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Autoencoders



Autoencoders

• Unsupervised deep learning

model

• Loss: ‖x − x̂‖2

• dim(z)� dim(x)

• Features should extract

useful, high-level information

from the input data
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Applications - Data Compression
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Applications - Visualization
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Applications - Denoising Autoencoders
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Applications - Unsupervised Feature Learning
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Autoencoders as ”Generative” Models?

• What if we want to generate new data using this model?

• Pick a random z , use decoder to generate new image

• Problem:

• Model maps each x to a point in z-space

• How to pick a ”good” z?
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Variational Autoencoders (VAEs)



VAEs

• A probabilistic spin on autoencoders

• Learn latent variables z from input data

• Sample from the model to generate new data

• Intuition: x is an image, z encodes high-level information

about the image (i.e. attributes, orientation, etc.)
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VAEs

• Assume a generative model with a latent variable z

distributed according to some prior distribution p(z)

• The observed variable x is then distributed according to a

conditional likelihood pθ(x |z)

• Sample in two steps:

• z ∼ p(z)

• x ∼ pθ(x |z)

• Marginal likelihood of the data under this model is then

pθ(x) =

∫
pθ(x , z)dz =

∫
pθ(x |z)p(z)dz

9



VAEs

For the standard VAE:

• Choose p(z) = N (z |0, I )
• Represent pθ(x |z) with a neural network:

• Can be thought of as a stochastic decoder network

• Input: z , Outputs: mean µx|z and diagonal covariance Σx|z
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VAEs - Training

• Objective: maximize marginal likelihood of training data:

max
θ

∑
i

log pθ(x (i))

where

pθ(x (i)) =

∫
pθ(x (i)|z)p(z)dz

• Problem: This integral is intractable
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VAEs - Training

• Potential fix: try Bayes’ rule:

pθ(x (i)) =
pθ(x (i) | z)pθ(z)

pθ(z | x (i))

• Another problem: pθ(z | x (i)) is also intractable

• Solution: Introduce (stochastic) encoder network qφ(z | x (i))
• qφ(z | x (i)) ≈ pθ(z | x (i))
• Input: x , Outputs: mean µz|x and diagonal covariance Σz|x

• Jointly train qφ, pθ
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VAEs - ELBO

Plug this in to marginal likelihood

log pθ(x) = log

∫
pθ(x , z)dz

= log

∫
qφ(z |x)

pθ(z , x)

qφ(z |x)
dz

≥ Eqφ(z|x)

[
log

pθ(x , z)

qφ(z |x)

]
(Jensen’s Inequality)

, L(θ, φ)

L(θ, φ) is the log Evidence Lower BOund, or ELBO
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VAEs - ELBO

Rearranging:

log pθ(x) ≥
(
Ez∼qφ(z|x) log pθ(x |z)

)
︸ ︷︷ ︸

Reconstruction Loss

−KL (qφ(z |x)||p(z))︸ ︷︷ ︸
Regularization︸ ︷︷ ︸

L(θ,φ)−VAE Objective
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VAEs - ELBO

Another derivation:

Rearranging gives us:

Takeaway: L(θ, φ) becomes exact if qφ(z |x) = pθ(z |x)
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VAEs - Training

Train by maximizing

L(θ, φ) =
(
Ez∼qφ(z|x) log pθ(x |z)

)
−KL (qφ(z |x)||p(z))

1. Run input through encoder to get qφ(z |x)

2. Sample z from qφ(z |x) using
”reparameterization” trick:

• ε ∼ N (0, I )

• z = µz|x + ε� Σz|x

3. Run sampled z through decoder to get pθ(x |z)

4. Loss can be computed in closed form
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VAEs - Sampling

To sample from the model:

1. Sample z ∼ p(z)

2. Run sampled z through

decoder to get pθ(x |z)

3. Sample x ∼ pθ(x |z) to

generate new data
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VAEs - Samples
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VAEs - Moving Through Latent Space
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VAEs - ”Image Editing”
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VAEs - Class Conditional VAEs

Hold y fixed, vary z
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VAEs - Class Conditional VAEs

Hold z fixed, vary y

22



Variational Lossy Autoencoder

(VLAE)



How to improve on VAEs?

• Reconstructed images are often blurry

• Simple decoder distribution pθ(x |z) lacks expressivity

• Due to diagonal covariance Σx|z , all pixels are generated

independently from one another

• All entropy in the data must be explained by z

• Not just content and style, but local features like texture

• Idea: use a decoder capable of modelling local correlations
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Autoregressive Models

• Define some ordering over pixels

• Chain rule of probability

p(x) = p(x1, x2, . . . , xd)

= p(x1)p(x2|x1)p(x3|x1, x2) . . .

=
d∏

i=1

p (xi |x1:i−1)

• Model p (xi |x1:i−1) with a neural network pθ and maximize log

likelihood

log pθ(x) =
d∑

i=1

log pθ (xi |x1:i−1)

24



PixelCNN

• Dependency on previous pixels

modelled by a (masked) CNN

• Training for each location can be

done in parallel

• Sampling must be done

sequentially

• Powerful generative models in their

own right
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Powerful Decoders

What happens if we use a powerful decoder like this?

• Good news: great for generative modelling

• Bad news: the model completely ignores the latent code

26



Powerful Decoders
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Powerful Decoders

Another argument...

• What’s the maximum ELBO?

Ex∼pdata (x)[ELBO] ≤ Ex∼pdata (x) [log pθ(x)]

≤ Ex∼pdata (x) [log pdata(x)]

• What if p(x |z) = pdata(x)?

Ex∼pdata [ELBO] = Ex∼pdata ,z∼q[log p(x |z) + log p(z)− log q(z |x)]

= Ex [log pdata(x) + Ez [log p(z)− log q(z |x)]]

= Ex [log pdata(x)− KL(q(z |x)||p(z))]

• q(z |x) will be set to p(z); z contains no information
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More on this...

Recommended reading: Autoencoding a Single Bit
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http://ruishu.io/2017/01/14/one-bit/


Weakening Models

• Hence there exists an information preference when a VAE is
optimized:

• Information that can be modelled locally by p(x |z) without

access to z will be encoded locally and only the remainder will

be encoded in z

• This property can be exploited to give us fine-grained control
over the kind of information included in the learned
representation

• Construct a decoder which is capable of modelling the part of

the information we don’t want the latent code to capture
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Explicit Information Placement

• Example: want a global representation for images that doesn’t

encode local information like textures

• Use a PixelCNN with limited receptive field, i.e.

plocal (x|z) =
∏
i

p
(
xi |z, xWindowAround (i)

)
• As long as xWindowAround (i) is smaller than x<i , plocal (x|z)

won’t be able to model pdata(x) without dependence on z
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Also: Learned Prior

• Additionally, the paper introduces learned priors using

autoregressive flows

• Repeatedly transform spherical Gaussian noise source with

invertible parameterized functions

• Show equivalence to a more expressive approximate posterior
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Lossy Compression: MNIST

E [DKL(q(z|x)‖p(z))] (number of bits used to encode an image on

average): 19.2 bits for VLAE, 37.3 bits for VAE
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Lossy Compression: OMNIGLOT
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Results: Density Estimation
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Results: Density Estimation
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Results: CIFAR10
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Results: CIFAR10
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Conclusion

• Analyzed the condition under which the latent code in VAEs is

used

• Through carefully designing decoder network, able to control

what sort of information is stored in latent representations

• Proposed two complementary improvements to VAE

architecture shown to have strong performance empirically
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Thanks



Learning the prior/posterior
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