass:
+ Given (z,y), compute equilibrium point z*
2= f(Z*,l‘,g)
» Compute loss as some function of z*, £(2*,y)

Backward pass: Compute gradients using implicit
function theorem:

00(8) = Bpb(2*,y) (I — Do f(2*,2,60)) " By f(2*,,6)

T

Implicit differentiation-based solution, solve via indirect method

16

Neural ODEs OF BRITISH COLUMBIA

Ordinary Differential Equations

If a vector z follows dynamics f:

dz
—-—= t),t,0
e (CONY))
() Can find z(t,) by starting at z(t,) and

integrating until time ¢, :

1
2(ty) = z(to) + [f(2(t),t,0)dt

to
An implicit layer: y = odeint(f,z,t,t,,0)

For continuously differentiable and Lipshitz f,
gradients always exist. (no relu, but tanh fine)

17

THE UNIVERSITY

Neural ODES W OF BRITISH COLUMBIA

How to Solve ODEs?

Simplest way: Euler’s method. Take
steps of size h in direction of f | Bt

Euler

21 =2+ hf(z;,t;,0) —— Adapive Salver

(2RSA)

Looks just like a residual network!

18

THE UNIVERSITY

Neural ODEs Vs ResNets OF BRITISH COLUMBIA

From ResNets to ODE-Nets

Residual Network
5

def f(z, t, ©):
return nnet(z, o[t])

def resnet(z, ©):
for t in [1:T]:
z=2z+ f(z, t, 0)
return z

0 5
Input/Hidden/Output

19

THE UNIVERSITY

Neural ODEs Vs ResNets OF BRITISH COLUMBIA

From ResNets to ODE-Nets

Residual Network
5

def f(z, t, ©):
return nnet([z, t], o)

Depth

def resnet(z, 6):
for t in [1:T]:
z=2z+ f(z, t, 0)
return z

=5 0 5
Input/Hidden/Output

20

Neural ODEs Vs ResNets

THE UNIVERSITY

OF BRITISH COLUMBIA

def f(z, t, 0):
return nnet([z, t], ©)

def ODEnet(z, ©):
return ODESolve(f, z, 0, 1, o)

From ResNets to ODE-Nets

Residual Network
5 5

ODE Network

I

Depth
Depth

N

R

5
Input/Hidden/Output

0

-5 0 5
Input/Hidden/Output

21

Neural ODEs Vs ResNets

THE UNIVERSITY
OF BRITISH COLUMBIA

Example: Fit y = z2

ResNet can learn non-bijective
transformations.

Residual Networks vs ODE solutions

Output y

Input x

22

THE UNIVERSITY

Neural ODEs Vs ResNets OF BRITISH COLUMBIA

Residual Networks vs ODE solutions

Example: Fit y = 22 Output y

Ode-net can only learn bijective 08
transformations.

23

THE UNIVERSITY

Neural ODE SOlverS W OF BRITISH COLUMBIA

Adaptive ODE Solvers

Adaptive solvers: ODE Network

Usually fit a local polynomial to dynamics

Try to estimate extrapolation error

Need fewer evaluations of dynamics
function f when dynamics are simple /
well-approximated

Can adjust tolerance / precision of solver
at any time

-5 0 5
Input/Hidden/Output

24

THE UNIVERSITY

Neural ODE Solvers 2% DRTISH GOUUTIDN

Dynamics Become Increasingly Complex in Training

Dynamics become more demanding to
compute during training.
p g g T 150
©
Adapts computation time according to E 125
complexity of dynamics. LE '
w 10.0
Also happens in DEQs I.ZL.
7.5

0 25 50 75 100
(d) Training Epoch

25

THE UNIVERSITY

Training Neural ODES OF BRITISH COLUMBIA

How to train an ODE net?

Can backprop through solver operations, but high memory cost.

L(O)=L (t 1f(z(t),t,e)dt)
oL _,
00

26

Training Neural ODEs OF BRITISH COLUMBIA

Continuous-time Backpropagation

Standard Backprop: Adjoint sensitivities:
(Pontryagin et al., 1962):
= a o on _ o
t 1 Bt(?z() 0a(t)
OL _ 0L 0f(z,0) to OL Of(z
00 T oz, %_Izl oa(t) ()() D

27

The Adjoint Sensitivity Method T R

OF BRITISH COLUMBIA

L(z(t))) = (z(to / f(=z(¢),t,0) dt) L (ODESolve(z(ty), f, o, t1,6)) 3)

