Variational Lossy Autoencoder

Chen et al.

Dylan Green
March 17, 2020

Autoencoders

Autoencoders

e Unsupervised deep learning

Reconstructed ~
model input data ‘ z |
e Loss: ||x — &|? Decoder
e dim(z) < dim(x) Features | 2 |
e Features should extract Encoder
useful, high-level information Input data ‘ T |

from the input data

Applications - Data Compression

—| Encoder —>E—> Decoder —

Original
input

Reconstructed
input

Compressed
representation

Applications - Visualization

European Community
Interbank markets monetary/economic
A 5w

Disasters and
accidents

Leading economic*
indicators .

Government
borrowings

Accounts/
eamings

(1]
b
5}
°
<}
5}
=
o
o
s
S
<
B0
=
32
o
=
o
o
|
()]
€
2
s
©
=
=
=)
<

§72_/?D(9%L#

sebeuw) pesious(

|

, _

m mmmmE__Umm_oz
7 _
,

sobewl| |euibuQO

Applications - Unsupervised Feature Learning

Loss function
(Softmax, etc)

Predicted Label

Classifier Fine-tune
encoder
Features z jointly with
':j classifier
Encoder
Input data ‘ T ‘

Autoencoders as ” Generative” Models?

e What if we want to generate new data using this model?
e Pick a random z, use decoder to generate new image
e Problem:

e Model maps each x to a point in z-space
e How to pick a "good" z7

Variational Autoencoders (VAEs)

e A probabilistic spin on autoencoders
e Learn latent variables z from input data
e Sample from the model to generate new data
e Intuition: x is an image, z encodes high-level information
about the image (i.e. attributes, orientation, etc.)

e Assume a generative model with a latent variable z
distributed according to some prior distribution p(z)

e The observed variable x is then distributed according to a
conditional likelihood py(x|z)
e Sample in two steps:

e z~ p(z)
o x~ py(x|2)

e Marginal likelihood of the data under this model is then

polx) = / pol(x, 2)dz = / po(x|2)p(2)dz

For the standard VAE:

e Choose p(z) = N(z]0,1)
e Represent py(x|z) with a neural network:

e Can be thought of as a stochastic decoder network
e Input: z, Outputs: mean f,|, and diagonal covariance ¥,

Hz|z Zmlz

10

VAEs - Training

e Objective: maximize marginal likelihood of training data:
| ()
meaxzi: og po(x\")

where

po(x) = / po(xD|2)p(2)dz

e Problem: This integral is intractable

11

VAEs - Training

e Potential fix: try Bayes' rule:

(x() = po(x") | 2)ps(2)

P po(z | x0)

e Another problem: py(z | x()) is also intractable
e Solution: Introduce (stochastic) encoder network gg4(z | x()
o 9oz | x) = po(z | x)
e Input: x, Outputs: mean |, and diagonal covariance ¥,
‘ Hz|z ‘ ‘ Ezlz‘

oz
e Jointly train gy, pg

12

VAEs - ELBO

Plug this in to marginal likelihood
g po(x) = log [pa(x,z)dz

=lo z|x Po(z, x) z

po(x, z)
qs(z|x)

> Eq,(z1x) {|Og] (Jensen's Inequality)
£ L(0,¢)

L(0, ¢) is the log Evidence Lower BOund, or ELBO

13

VAEs - ELBO

Rearranging:

108 Py (x) = (Ezng, (elv) o8 PO(x12)) = KL (a5(z1%)lIp(2))

Regularization

Reconstruction Loss

L(0,$)—VAE Objective

14

VAEs - ELBO

Another derivation:

Dk [¢2(2) || p(z]2)] =

Rearranging gives us:

logp(z) =

E
E
=E
=Einq.(2) [log gz(2)

Eong,(2) 108 s(2) —
= Ez~q1(2> [log p(2) + log p(|2) —

2nqz (2) [IOg qm(z) - Ing(zLT)]
=Eonga(2) [long() — log pl()?g)}
2rga(2) 108 42(2) — log p(2) — log p(z[2) + log p(z)]

— logp(z) — log p(z[2)] +log p()

Only this part depends on z

log p(2) — log p(z[2)] + Dxw. [¢2(2) || p(2[2)]
log 4z(2)] + Dk [¢2(2) || p(27)]

Variational Lower Bound >0

Takeaway: L(0, ¢) becomes exact if q4(z|x) = py(z|x)

ii5)

VAEs - Training

Train by maximizing
£(0,0) = (Eang(z1e) 08 po(x12)) = KL (as(z1x)lIp(2) 2

1.
2.

