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Why produce samples?

Is artificial intelligence set to become
art’s next medium?

Al artwork sells for $432,500 — nearly 45 times its high
estimate — as Christie’s becomes the first auction house to offer
a work of art created by an algorithm

The portraitin its gilt frame depicts a portly gentleman, possibly French and — to judge by his dark frockcoat and plain
white collar —a man of the church. The work appears unfinished: the facial features are somewhat indistinct and there
are blank areas of canvas. Oddly, the whole composition is displaced slightly to the north-west. A label on the wall
states that the sitter is a man named Edmond Belamy, but the giveaway clue as to the origins of the work is the artist’s
signature at the bottom right. In cursive Gallic script it reads:

min max E;[log(D(x))] + E.[log(1 — D(G(%

x

)]

mage © Obvious
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Generative models: a traditional way

e Maximum likelihood: maxy Ex.p [log g, (X)]

e Equivalent: miny KL(PP||Qy) = miny [ p(z) log (Z(é)) dz
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Traditional models for images

e 1987-style generative model of faces (Eigenface via Alex Egg)

e Can do fancier versions, of course...

e Usually based on Gaussian noise = Lo loss


http://www.eggie5.com/111-nightmare-eigenface
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Next-frame video prediction

Ground Truth MSE Adversarial

[Lotter+ 2016]
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Trick a discriminator [Goodfellow+ NeurlPS-14]
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Trick a discriminator [Goodfellow+ NeurlPS-14]

Target (IP)
Generator ((Qp)

No way! Pr(real) = 0.03

Umm... Pr(real) = 0.48
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Generator networks

e How to specify (J,?
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‘ G(;)
[Radford+ ICLR-16]
e Z ~ 7 = Uniform ([—1, 1]'%)

e Gy i [1,1]1% — X, Gy(2) ~ O,
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GANs in equations

e Tricking the discriminator:

min m$X EX]]EP[lOg D, (X)] + % E‘: log(1 — Dy(Y))]

e Using the generator network for

min mgx EX@P[Iog D, (X)] + 5 ZIEZ[IOg(l — Dy (Gy(2)))]

e Can do alternating gradient descent!



Original paper's results [Goodfellow+ NeurlPS-14]
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DCGAN results [Radford+ ICLR-16]
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Training instability

Running code from [Salimans+ Neur|PS-16]:
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One view: distances between distributions

e What happens when D, is at its optimum?

p(x)
p(z)+ay(x)

e If distributions have densities, D7 (z) =

o If D, stays optimal throughout, 0 tries to minimize

1 i X 1 1 i
— log p(X) + — E |log
2L T p(X) +ap(X) ] 27~ ]

which is JS(PP, Qy) — log 2
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JS with disjoint support [Arjovsky/Bottou ICLR-17]

1 ) p(z) N
IS(P, Q) = 2/ ()log 5

1 9 ()
2/%( T S

e If P and (), have (almost) disjoint support

%/p(a:) log p(@) dx

()
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JS with disjoint support [Arjovsky/Bottou ICLR-17]

1 ) p(z) N
IS(2, ) = 5 [ pla)log L

1 %()
2/%( T S

e If P and (), have (almost) disjoint support

> [Pe)tog 2 da = 7 [ (e) og(2)dz = 1082

2p(z) 2
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JS with disjoint support [Arjovsky/Bottou ICLR-17]

1 ) p(z) N
IS(2, ) = 5 [ pla)log L

1 %()
2/"’9( I

e If P and (), have (almost) disjoint support

> [ #ta)o ”;Z’)) dz = 3 [ p(e)log(2)dz = Jlog?

so JS(IP,0y) = log 2
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Discriminator point of view
Target (IP)

Generator (Qp)

(1 don't know how to do any better...
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How likely is disjoint support?

e At initialization, pretty reasonable:

N R64X64X3

e Remember we might have Gy : R1%

e Forusual Gy, () is supported on a countable union of
manifolds with dim < 100

e “Natural image manifold” usually considered low-dim

e No chance that they'd align at init, so JS(I?, Q) = log 2
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A heuristic partial workaround

