Variational Lossy Autoencoder

Chen et al.

Dylan Green
March 17, 2020
Autoencoders
Autoencoders

- Unsupervised deep learning model
- Loss: $\|x - \hat{x}\|^2$
- $\text{dim}(z) \ll \text{dim}(x)$
- Features should extract useful, high-level information from the input data
Applications - Visualization
Applications - Denoising Autoencoders
Applications - Unsupervised Feature Learning

Input data \mathcal{X} → Encoder \mathcal{Z} → Classifier \hat{y} → Loss function (Softmax, etc)

Fine-tune encoder jointly with classifier y
Autoencoders as “Generative” Models?

- What if we want to generate new data using this model?
 - Pick a random z, use decoder to generate new image

- **Problem:**
 - Model maps each x to a point in z-space
 - How to pick a ”good” z?
Variational Autoencoders (VAEs)
VAEs

- A probabilistic spin on autoencoders
 - Learn latent variables z from input data
 - Sample from the model to generate new data
- Intuition: x is an image, z encodes high-level information about the image (i.e. attributes, orientation, etc.)
• Assume a generative model with a latent variable z distributed according to some prior distribution $p(z)$
• The observed variable x is then distributed according to a conditional likelihood $p_\theta(x|z)$
• Sample in two steps:
 • $z \sim p(z)$
 • $x \sim p_\theta(x|z)$
• Marginal likelihood of the data under this model is then

$$p_\theta(x) = \int p_\theta(x, z)dz = \int p_\theta(x|z)p(z)dz$$
For the standard VAE:

- Choose $p(z) = \mathcal{N}(z|0, I)$
- Represent $p_\theta(x|z)$ with a neural network:
 - Can be thought of as a stochastic decoder network
 - Input: z, Outputs: mean $\mu_{x|z}$ and diagonal covariance $\Sigma_{x|z}$
• **Objective**: maximize marginal likelihood of training data:

\[
\max_{\theta} \sum_i \log p_{\theta}(x^{(i)})
\]

where

\[
p_{\theta}(x^{(i)}) = \int p_{\theta}(x^{(i)}|z)p(z)dz
\]

• **Problem**: This integral is intractable
• Potential fix: try Bayes’ rule:

\[p_\theta(x^{(i)}) = \frac{p_\theta(x^{(i)} \mid z)p_\theta(z)}{p_\theta(z \mid x^{(i)})} \]

• **Another problem:** \(p_\theta(z \mid x^{(i)}) \) is also intractable

• **Solution:** Introduce (stochastic) encoder network \(q_\phi(z \mid x^{(i)}) \)
 - \(q_\phi(z \mid x^{(i)}) \approx p_\theta(z \mid x^{(i)}) \)
 - Input: \(x \), Outputs: mean \(\mu_{z \mid x} \) and diagonal covariance \(\Sigma_{z \mid x} \)

• Jointly train \(q_\phi, p_\theta \)
Plug this in to marginal likelihood

\[\log p_\theta(x) = \log \int p_\theta(x, z) dz = \log \int q_\phi(z|x) \frac{p_\theta(z, x)}{q_\phi(z|x)} dz \]

\[\geq \mathbb{E}_{q_\phi(z|x)} \left[\log \frac{p_\theta(x, z)}{q_\phi(z|x)} \right] \quad \text{(Jensen’s Inequality)} \]

\[\triangleq \mathcal{L}(\theta, \phi) \]

\(\mathcal{L}(\theta, \phi) \) is the log Evidence Lower BOund, or ELBO
Rearranging:

$$\log p_{\theta}(x) \geq \left(\mathbb{E}_{z \sim q_{\phi}(z|x)} \log p_{\theta}(x|z) \right) - KL(q_{\phi}(z|x)||p(z))$$

- **Reconstruction Loss**
- **Regularization**

$$\mathcal{L}(\theta, \phi)$$ — VAE Objective
Another derivation:

\[
D_{KL} [q_x(z) \parallel p(z|x)] = \mathbb{E}_{z \sim q_x(z)} \left[\log q_x(z) - \log p(z|x) \right]
\]

\[
= \mathbb{E}_{z \sim q_x(z)} \left[\log q_x(z) - \log \frac{p(z, x)}{p(x)} \right]
\]

\[
= \mathbb{E}_{z \sim q_x(z)} \left[\log q_x(z) - \log p(z) - \log p(x|z) + \log p(x) \right]
\]

\[
= \mathbb{E}_{z \sim q_x(z)} \left[\log q_x(z) - \log p(z) - \log p(x|z) \right] + \log p(x)
\]

Only this part depends on \(z \)