Sample x from
.’L'|Z ~ N(/J'xlza z:a:|z)

Run input through encoder to get g4(z|x) N
Sample z from g4(z|x) using Ha)z | | Tg): |
" reparameterization” trick: 5

e ¢ ~N(0,1) Sample z from

® Z = lz|x +e®© zz|>< zlz NN(,“zlvazla:)

Run sampled z through decoder to get py(x|z) ‘uz@' l‘}zlw

Loss can be computed in closed form

T

VAEs - Sampling

To sample from the model:

1. Sample z ~ p(z) ‘ <
2. Run sampled z through Sample x from
z|z ~ N (fg|z: Zaz)
decoder to get py(x|2) /' ‘\
3. Sample x ~ py(x|z) to ‘ M|z Zx|:z ‘

generate new data

\ZL'

17

VAEs - Samples

Labeled Faces in the Wild

18

Q
(8]
(1]
(=N
(7p]
)
c
Q
e
(v}
-
=
o0
=]
(=]
=
e
T
o0
=
>
(=]
=
1
()]
<
>

QANANNNNNNNNNN SN NNNNNS
VAV OB LEALLL LB NN~
QAN M hbboveew~~
QAU ®IVVV e~~~
QOO ININMNHWEBBIVIVVI® W - ——
QOO0DHINHNNHMNHWEBIIVIV® ® - ——
QO0OVOHIMHMMMNNIIIVIS w - ——
QODOMNMMMMMDDIDD D = — —
QODOMMINMMMNMMDDD D D e = —
QOMOW MMM MMD®S DD e e = —
QOMME MMM N 00O e e o e e —
QOMM MMM "0 0000 e oo —
QAN 40808 0207000000 00 n o~ B~ o e
P T e N Nl
daddddfFrorrorrrrrsssn~~
Jaadadddororrorrrrsaaan~
dadadddorrrrrrTTIIINN
SddddagorrrrrrrrTrrrnN
AddTTTrrrrrrrdId™2r2rAN
SFTTTTTrrroro ORI RNNNNN

19

9_!0_#?_
oY
oY
=R
8o
B
S

ﬁ@t"ﬁ@@

Se
Ve
o
D@
D&
S
™

“on
£
=
=]
w
Q
)
(3]
£

ToRPRee B

2222 9¢v
29922999

VAEs - "

20

f

4

4

/
;.‘
444

4

)My A Ay
0 T T T T T T T W W}
MMHMHMHMM M8~
MM MEN MM mem s
MmmMmmmmmmmm

AT T T B B M M W M)
MMM MOMMO Mo
OOOMOMMMOM®O®O
ODOOOOOOO O
OO OO OO

~

NN NN NN
NN NNNNNN
NN NNNNN
OOy NN NN
O O O O O O O
(300 30 W W Wo Wa Wa N e
(292 5 o Wa Wa Wa Wa Wa
(2.2 X2 X2 X2 Xa Xa Xa Xa
2 X Ka Ka Xa Xa s Ka ksl
DA A

L2222222

]

)
P

0
<
>
©
=
2
=
=
(=)
o
0
7}
S
()
[}
n
L
<
>

21

Hold y fixed, vary z

VAEs - Class Conditional VAEs

4 ot23y¢ysé7eq9 Bl NRIBHEEEEK
9 01234956789 |5 1112131415)6171519)0
C O/ 23¥5CCTFT
Y 0123456789
2 01234Y567¢99
7 O1R3YS5E789
c d/ 2248707
| 01234561784
70123456789
/ 0123456789

Hold z fixed, vary y

22

Variational Lossy Autoencoder
(VLAE)

How to improve on VAEs?

e Reconstructed images are often blurry
e Simple decoder distribution py(x|z) lacks expressivity

e Due to diagonal covariance X ,,, all pixels are generated
independently from one another

e All entropy in the data must be explained by z

e Not just content and style, but local features like texture

e |dea: use a decoder capable of modelling local correlations

23

Autoregressive Models

e Define some ordering over pixels

e Chain rule of probability

p(x) = p(x1, x2, ..., Xd)
= p(x1)p(x2|x1)p(x3|x1,%2) - - .

p (xi|x1:i—1)
i—1

e Model p(xj|x1.j—1) with a neural network py and maximize log
likelihood

d
log pg(x) = Z log po (xi[x1:i~1)
i=1

24

PixelCNN

e Dependency on previous pixels
modelled by a (masked) CNN

Softmax loss
at each pixel

e Training for each location can be

done in parallel

e Sampling must be done

sequentially

e Powerful generative models in their
own right

25

Powerful Decoders

What happens if we use a powerful decoder like this?

