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Opinion Disclaimer

I do not like voxels.
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What We Want

m 3D bounding boxes given LiDAR data

Car
Pedestrian
Cyclist

Figure 1. VoxelNet directly operates on the raw point cloud (no
need for feature engineering) and produces the 3D detection re-
sults using a single end-to-end trainable network. 2

2Zhou and Tuzel, 2018.
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What We Have
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3Ren et al., 2015.
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Steps

m Make voxels
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Steps

m Make voxels

m Process voxels
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Steps

m Make voxels
m Process voxels
m Convert to 2D
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Steps

m Make voxels
m Process voxels
m Convert to 2D

m Propose regions
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Make Voxels

m Pool all points features in voxel, and append to features
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m Random sample if there are more than T
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For each Voxel

= Find cendmid
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For each Voxel
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For each Voxel

m Pool all points features in voxel, and append to features
Tin ‘ ‘ ‘ ‘dbd . . ‘ Joui 72 .
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Convolutional Mid-layers

Set of 3D convolutions that reduce over a couple layers until
D = 2, effectively flattening the data int an image.

11/23



Loss
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Results

4Ren et al., 2015.

2.8 6
“Table 2. Performance comparison in 3D detection: average precision (in %) on KITTT validation set.

Ca Pedestrian Cyclist
Method Modality Moderate | Tard || Easy | Moderate | Tard || Easy Nogerste T W
Monoad [1] Mono 510 B NA | NA | NA | N NA | NA
3DOP [] Stereo 040 | 759 | NA | N | NA | NA | NA | N/A
VeloFCN [22] LiDAR 3208 3047 NA | NA | NA | NA | NA | NA
MV (BV+FV) [5] LiDAR NA | NA | NA | NA | NA | NA
MV (BV4FV+RGB) [5] | LIDAR+Mono NA | NA | Na | Na | N | Na
HC-bascline LiDAR 5896 | 5379 | 5147 6363 | 4275 | 4106
VoxeINet LiDAR 65.95 | 6105 | 5698 || 7441 | 5218 | 5049

“Table 1. Performance comparison in bird’s  average precision (in %) on KITTI validation set.

Car Pedestrian Cydlist
Method Modality Easy | Moderaie | Hard || Easy | Moderate | Hard || Easy Muydem(e Hard
Mono3D [1] Mono 253 | 231 | 231 | NA | NA | NA | N NA | NA
3DOP [] Stereo 655 | 507 410 | NA | Na | NA | NA | NA | NA
VeloFON [22] LiDAR 1520 | 1366 1508 | NA | NA | NA | Nma | N | Na
MV (BV4EV) [5] LDAR [ 7119 | 5660 | 5530 | NA | NA | NA | NA | NA | NA
MV (BV4FV+RGB) [5] | LiDAR+Mono | 7129 | 6268 | 5656 | NA | NA | NIA | NA | NA | NA
HC-bascline LDAR | 7173 | 5975 | 55.69 || 4395 | 4018 | 3748 | 5535 | 3607 | 3415
VoxcINet LiDAR | 81.97 | 6546 8 4887 | 6717 | 4765 | 4511
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Whole Architecture

) —

Convolutional Middle Layers.
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Figure 2. VoxelNet architecture. The feature learning network takes a raw point cloud as input, partitions the space into voxels, and
transforms points within each voxel to a vector representation characterizing the shape information. The space is represented as a sparse
4D tensor. The convolutional middle layers processes the 4D tensor to aggregate spatial context. Finally, a RPN generates the 3D detection
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Questions

m Points cannot communicate outside their voxels
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Questions

m Points cannot communicate outside their voxels
m Should we be using a 2D to detect in 3D?
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Questions

m Points cannot communicate outside their voxels
m Should we be using a 2D to detect in 3D?

m Feature receptive field
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Graphs!

Requires voting, NMS

a: Graph Construction from a Point Cloud : Bounding Box Merging and Scoring

Detected object bounding
bares from vertices

b: Graph Neural Network for Object Detection

Vertox state
Initalization

Graph noural notwork wih T orations.
Classification

;
T

Localzation

Figure 2. The architecture of the proposed approach. It has three main componens: (a) graph consiruction from a point cloud, () graph £
neural network for object detection, and () bounding box merging and scoring.

Shi, Ragunathan, and Rajkumar, 2020.
17/23



Deep Hough Transform

VoteNet
Voting in Poin Clouds Object Proposal and Classification from Vores

K clusters

Point cloud feature
learming backbone

Sumpling &

Figure 2. Ilustration of the VoteNet architecture for 3D object detection in point clouds. Given an input point cloud of N’ points with
XYZ coordinates, a backbone network (implemented with PointNets-+ [ 0] layers) subsamples and leamns deep features on the points and
outputs a subset of A/ points but extended by C-dim features. This subset of points dered as seed points. Each seed

senerates a vote through a voting module. Then the votes are grouped into clusters and processed by the proposal module (0 generat the 6
final proposals. The classified and NMSed proposals become the final 3D bounding boxes output. Image best viewed in color.

5Qi et al., 2019.

"Shi, Ragunathan, and Rajkumar, 2020.
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Deep Hough Transform

VoteNet
Voting in Poin Clouds Object Proposal and Classification from Vores

K clusters

nx6+0

nx@+0)

Point cloud feature
learming backbone

Sumpling &

Figure 2. Ilustration of the VoteNet architecture for 3D object detection in point clouds. Given an input point cloud of N’ points with
XYZ coordinates. a backbone network (implemented with PointNet++ [36] layers) subsamples and leams deep features on the points and
outputs a subset of A/ points but extended by C-dim features. This subset of points dered as seed points. Each seed

senerates a vote through a voting module. Then the votes are grouped into clusters and processed by the proposal module (0 generat the 6
final proposals. The classified and NMSed proposals become the final 3D bounding boxes output. Image best viewed in color.

PointRCNN7 less pretty, but also used

5Qi et al., 2019.
"Shi, Ragunathan, and Rajkumar, 2020.
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Pointformer

Coordinate Refinement

g
i
Maxpooing (&)

Grouping
Featuros

Figure 3. Tllustration of the Local Transformer. Input points are first down-sampled by FPS and generate local regions by ball query.
Transformer block takes point features and coordinates as input and generate aggregated features for the local region. To further adjust the
centroid points, attention maps from the last Transformer layer are adopted for coordinate refinement. As a result, points arc pushed closer &
1o the object centers instead of surfaces.

8Pan et al., 2020.
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Honorable Mention

Transformer, positional encoding, and Non-Maximum
Suppression-free!

backbone
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9Carion et al., 2020.
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