Original GANs almost never use the minimax game

m1nm$X§X@P[IOgD¢(X)] % ,ﬂ]:‘: log(1 — Dy (Y))]

maxy log D, (Gy(Z)), not miny log(1 — D, (Gy(2)))

If D, is near-perfect, near log 0 instead of log 1
0

i

0.0 0.2 0.4 0.6 0.8 1.0

When D, is near-perfect, makes it unstable instead of stuck
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Better Solution 1: Optimal Transport to the
rescue

e Real problem: JS is not continuous in the weak topology
= Have ), — Q where JS(Q,,, Q) =log2 -» 0

e \What distances are?

e One nice choice: Wasserstein

W, (P,Q)" = inf E d(X,Y)

e Especially because of Kantorovich-Rubinstein duality:

Wi(P,Q) = sup E [f(X)] - E [f(V)]

Fillfllp=t 4 -
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The Wasserstein distance

W(P,Q) = sup E [f(X)] - E [f(V)]

fill =<1 4~ e

f : X — Ris a 1-Lipschitz critic function

|f(z)—f(y)|
@ T _ sup,y | VF(2)|

| fllLip = sup, e

lz—yl

Turns out Wis continuous: if Qg — P, then W(Q,,P) — 0



WGAN [Arjovsky/Chintala/Bottou ICML-17]

e Idea: turn discriminator D, into a critic f
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WGAN [Arjovsky/Chintala/Bottou ICML-17]

Idea: turn discriminator D, into a critic f

Need to enforce || fi ||Lip <1

fzp(a?) — UL(bL + WLUL—l(bL—1 + Wi ))
so for usual deep nets,
|follup < llozlupWellllor—1|l--- [[Wi]

WGANS: just bound ||W; || < C'if ||oy|| < 1,
then ||W; || < \/didi1C, and ||y || < C%\/do [11 d:

This turns out not to be a great idea.
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WGAN-GP [Gulrajani+ NeurlPS-17]
Controlling ||V f(X)|| everywhere is hard

Instead, control ||V f(X)|| on average, near the data

E (|Vefs (X)) —1)2, S between P and O,
X~S

Specifically: X = X + (1 — 8)Y, 8 ~ Uniform([0, 1])

Works well! But...does it really estimate Wasserstein?


https://arxiv.org/abs/1704.00028
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Solution 2: add noise

Can keep JS if we make the problem harder

Use X + ¢, Y + &' for some independent, full-dim noise €
But...how much noise € to add? Also need more samples.
If e ~ N(0,~I) and v — 0, get [Mescheder+ NeurlPS-17]

VE[(1 - D,)?(|V log(Dy)|] + 7 E | D2 ||V log(D,))|?]

Same kind of gradient penalty!

Can also simplify to e.g. [Mescheder+ ICML-18]

v E (1D (X))
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https://arxiv.org/abs/1801.04406

Solution 3: Spectral norm [Miyato+ ICLR-18]
Regular deep nets: fy = o (Wyfo—1(x) + by)

Spectral normalization: f; = o ( ||Wl ] Wefo_1(x) + bg)
ell2

|[Wl|2 1= sup,. = Omax (W) is the spectral norm

Guarantees || f|lLip <1

Faster to evaluate than gradient penalties

Not as well understood yet
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Spectral normalization: f; = o ( ||Wl ] Wefo_1(x) + bg)
ell2

|[Wl|2 1= sup,. = Omax (W) is the spectral norm

Guarantees® || f|lLip <1

Faster to evaluate than gradient penalties

Not as well understood yet


https://arxiv.org/abs/1802.05957

New samples [Mescheder+ ICML-18]



https://arxiv.org/abs/1801.04406

How to evaluate?