e Good news: great for generative modelling

e Bad news: the model completely ignores the latent code

26

Powerful Decoders

First recall that the goal of designing an efficient coding protocol is to minimize the expected code
length of communicating x. To explain Bits-Back Coding, let’s first consider a more naive coding
scheme. VAE can be seen as a way to encode data in a two-part code: p(z) and p(x|z), where z
can be seen as the essence/structure of a datum and is encoded first and then the modeling error
(deviation from 2z’s structure) is encoded next. The expected code length under this naive coding
scheme for a given data distribution is hence:

Cnaive(%) = Exdata,z~q(alx) [~ log p(2) — log p(x|z)] 5)

This coding scheme is, however, inefficient. Bits-Back Coding improves on it by noticing that
the encoder distribution g(z|x) can be used to transmit additional information, up to H(g(z|x))
expected nats, as long as the receiver also has access to g(z[x). The decoding scheme works as
follows: a receiver first decodes z from p(z), then decodes x from p(x|z) and, by running the
same approximate posterior that the sender is using, decodes a secondary message from g(z|x).
Hence, to properly measure the code length of VAE's two-part code, we need to subtract the extra
information from g(z|x). Using Bit-Back Coding, the expected code length equates to the negative
variational lower bound or the so-called Helmholtz variational free energy, which means minimizing
code length is equivalent to maximizing the variational lower bound:

CBitsBack (X) = Ex~data z~q(zlx) l0g ¢(2|x) — log p(z) — log p(x|z)] ©6)
= Ex-data [—L£(x)] @

Casting the problem of optimizing VAE into designing an efficient coding scheme easily allows us
to reason when the latent code z will be used: the latent code z will be used when the two-part code
is an efficient code. Recalling that the lower-bound of expected code length for data is given by
the Shannon entropy of data generation distribution: H(data) = E.data [— 10g Pdata(x)], we can
analyze VAE’s coding efficiency:

ChitsBack(X) = Excdata,z~q(zx) (108 ¢(2|x) — log p(z) — log p(x|z)] @®
= Exqata [~ logp(x) + D1 (¢(2(x)[|p(2]x))] ®
> Exdata [~ 108 Paata(x) + D 1.(a(2]x)||p(2]x))] (10)

= H(data) + Ex-daea [Dicr(a(z]x)|[p(2/x))] an 27

Powerful Decoders

Another argument...
e What's the maximum ELBO?
B pgaa () [ELBO] < Eyrop... () [l08g Po(X)]
< Exmpanes (x) [108 Pdata(X)]
e What if p(x|z) = pdata(x)?
Expgsts [ELBO] = By, z~qllog p(x|2) + log p(z) — log q(z[x)]

= E, [log pdata(Xx) + E;[log p(z) — log q(z|x)]]
= Ex [log paata(x) — KL(q(z|x)||p(2))]

e q(z|x) will be set to p(z); z contains no information

28

More on this...

Recommended reading: Autoencoding a Single Bit

AUTOENCODING A SINGLE BIT

Here’s a seemingly silly idea: let’s try to encode a single bit of information with a variational autoencoder
(VAE). Our data set thus consists of two i.i.d. samples. In fact, here’s what it looks like:

data

‘We will attempt to autoencoder this data using a variational autoencoder with a single-dimensional z (after
all, one dimension should be sufficient), where p(z) is unit Gaussian, p(x | z) is Bernoulli, and ¢(z | z)is a

conditional Gaussian—a standard formulation of the VAE.

29

http://ruishu.io/2017/01/14/one-bit/

Weakening Models

e Hence there exists an information preference when a VAE is
optimized:
e Information that can be modelled locally by p(x|z) without
access to z will be encoded locally and only the remainder will
be encoded in z
e This property can be exploited to give us fine-grained control
over the kind of information included in the learned
representation
e Construct a decoder which is capable of modelling the part of
the information we don't want the latent code to capture

30

Explicit Information Placement

e Example: want a global representation for images that doesn’t
encode local information like textures

e Use a PixelCNN with limited receptive field, i.e.