Le
v
da(t) 70f(z(t),t0)
ot i@ - 20 g, @
(fo) #éen) State "
te dL 0 LOf(alt),t,6)
- rA:onmt State i a(t) dt (5)
LA 1 - do /t a0
L x y 7”' 1/ !
N : \" .
P Where a(t) = dL/dz(t)

28

The Adjoint Sensitivity Method THE UNIVERSITY

OF BRITISH COLUMBIA

Continuous-time Backpropagation

Can build adjoint dynamics with autodiff,
compute all gradients with another ODE
solve:

Adjoint sensitivities:
(Pontryagin et al., 1962):

def f_and_a([z, a, d], t):
return [f, -a*df/da, -a*df/de)

[z0, dL/dx, dL/de] o oL oL
z0, X, 6] = _— =
ODESolve(f_and_a, Bt('?z(f) ﬁz(z‘)
[z(tD), dL/dz(t), 0], t1, t0) OL _ 1y OL Of(2(0).0)

=, dz(t) 00

29

THE UNIVERSITY

The Adjoint Sensitivity Method OF BRITISH COLUMBIA

Algorithm 1 Reverse-mode derivative of an ODE initial value problem

Input: dynamics parameters 6, start time ¢, stop time ¢y, final state z(¢;), loss gradient 9Z/az(t,)

so = [z(t1), %, Ojg/] > Define initial augmented state
def aug_dynamics([z(t), a(t), |, ¢, 0): > Define dynamics on augmented state
retum [f(a(t),t,0), —a(t) 3L, —at)T %) > Compute vector-Jacobian products
[2(t0), 52 az(,0> 9L] = ODESolve(so, aug_dynamics, t1, o, 0) > Solve reverse-time ODE
return 5 (fo) s ‘?99 > Return gradients

30

The Adjoint Sensitivity Method G O oRITIs CoLumsia

0(1) Memory Gradients

No need to store activations, just run
dynamics backwards from output.

Can do similar trick with Reversible /\/.

ResNets (Gomez et al., 2018), but (tn)

must restrict architecture. #(to) State

Adjoint State

This introduces extra numerical error. if) _— N\

mismatch is detected, can use ; e

checkpointing to force a better match. . N~ f =
; ; B

31

THE UNIVERSITY

ODE-Nets Performance 2% DRTISH GOUUTIDN

Table 1: Performance on MNIST. fFrom LeCun
et al. (1998).

Test Error # Params Memory Time

1-Layer MLP' 1.60% 0.24M - -

ResNet 0.41% 0.60 M o(L) o(r)
RK-Net 047% 02M Oof) o)
ODE-Net 042% 02M ©@1) 0O(L)

Figure 9: Data-space trajectories decoded from varying one dimension of z;,. Color indicates

progression through time, starting at purple and ending at red. Note that the trajectories on the left
are counter-clockwise, while the trajectories on the right are clockwise.

32

Continuous Time Normalizing Flows e con

OF BRITISH COLUMBIA

Continuous(-time) Normalizing Flows

Change of variables theorem: Instantaneous change of variables:

o o L OF -t dz dlogp(z(t)) af
z1 = F(z0) = p(z1) = p(xo) |det Do i flz(t),t) = — g - (01)(0)
Determinant is O(DS) cost Trace is always O(D) cost.

Must design architectures to have Trace allows flows at linear cost.

structured Jacobian

HE h}h %

O
(Low rank) (Sparse) (Lower
triangular)

Jacobian
Pmaa

(Arbitrary)

33

THE UNIVERSITY

Continuous Time Normalizing Flows OF BRITISH COLUMBIA

Stochastic Estimation for CNFs
Divergence of a neural network can be be computationally expensive

T
log p(x) = log p(z) +/ divf dt

0 vector-Jacobian products
are cheap

T
=logp(z) + / tr(Jy) dt
Jo
T n
=logp(2) + Evnro) U oI Jpo dt]
0

(Hutchinson’s

tr(A) = Eyon(0,1) [UTAU] trace

estimator)

34

THE UNIVERSITY

Continuous Time Normalizing Flows Results OF BRITISH COLUMBIA

SR

(a) Target (b) NF (c) CNF (d)Loss vs. KIM

Figure 4: Comparison of normalizing flows versus continuous normalizing flows. The model capacity
of normalizing flows is determined by their depth (K), while continuous normalizing flows can also
increase capacity by increasing width (M), making them easier to train.