Rearranging gives us:

\[
\log p(x) = -\mathbb{E}_{z \sim q_x(z)} \left[\log q_x(z) - \log p(z) - \log p(x|z) \right] + D_{KL} [q_x(z) \parallel p(z|x)]
\]

\[
= \mathbb{E}_{z \sim q_x(z)} \left[\log p(z) + \log p(x|z) - \log q_x(z) \right] + D_{KL} [q_x(z) \parallel p(z|x)]
\]

Variational Lower Bound \(\geq 0 \)

Takeaway: \(\mathcal{L}(\theta, \phi) \) becomes exact if \(q_\phi(z|x) = p_\theta(z|x) \)
VAEs - Training

Train by maximizing

\[\mathcal{L}(\theta, \phi) = \left(\mathbb{E}_{z \sim q_\phi(z|x)} \log p_\theta(x|z) \right) - KL(q_\phi(z|x) \| p(z)) \]

1. Run input through encoder to get \(q_\phi(z|x) \)
2. Sample \(z \) from \(q_\phi(z|x) \) using "reparameterization" trick:
 - \(\epsilon \sim \mathcal{N}(0, I) \)
 - \(z = \mu_{z|x} + \epsilon \odot \Sigma_{z|x} \)
3. Run sampled \(z \) through decoder to get \(p_\theta(x|z) \)
4. Loss can be computed in closed form
To sample from the model:

1. Sample $z \sim p(z)$
2. Run sampled z through decoder to get $p_\theta(x|z)$
3. Sample $x \sim p_\theta(x|z)$ to generate new data
VAEs - Samples

32x32 CIFAR-10

Labeled Faces in the Wild
VAEs - Moving Through Latent Space
VAEs - "Image Editing"
Hold y fixed, vary z
Hold z fixed, vary y
Variational Lossy Autoencoder (VLAE)
How to improve on VAEs?

- Reconstructed images are often blurry
- Simple decoder distribution $p_\theta(x|z)$ lacks expressivity
 - Due to diagonal covariance $\Sigma_{x|z}$, all pixels are generated independently from one another
 - All entropy in the data must be explained by z
 - Not just content and style, but local features like texture
- Idea: use a decoder capable of modelling local correlations
Autoregressive Models

- Define some ordering over pixels
- Chain rule of probability

\[
p(x) = p(x_1, x_2, \ldots, x_d) \\
= p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \ldots \\
= \prod_{i=1}^{d} p(x_i|x_{1:i-1})
\]

- Model \(p(x_i|x_{1:i-1}) \) with a neural network \(p_\theta \) and maximize log likelihood

\[
\log p_\theta(x) = \sum_{i=1}^{d} \log p_\theta(x_i|x_{1:i-1})
\]
PixelCNN

- Dependency on previous pixels modelled by a (masked) CNN
- Training for each location can be done in parallel
- Sampling must be done sequentially
- Powerful generative models in their own right
What happens if we use a powerful decoder like this?

- Good news: great for generative modelling
- Bad news: the model completely ignores the latent code
First recall that the goal of designing an efficient coding protocol is to minimize the expected code length of communicating x. To explain Bits-Back Coding, let’s first consider a more naive coding scheme. VAE can be seen as a way to encode data in a two-part code: $p(z)$ and $p(x|z)$, where z can be seen as the essence/structure of a datum and is encoded first and then the modeling error (deviation from z’s structure) is encoded next. The expected code length under this naive coding scheme for a given data distribution is hence:

$$C_{\text{naive}}(x) = \mathbb{E}_{x \sim \text{data}, z \sim q(z|x)} \left[-\log p(z) - \log p(x|z) \right]$$ (5)

This coding scheme is, however, inefficient. Bits-Back Coding improves on it by noticing that the encoder distribution $q(z|x)$ can be used to transmit additional information, up to $H(q(z|x))$ expected nats, as long as the receiver also has access to $q(z|x)$. The decoding scheme works as follows: a receiver first decodes z from $p(z)$, then decodes x from $p(x|z)$ and, by running the same approximate posterior that the sender is using, decodes a secondary message from $q(z|x)$. Hence, to properly measure the code length of VAE’s two-part code, we need to subtract the extra information from $q(z|x)$. Using Bit-Back Coding, the expected code length equates to the negative variational lower bound or the so-called Helmholtz variational free energy, which means minimizing code length is equivalent to maximizing the variational lower bound:

$$C_{\text{BitsBack}}(x) = \mathbb{E}_{x \sim \text{data}, z \sim q(z|x)} \left[\log q(z|x) - \log p(z) - \log p(x|z) \right]$$ (6)

$$= \mathbb{E}_{x \sim \text{data}} [-\mathcal{L}(x)]$$ (7)

