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Maximum likelihood: 

Equivalent: 
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Traditional models for imagesTraditional models for images
1987-style generative model of faces (Eigenface via ) 

Can do fancier versions, of course…

Usually based on Gaussian noise  loss

Alex Egg

http://www.eggie5.com/111-nightmare-eigenface
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Next-frame video predictionNext-frame video prediction

[ ]Lotter+ 2016

https://arxiv.org/abs/1511.06380
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Trick a discriminator Trick a discriminator [[ ]]Goodfellow+ NeurIPS-14Goodfellow+ NeurIPS-14

Generator ( )
Discriminator

Target ( )

Is this real? No way! 
:( I'll try harder… ⋮

Is this real? Umm… 

https://arxiv.org/abs/1406.2661


Generator networksGenerator networks
How to specify ? 

[ ]

, 

Radford+ ICLR-16

https://arxiv.org/abs/1511.06434
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GANs in equationsGANs in equations
Tricking the discriminator:

Using the generator network for :

Can do alternating gradient descent!



Original paper's results Original paper's results [[ ]]

  

Goodfellow+ NeurIPS-14Goodfellow+ NeurIPS-14

https://arxiv.org/abs/1406.2661


DCGAN results DCGAN results [[ ]]Radford+ ICLR-16Radford+ ICLR-16

https://arxiv.org/abs/1511.06434
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Training instabilityTraining instability
Running code from [ ]:Salimans+ NeurIPS-16

Run 1, epoch 900 Run 2, epoch 5

https://arxiv.org/abs/1606.03498
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One view: distances between distributionsOne view: distances between distributions
What happens when  is at its optimum?

If distributions have densities, 

If  stays optimal throughout,  tries to minimize

which is 
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JS with disjoint support JS with disjoint support [[ ]]

If  and  have (almost) disjoint support

so 

Arjovsky/Bottou ICLR-17Arjovsky/Bottou ICLR-17

https://arxiv.org/abs/1701.04862
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Discriminator point of viewDiscriminator point of view

Generator ( )
Discriminator

Target ( )

Is this real? No way! 

:( I don't know how to do any better…
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How likely is disjoint support?How likely is disjoint support?
At initialization, pretty reasonable:

: :

Remember we might have 

For usual ,  is supported on a countable union of 
manifolds with dim 

“Natural image manifold” usually considered low-dim

No chance that they'd align at init, so 
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A heuristic partial workaroundA heuristic partial workaround
Original GANs almost never use the minimax game

If  is near-perfect, near  instead of  

When  is near-perfect, makes it unstable instead of stuck
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Better Solution 1: Optimal Transport to theBetter Solution 1: Optimal Transport to the
rescuerescue

Real problem:  is not continuous in the weak topology
Have  where 

What distances are?

One nice choice: Wasserstein

Especially because of Kantorovich-Rubinstein duality:



The Wasserstein distanceThe Wasserstein distance

 is a -Lipschitz critic function

Turns out  is continuous: if , then 



The Wasserstein distanceThe Wasserstein distance

 is a -Lipschitz critic function

Turns out  is continuous: if , then 



The Wasserstein distanceThe Wasserstein distance

 is a -Lipschitz critic function

Turns out  is continuous: if , then 



WGAN WGAN [[ ]]

Idea: turn discriminator  into a critic 

Need to enforce 

Arjovsky/Chintala/Bottou ICML-17Arjovsky/Chintala/Bottou ICML-17

https://arxiv.org/abs/1701.07875


WGAN WGAN [[ ]]

Idea: turn discriminator  into a critic 

Need to enforce 

so for usual deep nets,

Arjovsky/Chintala/Bottou ICML-17Arjovsky/Chintala/Bottou ICML-17

https://arxiv.org/abs/1701.07875


WGAN WGAN [[ ]]

Idea: turn discriminator  into a critic 

Need to enforce 

so for usual deep nets,

WGANs: just bound ; if ,  

then , and 

Arjovsky/Chintala/Bottou ICML-17Arjovsky/Chintala/Bottou ICML-17

https://arxiv.org/abs/1701.07875


WGAN WGAN [[ ]]

Idea: turn discriminator  into a critic 

Need to enforce 

so for usual deep nets,

WGANs: just bound ; if ,  

then , and 

This turns out not to be a great idea.

Arjovsky/Chintala/Bottou ICML-17Arjovsky/Chintala/Bottou ICML-17

https://arxiv.org/abs/1701.07875
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WGAN-GP WGAN-GP [[ ]]

Controlling  everywhere is hard

Instead, control  on average, near the data

Speci�cally: , 

Works well! But…does it really estimate Wasserstein?

Gulrajani+ NeurIPS-17Gulrajani+ NeurIPS-17

https://arxiv.org/abs/1704.00028
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Solution 2: add noiseSolution 2: add noise
Can keep JS if we make the problem harder

Use ,  for some independent, full-dim noise 

But…how much noise  to add? Also need more samples.