20% 40% 60% 80% 100%

5% 20% 40% 60% 80% 100%

o 0 ©O

o
L
o

Den

Target

- _
3 3

Target
_

(a) Two Circles (b) Two Moons

Figure 5: Visualizing the transformation from noise to data. Continuous-time normalizing flows
are reversible, so we can train on a density estimation task and still be able to sample from the learned

density efficiently.
85

THE UNIVERSITY

Continuous-time Time-series Model OF BRITISH COLUMBIA

Continuous-time Time Series Models

Can deal with data collected
at irregular intervals natively. e

<.
P
@

Can jointly train dynamics,
likelihood, and recognition

1
network as a VAE. @ @ @

Latent ODEs for Irregularly-Sampled Time Series. Rubanova, Chen, Duvenaud (2020)
Neural Controlled Differential Equations for Irregular Time Series

Kidger, Morrill, Foster, Lyons (2020)

GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series. de
Brouwer, Simm, Arany, Moreau. (2020)

36

THE UNIVERSITY

Continuous-time Time-series Model OF BRITISH COLUMBIA

24, ~ p(2t,) an
Z4,,Zt,, - - ., Zty = ODESolve(zy,, f, 0¢,t0, ..., tN) (12)
each xy; ~ p(x|z,,0x) (13)

ODE Solve(zy,, f,0f, to, -, tar)
RNNencoder Ztn\ftn 7 7 A |
t zZ;
ht, ht, t Zto | ! Zin N1 Far |
-0 el
Y A [N 1 i T
+ | I Latent space | T VT T s
i ' | Data space v ' ! v ;
W O\M
1 | A~
Time .’E(t o 7 .T(t a a a
to t tn tNy1 ty to 131 tn In+1 ty
Observed Unobserved Prediction Extrapolation

Figure 6: Computation graph of the latent ODE model.

37

THE UNIVERSITY
OF BRITISH COLUMBIA

Continuous-time Time-series Model Results

(b) Latent Neural Ordinary Differential Equation
—— Ground Truth @
® Observation K
—— Prediction
= Extrapolation

(c) Latent Trajectories

Figure 7: Fitting a latent ODE dy-
namics model with a Poisson pro-
cess likelihood. Dots show event
times. The line is the learned inten-
sity A(t) of the Poisson process.

38

THE UNIVERSITY

Conclusions and Future Work 55 DIRNTISH GO

Open Problems and Future Directions

1. Regularizing DEQs and Neural ODEs to be faster to solve
2. Re-architecting models to take advantage of memory advantages
3. Scaling and application of latent SDEs

4. Partial differential equation (PDE) solutions as a layer

39

THE UNIVERSITY

Extra: Differentiable Optimization OF BRITISH COLUMBIA

Differentiable optimization

DEQs and Neural ODEs both impose substantial
structure on the nature of the layer, in order to
gain substantial representational power

Other common strategy for imposing a different
(but related) kind of structure is that of
differentiable optimization

Layer of the form
z* = argmin f(z,z)
z€C(x)

40

THE UNIVERSITY

Differentiable Optimization OF BRITISH COLUMBIA

Differentiating optimization problems

How do we differentiate through a layer?
z* = argmin f(z,z)
2€C(x)

Finding a solution to constrained optimization is equivalent to finding the solution
of a of a set of nonlinear equations called KKT conditions

Find (2*,v*,*) s.t.

* _ 1 T 1.Az* =10
#'= argmin 5z Qx)z+p(z)'z 9.Go* < h
subject to A(z)z = b(z), 3.2 >0
G(z)z < h(z) 4. X0 (Gz*—h)=0

5.Q2"+p+ATv* + GTX* =0

41

THE UNIVERSITY

Extra: Differentiable Optimization OF BRITISH COLUMBIA

Differentiating through optimization problems

Alternatively, we can view virtually any optimization procedure as a fixed point
iteration; e.g. for projected gradient descent

21 = PTOJ'C(z) (21, — @0 f (2,)]
(But also true of much more sophisticated optimization approaches)

Therefore, can use differentiation of fixed point iteration to differentiate through
optimization problems!

42

THE UNIVERSITY

Extra: Differentiable Optimization OF BRITISH COLUMBIA

Some example applications

l ‘ Learning a convex polytope from data

[Amos and Kolter., 2018]

0&1 07089

020008250

30oloo4 oo

Solving Sudoku (w/ MNIST digits) using 3‘3? 5 iz g 44 ‘Z’

differentiable SDP solver [Wang et al., 2019] |0 4|3 ¢ 2|/ 00
0o3cnd[0l 0

170[00 002

o500oolate

Controlling HVAC systems with differentiable
MPC controllers [Chen et al., 2019]

43