Casting the problem of optimizing VAE into designing an efficient coding scheme easily allows us to reason when the latent code z will be used: the latent code z will be used when the two-part code is an efficient code. Recalling that the lower-bound of expected code length for data is given by the Shannon entropy of data generation distribution: $\mathcal{H}(\text{data}) = \mathbb{E}_{x \sim \text{data}} \left[-\log p_{\text{data}}(x) \right]$, we can analyze VAE’s coding efficiency:

$$C_{\text{BitsBack}}(x) = \mathbb{E}_{x \sim \text{data}, z \sim q(z|x)} \left[\log q(z|x) - \log p(z) - \log p(x|z) \right]$$ (8)

$$= \mathbb{E}_{x \sim \text{data}} \left[-\log p(x) + D_{KL}(q(z|x)||p(z|x)) \right]$$ (9)

$$\geq \mathbb{E}_{x \sim \text{data}} \left[-\log p_{\text{data}}(x) + D_{KL}(q(z|x)||p(z|x)) \right]$$ (10)

$$= \mathcal{H}(\text{data}) + \mathbb{E}_{x \sim \text{data}} \left[D_{KL}(q(z|x)||p(z|x)) \right]$$ (11)
Another argument...

- What’s the maximum ELBO?

$$E_{x \sim p_{\text{data}}(x)}[ELBO] \leq E_{x \sim p_{\text{data}}(x)}[\log p_\theta(x)] \leq E_{x \sim p_{\text{data}}(x)}[\log p_{\text{data}}(x)]$$

- What if $p(x|z) = p_{\text{data}}(x)$?

$$E_{x \sim p_{\text{data}}} [ELBO] = E_{x \sim p_{\text{data}}, z \sim q}[\log p(x|z) + \log p(z) - \log q(z|x)]$$
$$= E_x [\log p_{\text{data}}(x) + E_z[\log p(z) - \log q(z|x)]]$$
$$= E_x [\log p_{\text{data}}(x) - KL(q(z|x)||p(z))]$$

- $q(z|x)$ will be set to $p(z)$; z contains no information
Here’s a seemingly silly idea: let’s try to encode a single bit of information with a variational autoencoder (VAE). Our data set thus consists of two i.i.d. samples. In fact, here’s what it looks like:

```python
data = np.array([[0.],
                 [1.]])
```

We will attempt to autoencoder this data using a variational autoencoder with a single-dimensional z (after all, one dimension should be sufficient), where $p(z)$ is unit Gaussian, $p(x \mid z)$ is Bernoulli, and $q(z \mid x)$ is a conditional Gaussian—a standard formulation of the VAE.
Hence there exists an information preference when a VAE is optimized:

- Information that can be modelled locally by $p(x|z)$ without access to z will be encoded locally and only the remainder will be encoded in z

This property can be exploited to give us fine-grained control over the kind of information included in the learned representation:

- Construct a decoder which is capable of modelling the part of the information we don’t want the latent code to capture
• Example: want a global representation for images that doesn’t encode local information like textures

• Use a PixelCNN with limited receptive field, i.e.

\[p_{\text{local}} (x|z) = \prod_i p \left(x_i|z, x_{\text{WindowAround} (i)} \right) \]

• As long as \(x_{\text{WindowAround} (i)} \) is smaller than \(x_{<i} \), \(p_{\text{local}} (x|z) \) won’t be able to model \(p_{\text{data}}(x) \) without dependence on \(z \)
Also: Learned Prior

- Additionally, the paper introduces learned priors using autoregressive flows
- Repeatedly transform spherical Gaussian noise source with invertible parameterized functions
- Show equivalence to a more expressive approximate posterior
\[\mathbb{E} \left[D_{KL}(q(z|x)\|p(z)) \right] \] (number of bits used to encode an image on average): 19.2 bits for VLAЕ, 37.3 bits for VAE
(a) Original test-set images (left) and “decompressed” versions from VLAE’s lossy code (right)
Table 1: Statically Binarized MNIST

<table>
<thead>
<tr>
<th>Model</th>
<th>NLL Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalizing flows (Rezende & Mohamed, 2015)</td>
<td>85.10</td>
</tr>
<tr>
<td>DRAW (Gregor et al., 2015)</td>
<td>< 80.97</td>
</tr>
<tr>
<td>Discrete VAE (Rolfe, 2016)</td>
<td>81.01</td>
</tr>
<tr>
<td>PixelRNN (van den Oord et al., 2016a)</td>
<td>79.20</td>
</tr>
<tr>
<td>IAF VAE (Kingma et al., 2016)</td>
<td>79.88</td>
</tr>
<tr>
<td>AF VAE</td>
<td>79.30</td>
</tr>
<tr>
<td>VLAE</td>
<td>79.03</td>
</tr>
</tbody>
</table>
Table 2: Dynamically binarized MNIST

