Variational Lossy Autoencoder

Chen et al.

Dylan Green March 17, 2020

Autoencoders

- Unsupervised deep learning model
- Loss: $||x \hat{x}||^2$
- $\dim(z) \ll \dim(x)$
- Features should extract useful, high-level information from the input data

Applications - Data Compression

Applications - Visualization

Applications - Denoising Autoencoders

Applications - Unsupervised Feature Learning

- What if we want to generate new data using this model?
 - Pick a random z, use decoder to generate new image
- Problem:
 - Model maps each x to a point in z-space
 - How to pick a "good" z?

Variational Autoencoders (VAEs)

- A probabilistic spin on autoencoders
 - Learn latent variables z from input data
 - Sample from the model to generate new data
- Intuition: x is an image, z encodes high-level information about the image (i.e. attributes, orientation, etc.)

- Assume a generative model with a latent variable z distributed according to some prior distribution p(z)
- The observed variable x is then distributed according to a conditional likelihood p_θ(x|z)
- Sample in two steps:
 - $z \sim p(z)$
 - $x \sim p_{\theta}(x|z)$
- Marginal likelihood of the data under this model is then

$$p_{ heta}(x) = \int p_{ heta}(x,z) dz = \int p_{ heta}(x|z) p(z) dz$$

For the standard VAE:

- Choose $p(z) = \mathcal{N}(z|0, I)$
- Represent $p_{\theta}(x|z)$ with a neural network:
 - Can be thought of as a stochastic decoder network
 - Input: z, Outputs: mean $\mu_{x|z}$ and diagonal covariance $\Sigma_{x|z}$

• Objective: maximize marginal likelihood of training data:

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)})$$

where

$$p_{\theta}(x^{(i)}) = \int p_{\theta}(x^{(i)}|z)p(z)dz$$

• Problem: This integral is intractable

VAEs - Training

• Potential fix: try Bayes' rule:

$$p_{ heta}(x^{(i)}) = rac{p_{ heta}(x^{(i)} \mid z)p_{ heta}(z)}{p_{ heta}(z \mid x^{(i)})}$$

- Another problem: $p_{\theta}(z \mid x^{(i)})$ is also intractable
- **Solution:** Introduce (stochastic) encoder network $q_{\phi}(z \mid x^{(i)})$

•
$$q_{\phi}(z \mid x^{(i)}) \approx p_{\theta}(z \mid x^{(i)})$$

• Input: x, Outputs: mean $\mu_{z|x}$ and diagonal covariance $\Sigma_{z|x}$

• Jointly train q_{ϕ}, p_{θ}

Plug this in to marginal likelihood

$$\begin{split} \log p_{\theta}(x) &= \log \int p_{\theta}(x, z) dz \\ &= \log \int q_{\phi}(z|x) \frac{p_{\theta}(z, x)}{q_{\phi}(z|x)} dz \\ &\geq \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)} \right] \quad \text{(Jensen's Inequality)} \\ &\triangleq \mathcal{L}(\theta, \phi) \end{split}$$

 $\mathcal{L}(\theta,\phi)$ is the log Evidence Lower BOund, or ELBO

Rearranging:

$$\log p_{\theta}(x) \geq \underbrace{\left(\mathbb{E}_{z \sim q_{\phi}(z|x)} \log p_{\theta}(x|z)\right)}_{\text{Reconstruction Loss}} - \underbrace{\frac{\mathcal{K}L\left(q_{\phi}(z|x)||p(z)\right)}_{\text{Regularization}}}_{\mathcal{L}(\theta,\phi) - \text{VAE Objective}}$$

VAEs - ELBO

Another derivation:

$$\begin{split} D_{\mathrm{KL}}\left[q_x(z) \parallel p(z|x)\right] &= \mathbb{E}_{z \sim q_x(z)}\left[\log q_x(z) - \log p(z|x)\right] \\ &= \mathbb{E}_{z \sim q_x(z)}\left[\log q_x(z) - \log \frac{p(z,x)}{p(x)}\right] \\ &= \mathbb{E}_{z \sim q_x(z)}\left[\log q_x(z) - \log p(z) - \log p(x|z) + \log p(x)\right] \\ &= \underbrace{\mathbb{E}_{z \sim q_x(z)}\left[\log q_x(z) - \log p(z) - \log p(x|z)\right]}_{\mathrm{Only\ this\ part\ depends\ on\ z}} + \log p(x) \end{split}$$