Plocal (X‘Z) = H P (X,'|Z, XWindowAround (I))

1

e As long as XwindowAround (i) IS Smaller than x<j, piocal (x[2)
won't be able to model pyata(x) without dependence on z

31

Also: Learned Prior

e Additionally, the paper introduces learned priors using
autoregressive flows

e Repeatedly transform spherical Gaussian noise source with
invertible parameterized functions

e Show equivalence to a more expressive approximate posterior

Pex | 2)

32

Lossy Compression: MNIST

llllll IEIIIII

(a) Original test-set images (left) (b) Samples from VLAE
and “decompressioned” versions from
VLAE’s lossy code (right)

E [Dki(q(z|x)||p(z))] (number of bits used to encode an image on

average): 19.2 bits for VLAE, 37.3 bits for VAE
33

Lossy Compression: OMNIGLOT

(a) Original test-set images (left) (b) Samples from VLAE
and “decompressioned” versions from
VLAE’s lossy code (right)

34

Results: Density Estimation

Table 1: Statically Binarized MNIST

Model NLL Test
Normalizing flows (Rezende & Mohamed, 2015) 85.10
DRAW (Gregor et al., 2015) < 80.97
Discrete VAE (Rolfe, 2016) 81.01
PixelRNN (van den Oord et al., 2016a) 79.20
IAF VAE (Kingma et al., 2016) 79.88
AF VAE 79.30

VLAE 79.03

85

Results: Density Estimation

Table 2: Dynamically binarized MNIST

Model

NLL Test

Convolutional VAE + HVI (Salimans et al., 2014)
DLGM 2hl + IWAE (Burda et al., 2015a)

Discrete VAE (Rolfe, 2016)

LVAE (Kaae Sgnderby et al., 2016)
DRAW + VGP (Tran et al., 2015)

IAF VAE (Kingma et al., 2016)

81.94
82.90
80.04
81.74
<79.88
79.10

Unconditional Decoder
VLAE

87.55
78.53

Table 3: OMNIGLOT. [1] (Burda et al., 2015a),
[2] (Burda et al., 2015b), [3] (Gregor et al.,
2015), [4] (Gregor et al., 2016),

Model NLL Test
VAE [1] 106.31
IWAE [1] 103.38
RBM (500 hidden) [2] 100.46
DRAW [3] <96.50
Conv DRAW [4] <91.00
Unconditional Decoder 95.02
VLAE 90.98
'VLAE (fine-tuned) 89.83

Table 4: Caltech-101 Silhouettes. [1] (Born-
schein & Bengio, 2014), [2] (Cho et al., 2011),
[3] (Du et al, 2015), [4] (Rolfe, 2016), [5]
(Goessling & Amit, 2015),

Model NLL Test
RWS SBN [1] 1133
RBM [2] 107.8
NAIS NADE (3] 100.0
Discrete VAE [4] 97.6
SPARN [5] 88.48
Unconditional Decoder 89.26
VLAE 77.36

36

Results: CIFAR10

FRroOlv@E FI7ewl @

Dl el G R 0 ﬁalﬁlLﬂd
B KRR QN THLS o

MEE.hEII FEIIFSH!IE

4 213 s
E.‘Eﬁ W = e Bk
.ﬂﬂrw callE AN il

(a) 4x2 (b) 5x3

i ully @ FPRO0H Ve
ﬁm.ﬁ..:ﬂ By - | ¥ Lo
X I s oY e IR s
myﬁﬂiﬂq W e |
=2 ARSEET 5. EEE™-
SR NI T o BRI GE25
-HH..IE. ..H-.T'Eg

(c) x4 (d) 7x4 Grayscale

37

Results: CIFAR10

Method bits/dim <
Results with tractable likelihood models:

Uniform distribution [1] 8.00
Multivariate Gaussian [1] 4.70
NICE [2] 448
Deep GMMs [3] 4.00
Real NVP [4] 3.49
PixelCNN [1] 3.14
Gated PixelCNN [5] 3.03
PixelRNN [1] 3.00
PixelCNN++ [6] 2.92
Results with variationally trained latent-variable models:

Deep Diffusion [7] 5.40
Convolutional DRAW [8] 3.58
ResNet VAE with IAF [9] 3.11
ResNet VLAE 3.04
DenseNet VLAE 2.95

38

Conclusion

e Analyzed the condition under which the latent code in VAEs is
used

e Through carefully designing decoder network, able to control
what sort of information is stored in latent representations

e Proposed two complementary improvements to VAE
architecture shown to have strong performance empirically

39

Thanks ©

Learning the prior/posterior

-3l i i L L i 3l i H H H i J 3 i i
-3 -2 -1 0 1 2 3 =3 -2 -1 0 1 2 3 3 -2 -1] 1 2 3

40

	Autoencoders
	Variational Autoencoders (VAEs)
	Variational Lossy Autoencoder (VLAE)
	Thanks