FID [Heusel+ NeurlPS-17] and KID [Binkowski+ ICLR-18]

e Consider distance between distributions of image features

e Features ¢(x) from a pretrained ImageNet classifier


https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1801.01401
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FID [Heusel+ NeurlPS-17] and KID [Binkowski+ ICLR-18]

e Consider distance between distributions of image features

e Features ¢(x) from a pretrained ImageNet classifier

1
e FID: ||pp — poy, ||* + Tr (EP + 3, —2(ZpZg, )2 )

= Estimator very biased, small variance

e KID: use Maximum Mean Discrepancy instead
» Similar distance with unbiased, ~normal estimator!


https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1801.01401

Comparing approaches [Kurach+ ICML-19]

250 Dataset = celebahql28

200

150

FID

100

50



https://arxiv.org/abs/1807.04720

Maximum Mean Discrepancy

MMD(P, ):f°||?|1|1p<1 E A= E [F(Y))

HfH%k is smoothness induced by kernel k: X X X = R
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Maximum Mean Discrepancy

MMD(P,Q) = sup E [f(X)] - E [f(V)]
£l fllag, <1 4~F r~Q

||fHHk is smoothness induced by kernel k: X X X = R
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Maximum Mean Discrepancy

MMD(P,Q) = sup E [f(X)]— E [f(Y)]
Fill fllg, <1 5~F Y~Q

||f||%k is smoothness induced by kernel k: X X X = R
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Maximum Mean Discrepancy

MMD(P, Q) = sup E [f(X)] - E [f(V)]
£l fllag, <1 A~F r~Q

||f||Hk is smoothness induced by kernel k: X X X = R

Optimal f analytically: f*(t) o< Ex.p k(t, X) — Ev.q k(t,Y)
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Estimating MMD
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Estimating MMD

MMD;(P,0) = E [K(X, X+ E [k(V,V)]=2 E [k(X,)

~Y

—_— 2
MMD, (X,Y) = mean(Kxx) + mean(Kyy) — 2mean(K xy )
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MMD models [Li+ ICML-15, Dziugaite+ UAI-15]

— .

e No need for a discriminator - just minimize MMDy,!

e Continuous loss
Critic

Generator ((Qp) .
2
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MMD models [Li+ ICML-15, Dziugaite+ UAI-15]

— .

e No need for a discriminator - just minimize MMDy,!

e Continuous loss
Target (IP)

Critic

Generator ((Qp)
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e No need for a discriminator - just minimize MMDy,!

e Continuous loss

Critic Target (I
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MMD models [Li+ ICML-15, Dziugaite+ UAI-15]


https://arxiv.org/abs/1502.02761
https://arxiv.org/abs/1505.03906

MMD models [Li+ ICML-15, Dziugaite+ UAI-15]

MNIST, mix of Gaussian kernels
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MMD models [Li+ ICML-15, Dziugaite+ UAI-15]

MNIST, mix of Gaussian kernels
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Celeb-A, mix of rational quadratic + linear kernels



https://arxiv.org/abs/1502.02761
https://arxiv.org/abs/1505.03906

Celeb-A, mix of rational quadratic + linear kernels



https://arxiv.org/abs/1502.02761
https://arxiv.org/abs/1505.03906

MMD loss with a smarter kernel

k(z,y) = kiop (&(z), d(y))
e ¢: X — R from pretrained Inception net

* kiop simple: exponentiated quadratic or polynomial
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MMD loss with a smarter kernel

k(z,y) = kiop (&(z), H(y))
e ¢: X — R from pretrained Inception net

* kiop simple: exponentiated quadratic or polynomial




MMD loss with a smarter kernel

k(z,y) = kiop (9(2), #(y))

We just got adversarial examples!
* kmp bomial

adversarial
perturbation

é] 88% tabby cat 99% guacamole
o [anishathalye/obfuscated-gradients]


https://github.com/anishathalye/obfuscated-gradients

Optimized MMD: MMD GANs [Li+ NeurlPS-17]

e Don't just use one kernel, use a class parameterized by :

k?,b (ZB, y) — ktop (¢¢ (CB), ¢¢ (y))


https://arxiv.org/abs/1705.08584
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Optimized MMD: MMD GANs [Li+ NeurlPS-17]

e Don't just use one kernel, use a class parameterized by :

k?,b (ZE, y) — ktop (¢¢ (ZB), q5¢ (y))

e New distance based on all these kernels:

DMMD (IP), ) — Sup MMD¢ (IP), )
Yevw

e Turns out that Dypup isn't continuous: have — [P but
DMMD( ,P) - 0

e Scaled MMD GANS [Arbel+ NeurlPS-18] correct Dypvp with a
gradient penalty to make it continuous


https://arxiv.org/abs/1705.08584
https://arxiv.org/abs/1804.11565
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Why MMD GANs?
* "Easy parts’ ol the gptimization done in closed form

4 6 8
generator iterations

ik

x 104

SN-SMMDGAN
SN-SWGAN
Sobolev-GAN
SN-GAN
WGAN-GP
MMDGAN-GP-L2



StyleGANSs [Karras+ 2018]

Latent z € 2

v

Normalize

v

Fully-connected
|

PixelNorm
|

Conv 3x3

I
PixelNorm

l 4x4

Upsample

Conv 3x3

PixelNorm
|

Conv 3x3

|
PixelNorm

l 8x3

(a) Traditional

Latent z € Z

v

Normalize

Mapping
network f

FC

FC

FC

FC

FC

FC

FC

FC

style
—> AdaIN
[

:
4

Synthesis network g

Const 4x4x512

Conv 3x3

i 4x4

Upsample
[
Conv 3x3

style :

—>» AdalN

[
Conv 3x3

Qe
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Noise

style d—)(
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(b) Style-based generator



https://github.com/NVlabs/stylegan

StyleGAN: latent structure



StyleGAN: local noise

(a) Generated image (b) Stochastic variation (c) Standard deviation




StyleGANs on a different domain [@roadrunning01]


https://twitter.com/roadrunning01/status/1095183075833757701

Finding samples you want pJitkrittum+ ICML-19]

If we want to find “more samples like { X }":

min MM, ({X: )7, (G (Z0) Y1)

Output Output

Input Input a K 9
Color & Color & s>

(a) Samples from DCGAN (b) Input: digit 3 in red (¢) Input: digit 5 in green


https://arxiv.org/abs/1905.05882

Finding samples you want pJitkrittum+ ICML-19]



https://arxiv.org/abs/1905.05882

Conditional GANs and BigGAN

e Conditional GANSs: [Mirza+ 2014]
= Just add a class label as input to Gy and D,

e BigGAN [Brock+ ICLR-19]: @ bunch of tricks to make it huge



https://arxiv.org/abs/https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1809.11096

Image-to-image translation [Isola+ CVPR-17]

o G

Did

D

T T

Figure 2: Training a conditional GAN to map edges—photo. The
discriminator, I, learns to classify between fake (synthesized by
the generator) and real {edge, photo} tuples. The generator, G,
learns to fool the discriminator. Unlike an unconditional GAN,
both the generator and discriminator observe the input edge map.


https://arxiv.org/abs/1611.07004

Image-to-image translation [Isola+ CVPR-17]

Labels to Street Scene Labels to Facade BW to Color

output
Edges to Photo

input output


https://arxiv.org/abs/1611.07004

CycleGAN [Zhu+ ICCV-17]

Monet < Photos | Zebras . Horses Summer . Winter

photo —>Monet E horse —» zebra : winter —> summer

Phtograph - . Van Gogh ‘ zanne



https://junyanz.github.io/CycleGAN/

Pose-to-image translation [Chan+ 2018]


https://carolineec.github.io/everybody_dance_now/

DeepFakes



More

e Optimal transport stuff:
= Gabriel Peyre: Optimal transport for machine learning talk

= Peyré and Cuturi, Computational Optimal Transport book

= Kantorovich Initiative: kantorovich.org

= Pacific Interdisciplinary Hub on Optimal Transport

e GANs / generative models...so much.


https://www.youtube.com/watch?v=mITml5ZpqM8
https://arxiv.org/abs/1803.00567
https://kantorovich.org/
https://www.pims.math.ca/collaborative-research-groups/pihot