Rearranging gives us:

$$\begin{split} \log p(x) &= -\mathbb{E}_{z \sim q_x(z)} \left[\log q_x(z) - \log p(z) - \log p(x|z) \right] + D_{\mathrm{KL}} \left[q_x(z) \parallel p(z|x) \right] \\ &= \underbrace{\mathbb{E}_{z \sim q_x(z)} \left[\log p(z) + \log p(x|z) - \log q_x(z) \right]}_{\mathrm{Variational Lower Bound}} + \underbrace{D_{\mathrm{KL}} \left[q_x(z) \parallel p(z|x) \right]}_{\geq 0} \end{split}$$

Takeaway: $\mathcal{L}(\theta, \phi)$ becomes exact if $q_{\phi}(z|x) = p_{\theta}(z|x)$

VAEs - Training

Train by maximizing $\mathcal{L}(\theta, \phi) = \left(\mathbb{E}_{z \sim q_{\phi}(z|x)} \log p_{\theta}(x|z)\right) - KL(q_{\phi}(z|x)||p(z))$ Sa

- 1. Run input through encoder to get $q_{\phi}(z|x)$
- 2. Sample z from $q_{\phi}(z|x)$ using "reparameterization" trick:
 - $\epsilon \sim \mathcal{N}(0, I)$
 - $z = \mu_{z|x} + \epsilon \odot \Sigma_{z|x}$
- 3. Run sampled z through decoder to get $p_{\theta}(x|z)$
- 4. Loss can be computed in closed form

To sample from the model:

- 1. Sample $z \sim p(z)$
- 2. Run sampled z through decoder to get $p_{\theta}(x|z)$
- 3. Sample $x \sim p_{\theta}(x|z)$ to generate new data

32x32 CIFAR-10

Labeled Faces in the Wild

З В n n З n n q

VAEs - "Image Editing"

Э З 3 3

Hold y fixed, vary z

VAEs - Class Conditional VAEs

Hold z fixed, vary y

Variational Lossy Autoencoder (VLAE)

- Reconstructed images are often blurry
- Simple decoder distribution $p_{\theta}(x|z)$ lacks expressivity
 - Due to diagonal covariance $\Sigma_{\times|z},$ all pixels are generated independently from one another
 - All entropy in the data must be explained by z
 - Not just content and style, but local features like texture
- Idea: use a decoder capable of modelling local correlations

Autoregressive Models

• Define some ordering over pixels

ŀ

• Chain rule of probability

$$p(x) = p(x_1, x_2, \dots, x_d)$$

= $p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \dots$
= $\prod_{i=1}^d p(x_i|x_{1:i-1})$

Model p (x_i|x_{1:i-1}) with a neural network p_θ and maximize log likelihood

$$\log p_{\theta}(\mathsf{x}) = \sum_{i=1}^{d} \log p_{\theta}\left(\mathsf{x}_{i} | \mathsf{x}_{1:i-1}\right)$$

- Dependency on previous pixels modelled by a (masked) CNN
- Training for each location can be done in parallel
- Sampling must be done sequentially
- Powerful generative models in their own right

What happens if we use a powerful decoder like this?

- Good news: great for generative modelling
- Bad news: the model completely ignores the latent code

Powerful Decoders

First recall that the goal of designing an efficient coding protocol is to minimize the expected code length of communicating x. To explain Bits-Back Coding, let's first consider a more naive coding scheme. VAE can be seen as a way to encode data in a two-part code: p(z) and p(x|z), where z can be seen as the essence/structure of a datum and is encoded first and then the modeling error (deviation from z's structure) is encoded next. The expected code length under this naive coding scheme for a given data distribution is hence:

$$C_{\text{naive}}(\mathbf{x}) = \mathbb{E}_{\mathbf{x} \sim \text{data}, \mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \left[-\log p(\mathbf{z}) - \log p(\mathbf{x}|\mathbf{z}) \right]$$
(5)

This coding scheme is, however, inefficient. Bits-Back Coding improves on it by noticing that the encoder distribution $q(\mathbf{z}|\mathbf{x})$ can be used to transmit additional information, up to $H(q(\mathbf{z}|\mathbf{x}))$ expected nats, as long as the receiver also has access to $q(\mathbf{z}|\mathbf{x})$. The decoding scheme works as follows: a receiver first decodes \mathbf{z} from $p(\mathbf{z})$, then decodes \mathbf{x} from $p(\mathbf{x}|\mathbf{z})$ and, by running the same approximate posterior that the sender is using, decodes a secondary message from $q(\mathbf{z}|\mathbf{x})$. Hence, to properly measure the code length of VAE's two-part code, we need to subtract the extra information from $q(\mathbf{z}|\mathbf{x})$. Using Bit-Back Coding, the expected code length equates to the negative variational lower bound or the so-called Helmholtz variational free energy, which means minimizing code length is equivalent to maximizing the variational lower bound:

$$\mathcal{C}_{\text{BitsBack}}(\mathbf{x}) = \mathbb{E}_{\mathbf{x} \sim \text{data}, \mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \left[\log q(\mathbf{z}|\mathbf{x}) - \log p(\mathbf{z}) - \log p(\mathbf{x}|\mathbf{z}) \right]$$
(6)

$$= \mathbb{E}_{\mathbf{x} \sim \text{data}} \left[-\mathcal{L}(\mathbf{x}) \right] \tag{7}$$

Casting the problem of optimizing VAE into designing an efficient coding scheme easily allows us to reason when the latent code z will be used: the latent code z will be used when the two-part code is an efficient code. Recalling that the lower-bound of expected code length for data is given by the Shannon entropy of data generation distribution: $\mathcal{H}(\text{data}) = \mathbb{E}_{x \sim \text{data}}[-\log p_{\text{data}}(x)]$, we can analyze VAE's coding efficiency:

$$\mathcal{C}_{\text{BitsBack}}(\mathbf{x}) = \mathbb{E}_{\mathbf{x} \sim \text{data}, \mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \left[\log q(\mathbf{z}|\mathbf{x}) - \log p(\mathbf{z}) - \log p(\mathbf{x}|\mathbf{z}) \right]$$
(8)

$$= \mathbb{E}_{\mathbf{x} \sim \text{data}} \left[-\log p(\mathbf{x}) + D_{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x})) \right]$$
(9)

$$\geq \mathbb{E}_{\mathbf{x} \sim \text{data}} \left[-\log p_{\text{data}}(\mathbf{x}) + D_{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x})) \right]$$
(10)

$$= \mathcal{H}(\text{data}) + \mathbb{E}_{\mathbf{x} \sim \text{data}} \left[D_{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x})) \right]$$
(11)

27

Another argument...

• What's the maximum ELBO?

$$\begin{split} \mathbb{E}_{x \sim p_{\mathsf{data}}(x)}[\mathsf{ELBO}] &\leq \mathbb{E}_{x \sim p_{\mathsf{data}}(x)}\left[\log p_{\theta}(x)\right] \\ &\leq \mathbb{E}_{x \sim p_{\mathsf{data}}(x)}\left[\log p_{\mathsf{data}}(x)\right] \end{split}$$

• What if
$$p(x|z) = p_{data}(x)$$
?

$$\begin{split} \mathbb{E}_{x \sim p_{\text{data}}} \left[\textit{ELBO} \right] &= \mathbb{E}_{x \sim p_{\text{data}}, z \sim q} [\log p(x|z) + \log p(z) - \log q(z|x)] \\ &= \mathbb{E}_x \left[\log p_{\text{data}}(x) + \mathbb{E}_z [\log p(z) - \log q(z|x)] \right] \\ &= \mathbb{E}_x \left[\log p_{\text{data}}(x) - \textit{KL}(q(z|x)||p(z)) \right] \end{split}$$

• q(z|x) will be set to p(z); z contains no information

Recommended reading: Autoencoding a Single Bit

4 JAN 2017

AUTOENCODING A SINGLE BIT

Here's a seemingly silly idea: let's try to encode a single bit of information with a variational autoencoder (VAE). Our data set thus consists of two i.i.d. samples. In fact, here's what it looks like:

We will attempt to autoencoder this data using a variational autoencoder with a single-dimensional z (after all, one dimension should be sufficient), where p(z) is unit Gaussian, $p(x \mid z)$ is Bernoulli, and $q(z \mid x)$ is a conditional Gaussian—a standard formulation of the VAE.

