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Speech Synthesis and Text to Speech




Conventional TTS
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NLP Step: Take text and break down into small units of speech (Phonemes)

Speech Synthesis: Take phoneme sequence and generate speech waveforms



Speech Synthesis

Concatenative Models

Take tiny samples and combine
them to form speech
Non-parametric

Dependent on large database
Inflexible to change

Not natural sounding
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Speech Synthesis

Generative Models

Parametric

Acoustic model could be Hidden Markov models, RNNs, Feed-forward NNs
Still not natural sounding

Dependent on quality of vocoders and generative models

Receptive field is too small

Linear filters and Gaussian assumption
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Wavenet (2016) by DeepMind

Parametric

Autoregressive (past time-step values are inputs for current time-step)
Handles long-range temporal dependencies

State-of-the-art voice "naturalness”

Useful for other applications outside of TTS

16 kHz sampling, input/output at each timestep is a 16-bit sequence
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Causal Convolutions

Shift outputs by a few timesteps

Hidden Layer
Input

Pl
i i

A
e

s
’

’
’

g
4%

’
s
’
s

"

’
’
s
’

A
0 O 0 ® @

5 s

0
03300

’

https://arxiv.org/pdf/1609.03499.pdf




Dilated Convolutions (a trous)

Uses a dilation pattern of 1,2,4,...,512,1,2,4,..512...
Results in exponential receptive field growth
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Overall Architecture

Same gated activation unit as used in PixelCNN

Inspired by LSTM gates
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Categorical Softmax

With 16 bits per timestep, 65536 possible categories reduced to 256 with
u-law data transformation

Common non-linear encoding used in telecommunications to reduce bit-size
of audio data

In TTS, receptive field is 240ms

Context stacks (smaller wavenets that model longer timescales) locally
condition larger Wavenet to increase its receptive field

In (14 p|z|)
In (14 p)

f (a:) = sign(as)
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Applied conditions

e InTTS, h would be our (local) linguistic features
e Second timeseries upsampled to map to the same resolution as the audio

p(x|h)= Hp (i | B1ysonsTiinD)s

z = tanh (Wyx *x+ Vi h) @0 (W *x+ V, h).



Experiments

e Comparison test + Mean opinion score tests
e Model was also conditioned on fundamental frequency (pitch) values

| Subjective 5-scale MOS in naturalness

Speech samples |  North American English Mandarin Chinese
LSTM-RNN parametric 3.67 + 0.098 3.79 + 0.084
HMM-driven concatenative 3.86 +0.137 3.47 £ 0.108
WaveNet (L+F) 4.21 + 0.081 4.08 + 0.085
Natural (8-bit p-law) 4.46 + 0.067 4.25 + 0.082
Natural (16-bit linear PCM) 4.55 +0.075 421 +0.071

Table 1: Subjective 5-scale mean opinion scores of speech samples from LSTM-RNN-based sta-
tistical parametric, HMM-driven unit selection concatenative, and proposed WaveNet-based speech
synthesizers, 8-bit p-law encoded natural speech, and 16-bit linear pulse-code modulation (PCM)
natural speech. WaveNet improved the previous state of the art significantly, reducing the gap be-
tween natural speech and best previous model by more than 50%.

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

e Other experiments: multiple speakers, music generation, speech recognition


https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

Drawbacks

Fast training, super slow inference/sampling
o Each timestep must be sequentially generated then fed as input for the next timestep
o 0.02 seconds of audio in 1 second (using Deepmind's GPUs) for

Not end-to-end, still dependent on NLP linguistic features (later)
(2017) followup, Parallel WaveNet

20 seconds of audio in 1 second!

Equivalent performance score to original WaveNet

Now used in Google Assistant

24kHz, 16-bit lin. PCM, 65h data

HMM-driven concatenative 4.19 4 0.097
Autoregressive WaveNet 4.41 4+ 0.069
Distilled WaveNet 441 +0.078




Parallel Wavenet

e Generate all timesteps concurrently

e Inverse Autoregressive Flows (IAFs)
o Special type of normalising flow
o  Given simple distribution pz(z), model an invertible non-linear transformation z; = f(z<¢)

dx
log px () = log pz(2) — log | —|.

o Jacobian matrix is triangular due to time dependency, so determinant is easily calculated
o Sampling only depends on z (fast), for Parallel Wavenet z is noise from a logistic distribution

xr = 2t - $(2<t,0) + p(2<t,0),



Parallel Wavenet Training

IAFs are slow to train, fast to sample (opposite of WaveNet)

Train our IAF model with probability density distillation

Our "student" model learns from pretrained "Teacher" WaveNet

In experiments, had stack of 4 IAF models

WaveNet Teacher

Linguistic features

WaveNet Student |

Linguistic features
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Probability Density Distillation Loss

e Loss is the Kullback-Leibler divergence between the two models

Dxv. (Ps||Pr) = H(Ps, Pr) — H(Ps)

Cross-entropy Entropy of Student

All these terms can be efficiently calculated after sampling from the student and calculating
probabilities from the parent and student networks

For TTS, minimize KL-divergence for same information, maximize for different (randomized)
information

Dy (PS(Cl) ‘ ‘PT(01)> —vDxL (PS(Cl)‘ ‘PTCQ))

e Additional losses to preserve proper volume and pronunciations



Further Improvements

e \WaveNet: easy to train, hard to sample
e Parallel WaveNet: hard to train, easy to sample

e WaveGlow (2018): easy to train and sample
o Uses mel-spectrogram (low level representation of audio frequencies) as input
o Trained directly from log-likelihood of the data instead of distillation
o Non-autoregressive

e \WaveGlow and WaveNet can be conditioned on mel-spectrograms outputted
by end-to-end models
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End-to-end Model: Tacotron 2 (2017)

Waveform samples
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e More natural sounding output, with "volume, speed, and intonation"

e Use WaveNet as our "neural vocoder"
e Inference not fast enough for production use

Another model: Deep Voice by Baidu


http://proceedings.mlr.press/v70/arik17a/arik17a.pdf

WaveRNN (2018)

e 24 kHZ audio 4 times faster than real time on GPU (not
end-to-end)

Equal quality to original WaveNet

Lightweight, single layer RNN

Sparser version able to run on mobile CPU

Used in Google Duo to preserve call quality

Modified WaveRNN used in Facebook's E2E CPU model
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Parallel Tacotron (2020)

13 times faster inference vs Tacotron 2

Employs transformers and lightweight convolutions for self-attention
Non-autoregressive, uses WaveRNN to convert spectrogram to audio
Coming soon to your local Android device?
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Other works

Tacotron Team (Google) + Samples

https://google.github.io/tacotron/

e \WaveNet application for speech-impaired users

https://deepmind.com/blog/article/Using-WaveNet-technology-to-reunite-speech-impaired-users-with
-their-original-voices

e Microsoft FastSpeech

https://www.microsoft.com/en-us/research/blog/fastspeech-new-text-to-speech-model-improves-on-s
peed-accuracy-and-controllability/

e SiriiOS 11 on-device TTS
https://isca-speech.org/archive/lnterspeech_2017/pdfs/1798.PDF
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