<table>
<thead>
<tr>
<th>Model</th>
<th>NLL Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolutional VAE + HVI (Salimans et al., 2014)</td>
<td>81.94</td>
</tr>
<tr>
<td>DLGM 2hl + IWAE (Burda et al., 2015a)</td>
<td>82.90</td>
</tr>
<tr>
<td>Discrete VAE (Rolfe, 2016)</td>
<td>80.04</td>
</tr>
<tr>
<td>LVAE (Kaae Sønderby et al., 2016)</td>
<td>81.74</td>
</tr>
<tr>
<td>DRAW + VGP (Tran et al., 2015)</td>
<td>< 79.88</td>
</tr>
<tr>
<td>IAF VAE (Kingma et al., 2016)</td>
<td>79.10</td>
</tr>
<tr>
<td>Unconditional Decoder</td>
<td>87.55</td>
</tr>
<tr>
<td>VLAE</td>
<td>78.53</td>
</tr>
</tbody>
</table>

Table 3: OMNIGLOT. [1] (Burda et al., 2015a), [2] (Burda et al., 2015b), [3] (Gregor et al., 2015), [4] (Gregor et al., 2016),

<table>
<thead>
<tr>
<th>Model</th>
<th>NLL Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAE [1]</td>
<td>106.31</td>
</tr>
<tr>
<td>IWAE [1]</td>
<td>103.38</td>
</tr>
<tr>
<td>RBM (500 hidden) [2]</td>
<td>100.46</td>
</tr>
<tr>
<td>DRAW [3]</td>
<td>< 96.50</td>
</tr>
<tr>
<td>Conv DRAW [4]</td>
<td>< 91.00</td>
</tr>
<tr>
<td>Unconditional Decoder</td>
<td>95.02</td>
</tr>
<tr>
<td>VLAE</td>
<td>90.98</td>
</tr>
<tr>
<td>VLAE (fine-tuned)</td>
<td>89.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>NLL Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWS SBN [1]</td>
<td>113.3</td>
</tr>
<tr>
<td>RBM [2]</td>
<td>107.8</td>
</tr>
<tr>
<td>NAIS NADE [3]</td>
<td>100.0</td>
</tr>
<tr>
<td>Discrete VAE [4]</td>
<td>97.6</td>
</tr>
<tr>
<td>SpARN [5]</td>
<td>88.48</td>
</tr>
<tr>
<td>Unconditional Decoder</td>
<td>89.26</td>
</tr>
<tr>
<td>VLAE</td>
<td>77.36</td>
</tr>
</tbody>
</table>
Results: CIFAR10

(a) 4x2

(b) 5x3

(c) 7x4

(d) 7x4 Grayscale
Results: CIFAR10

<table>
<thead>
<tr>
<th>Method</th>
<th>bits/dim ≤</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results with tractable likelihood models:</td>
<td></td>
</tr>
<tr>
<td>Uniform distribution [1]</td>
<td>8.00</td>
</tr>
<tr>
<td>Multivariate Gaussian [1]</td>
<td>4.70</td>
</tr>
<tr>
<td>NICE [2]</td>
<td>4.48</td>
</tr>
<tr>
<td>Deep GMMs [3]</td>
<td>4.00</td>
</tr>
<tr>
<td>Real NVP [4]</td>
<td>3.49</td>
</tr>
<tr>
<td>PixelCNN [1]</td>
<td>3.14</td>
</tr>
<tr>
<td>Gated PixelCNN [5]</td>
<td>3.03</td>
</tr>
<tr>
<td>PixelRNN [1]</td>
<td>3.00</td>
</tr>
<tr>
<td>PixelCNN++ [6]</td>
<td>2.92</td>
</tr>
<tr>
<td>Results with variationally trained latent-variable models:</td>
<td></td>
</tr>
<tr>
<td>Deep Diffusion [7]</td>
<td>5.40</td>
</tr>
<tr>
<td>Convolutional DRAW [8]</td>
<td>3.58</td>
</tr>
<tr>
<td>ResNet VAE with IAF [9]</td>
<td>3.11</td>
</tr>
<tr>
<td>ResNet VLAE</td>
<td>3.04</td>
</tr>
<tr>
<td>DenseNet VLAE</td>
<td>2.95</td>
</tr>
</tbody>
</table>
Conclusion

- Analyzed the condition under which the latent code in VAEs is used
- Through carefully designing decoder network, able to control what sort of information is stored in latent representations
- Proposed two complementary improvements to VAE architecture shown to have strong performance empirically
Thanks 😊
Learning the prior/posterior