- Hence there exists an information preference when a VAE is optimized:
 - Information that can be modelled locally by p(x|z) without access to z will be encoded locally and only the remainder will be encoded in z
- This property can be exploited to give us fine-grained control over the kind of information included in the learned representation
 - Construct a decoder which is capable of modelling the part of the information we don't want the latent code to capture

- Example: want a global representation for images that doesn't encode local information like textures
- Use a PixelCNN with limited receptive field, i.e.

$$p_{\mathsf{local}}\left(\mathsf{x}|\mathsf{z}\right) = \prod_{i} p\left(\mathsf{x}_{i}|\mathsf{z},\mathsf{x}_{\mathsf{WindowAround}}\left(i\right)\right)$$

As long as x_{WindowAround (i)} is smaller than x_{<i}, p_{local} (x|z) won't be able to model p_{data}(x) without dependence on z

Also: Learned Prior

- Additionally, the paper introduces learned priors using autoregressive flows
- Repeatedly transform spherical Gaussian noise source with invertible parameterized functions
- Show equivalence to a more expressive approximate posterior

Lossy Compression: MNIST

(a) Original test-set images (left) and "decompressioned" versions from VLAE's lossy code (right) (b) Samples from VLAE

 $\mathbb{E}[D_{KL}(q(z|x)||p(z))]$ (number of bits used to encode an image on average): 19.2 bits for VLAE, 37.3 bits for VAE

Lossy Compression: OMNIGLOT

··	ţ,	R	ţ۲,	С г,	(;;	a‡	÷	21	X	Ļ	Gr	×	ų,
N	З.	Ð	្រា	£		Ŷ	-0	S	s./	¢	ų,	۰. ب4	5 <u>4</u> .
¥.	۵	Ş	<1	Ì.,	5	taı أ	Ę.	ŋ	bud.	ý.	ţ2	ju.	У
┑┑	~#~	ρ	<u>.</u>	÷.	Ð	χζ	C	÷.	n	*.	ÅÇ	77	ରୁ ୦ କାର୍ଣ୍ଣ
C .,	C7	ø	tť-	e	9	ţ,	$\dot{\sigma}$	5	-⁄	છ	N	с 1 љ	<u>۲</u>
Ĉ	Ø	Å	~ 1	6 19	į, įš	臣	Â.	Ę,	i,	Ô	ŝ.	·***	Å.
-27 	¥	ω	~2	9	5	Ś	*	<u>ie</u>		3	ر \$ ا	(1C)	ζ τ
Ś	Ý	ينل	21	4 J	V	93	ъ	Ĵ	র্ম	¢	'n,	.0	1

(a) Original test-set images (left) and "decompressioned" versions from VLAE's lossy code (right)

(b) Samples from VLAE

Ц

Table 1: Statically Binarized MNIST

Model	NLL Test
Normalizing flows (Rezende & Mohamed, 2015)	85.10
DRAW (Gregor et al., 2015)	< 80.97
Discrete VAE (Rolfe, 2016)	81.01
PixelRNN (van den Oord et al., 2016a)	79.20
IAF VAE (Kingma et al., 2016)	79.88
AF VAE	79.30
VLAE	79.03

Model	NLL Test
Convolutional VAE + HVI (Salimans et al., 2014)	81.94
DLGM 2hl + IWAE (Burda et al., 2015a)	82.90
Discrete VAE (Rolfe, 2016)	80.04
LVAE (Kaae Sønderby et al., 2016)	81.74
DRAW + VGP (Tran et al., 2015)	< 79.88
IAF VAE (Kingma et al., 2016)	79.10
Unconditional Decoder	87.55
VLAE	78.53

Table 2: Dynamically binarized MNIST

Table 3: OMNIGLOT. [1] (Burda et al., 2015a), Table 4: Caltech-101 Silhouettes. [1] (Born-[2] (Burda et al., 2015b), [3] (Gregor et al., schein & Bengio, 2014), [2] (Cho et al., 2011), 2015), [4] (Gregor et al., 2016),

[3] (Du et al., 2015), [4] (Rolfe, 2016), [5] (Goessling & Amit, 2015),

Model	NLL Test
VAE [1]	106.31
IWAE [1]	103.38
RBM (500 hidden) [2]	100.46
DRAW [3]	< 96.50
Conv DRAW [4]	< 91.00
Unconditional Decoder	95.02
VLAE	90.98
VLAE (fine-tuned)	89.83

Model	NLL Test
RWS SBN [1]	113.3
RBM [2]	107.8
NAIS NADE [3]	100.0
Discrete VAE [4]	97.6
SpARN [5]	88.48
Unconditional Decoder	89.26
VLAE	77.36

Results: CIFAR10

(c) 7x4

(d) 7x4 Grayscale

Results: CIFAR10

bits/dim \leq
8.00
4.70
4.48
4.00
3.49
3.14
3.03
3.00
2.92
5.40
3.58
3.11
3.04
2.95

- Analyzed the condition under which the latent code in VAEs is used
- Through carefully designing decoder network, able to control what sort of information is stored in latent representations
- Proposed two complementary improvements to VAE architecture shown to have strong performance empirically

Learning the prior/posterior

