Mask R-CNN

MLRG 2021 @ UBC Victor Sanches Portella

The task: instance segmentation

Classification

CAT

No spatial extent

Semantic Segmentation

No objects, just pixels

Object Detection

GRASS, CAT,
TREE, SKYDOG, DOG, CAT

Multiple Object

This image is CC0 public domain

Instance

Segmentation

The full story

Looking **only** at the Mask R-CNN paper is not helpful, looks like magics Looking at the **series** of work leading-up to Mask R-CNN is more interesting

- Region CNN (R-CNN)
- Fast R-CNN
- Faster R-CNN

 \rightarrow

Object detection

Region CNN

Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik

Object classification vs Object detection

Are the results from **image classification** transferable to **image detection**?

Fixed # of outputs **VS** Varying # of outputs

Given a region/box of interest, we could run classification

How to propose regions?

Selective Search

http://cs231n.stanford.edu/slides/2020/lecture_12.pdf

In the original paper, it proposes around **2k regions per image**

For each region, we can run classification (with a CNN)!

R-CNN: Regions with CNN features

Improving bounding boxes

Proposed boxes may not be well-fitted to the object

We can tighten these boxes using linear regression (details skipped)

http://cs231n.stanford.edu/slides/2020/lecture_12.pdf

Three models to be trained

SVM vs Softmax

Features are extracted for **each** Rol

SLOW

Fast R-CNN

Ross Girshick

Key insights to speed-up R-CNN

- Extract features first, select regions of interest later
 - A lot of proposed regions for a image overlap
 - Use RolPool to share features!

- One network to rule them all
 - Instead of stacking models, make one network to do everything

Region of Interest (Rol) Pooling

input								
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27	
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70	
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26	
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25	
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48	
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32	
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48	
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91	

Region of Interest (Rol) Pooling

region proposal								
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27	
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70	
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26	
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25	
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48	
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32	
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48	
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91	

Region of Interest (Rol) Pooling

pooling sections								
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27	
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70	
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26	
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25	
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48	
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32	
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48	
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91	

Putting everything together into a NN

https://arxiv.org/abs/1504.08083

Performance gains

Remark: The efficiency bottleneck of Fast R-CNN is region proposal via Selective Search

Faster R-CNN

Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun

Region proposal in Fast R-CNN

• Selective Search became the main bottleneck for prediction

• Rol selection depends on features computed by a CNN

• Idea: Pass features through yet another NN, the **Region Proposal Network**

Input Image (e.g. 3 x 640 x 480)

Image features (e.g. 512 x 20 x 15)

Slide an **anchor box** to generate candidates

Slide an **anchor box** to generate candidates

generate candidates ls **box** an object? Conv CNN **Box** warping Input Image Use K different achor (e.g. 3 x 640 x 480) Image features boxes at each point! (e.g. 512 x 20 x 15)

Slide an **anchor box** to

How to train Faster R-CNN?

- **Option 1:** Alternating training (used in the paper)
 - Train RPN, then train Fast R-CNN, then fix the shared CNN, train RPN again, and then train Fast R-CNN again

- **Option 2:** Train the whole network simultaneously
 - By ignoring the derivative of the box coordinates, one can (approximately) train the whole network at once. Apparently it works without affecting efficiency by much.

Mask R-CNN

Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick

Adapt Faster R-CNN to do segmentation?

• Can we in some way adapt Faster R-CNN to do segmentation?

• Idea: For each Rol box, have a separate network to predict pixel mask

• Add this as a branch to Faster R-CNN and perform end-to-end training

• Some tweaks are needed to the Faster R-CNN architecture

Rol Pool vs Rol Align

Rol **Pool**

Truncation

+ MaxPool

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27	
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70	
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26	
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25	
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48	
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32	
).19	0.69	0.09	0.86	0.88	0.07	0.01	0.48	
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91	

Rol Pool vs Rol Align

Rol Align

Bilinear

Interpolation

Or Avg

+ MaxPool

Mask prediction branch

- Fully convolutional network (2 or 4 layers depending on the backbone)
- Outputs, **for each class**, a small binary mask (14x14 ou 28x28)
 - In the end uses only one of these masks depending on the class prediction
- Mask loss is given by cross-entropy
- Upsampling technique of the mask not clearly stated (I think)

Network architecture

Segmentation examples

https://arxiv.org/pdf/1703.06870v3.pdf

Using Mask R-CNN for pose estimation

- Task: for each region, predict K keypoints types (left shoulder, right elbow, etc.)
- Each keypoint is represented by a 1-hot bitmap
- Cross-entropy loss

Using Mask R-CNN for pose estimation

https://arxiv.org/pdf/1703.06870v3.pdf