If  and , get [ ]

Same kind of gradient penalty!

Can also simplify to e.g. [ ]

Mescheder+ NeurIPS-17

Mescheder+ ICML-18

https://arxiv.org/abs/1705.10461
https://arxiv.org/abs/1801.04406
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Regular deep nets: 

Spectral normalization: 

 is the spectral norm

Guarantees  

Faster to evaluate than gradient penalties

Not as well understood yet

Miyato+ ICLR-18Miyato+ ICLR-18

https://arxiv.org/abs/1802.05957


New samples New samples [[ ]]Mescheder+ ICML-18Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


How to evaluate?How to evaluate?
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FID FID [[ ]] and KID  and KID [[ ]]

Consider distance between distributions of image features

Features  from a pretrained ImageNet classi�er

FID: 

Estimator very biased, small variance

KID: use Maximum Mean Discrepancy instead
Similar distance with unbiased, ~normal estimator!

Heusel+ NeurIPS-17Heusel+ NeurIPS-17 Bińkowski+ ICLR-18Bińkowski+ ICLR-18

https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1801.01401


Comparing approaches Comparing approaches [[ ]]Kurach+ ICML-19Kurach+ ICML-19

https://arxiv.org/abs/1807.04720
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Optimal  analytically: 
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MMD loss with a smarter kernelMMD loss with a smarter kernel

 from pretrained Inception net

 simple: exponentiated quadratic or polynomial

  

We just got adversarial examples!

[ ]anishathalye/obfuscated-gradients

https://github.com/anishathalye/obfuscated-gradients
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Optimized MMD: MMD GANs Optimized MMD: MMD GANs [[ ]]

Don't just use one kernel, use a class parameterized by :

New distance based on all these kernels:

Turns out that  isn't continuous: have  but 

Scaled MMD GANs [ ] correct  with a
gradient penalty to make it continuous

Li+ NeurIPS-17Li+ NeurIPS-17

Arbel+ NeurIPS-18

https://arxiv.org/abs/1705.08584
https://arxiv.org/abs/1804.11565


Why MMD GANs?Why MMD GANs?
“Easy parts” of the optimization done in closed form



Why MMD GANs?Why MMD GANs?
“Easy parts” of the optimization done in closed form



Why MMD GANs?Why MMD GANs?
“Easy parts” of the optimization done in closed form



Why MMD GANs?Why MMD GANs?
“Easy parts” of the optimization done in closed form



Why MMD GANs?Why MMD GANs?
“Easy parts” of the optimization done in closed form



StyleGANs StyleGANs [[ ]]Karras+ 2018Karras+ 2018

https://github.com/NVlabs/stylegan


StyleGAN: latent structureStyleGAN: latent structure



StyleGAN: local noiseStyleGAN: local noise



StyleGANs on a different domain StyleGANs on a different domain [[ ]]@roadrunning01@roadrunning01

https://twitter.com/roadrunning01/status/1095183075833757701


Finding samples you want Finding samples you want [[ ]]

If we want to �nd “more samples like ”:

Jitkrittum+ ICML-19Jitkrittum+ ICML-19

https://arxiv.org/abs/1905.05882


Finding samples you want Finding samples you want [[ ]]

If we want to �nd “more samples like ”:

Jitkrittum+ ICML-19Jitkrittum+ ICML-19

https://arxiv.org/abs/1905.05882


Conditional GANs and BigGANConditional GANs and BigGAN
Conditional GANs: [ ]

Just add a class label as input to  and 

BigGAN [ ]: a bunch of tricks to make it huge

Mirza+ 2014

Brock+ ICLR-19

https://arxiv.org/abs/https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1809.11096


Image-to-image translation Image-to-image translation [[ ]]Isola+ CVPR-17Isola+ CVPR-17

https://arxiv.org/abs/1611.07004


Image-to-image translation Image-to-image translation [[ ]]Isola+ CVPR-17Isola+ CVPR-17

https://arxiv.org/abs/1611.07004


CycleGAN CycleGAN [[ ]]Zhu+ ICCV-17Zhu+ ICCV-17

https://junyanz.github.io/CycleGAN/


Pose-to-image translation Pose-to-image translation [[ ]]Chan+ 2018Chan+ 2018

https://carolineec.github.io/everybody_dance_now/


DeepFakesDeepFakes



MoreMore
Optimal transport stu�:

Gabriel Peyré:  talk

Peyré and Cuturi,  book

Kantorovich Initiative: 

 
GANs / generative models…so much.

Optimal transport for machine learning

Computational Optimal Transport

kantorovich.org

Paci�c Interdisciplinary Hub on Optimal Transport

https://www.youtube.com/watch?v=mITml5ZpqM8
https://arxiv.org/abs/1803.00567
https://kantorovich.org/
https://www.pims.math.ca/collaborative-research-groups/pihot

