Mask R-CNN

MLRG 2021 @ UBC
Victor Sanches Portella

The task: instance segmentation

Classification

No spatial extent

Semantic
Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

Object
Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

The full story

Looking only at the Mask R-CNN paper is not helpful, looks like magics
Looking at the series of work leading-up to Mask R-CNN is more interesting

- Region CNN (R-CNN)
- Fast R-CNN
- Faster R-CNN
- Mask R-CNN

\longrightarrow Instance Segmentation

Region CNN

Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik

Object classification vs Object detection

Are the results from image classification transferable to image detection?

Fixed \# of outputs VS Varying \# of outputs

Given a region/box of interest, we could run classification

How to propose regions?

Selective Search

http://cs231n.stanford.edu/slides/2020/lecture_12.pdf
In the original paper, it proposes around $\mathbf{2 k}$ regions per image

For each region, we can run classification (with a CNN)!

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals ($\sim 2 \mathrm{k}$)
3. Compute

CNN features
aeroplane? no.
person? yes.

tvmonitor? no.
4. Classify regions

Improving bounding boxes

Proposed boxes may not be well-fitted to the object
We can tighten these boxes using linear regression (details skipped)

Three models to be trained

SVM vs Softmax

Features are extracted for each Rol

SLOW

Fast R-CNN

Ross Girshick

Key insights to speed-up R-CNN

- Extract features first, select regions of interest later
- A lot of proposed regions for a image overlap
- Use RoIPool to share features!
- One network to rule them all
- Instead of stacking models, make one network to do everything

Region of Interest (Rol) Pooling

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

Region of Interest (Rol) Pooling

region proposal

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

Region of Interest (Rol) Pooling

pooling sections

0.88	0.44	0.14	0.16	0.37	0.77	0.96
0.27						
0.19	0.45	0.57	0.16	0.63	0.29	0.71

Putting everything together into a NN

https://arxiv.org/abs/1504.08083

Performance gains

Remark: The efficiency bottleneck of Fast R-CNN is region proposal via Selective Search

Faster R-CNN

Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun

Region proposal in Fast R-CNN

- Selective Search became the main bottleneck for prediction
- Rol selection depends on features computed by a CNN
- Idea: Pass features through yet another NN, the Region Proposal Network

Classification loss

Region Proposal Network (RPN)

Region Proposal Network (RPN)

Slide an anchor box to generate candidates

Region Proposal Network (RPN)

Slide an anchor box to generate candidates

Region Proposal Network (RPN)

Slide an anchor box to

Region Proposal Network (RPN)

https://arxiv.org/pdf/1506.01497.pdf

How to train Faster R-CNN?

- Option 1: Alternating training (used in the paper)
- Train RPN, then train Fast R-CNN, then fix the shared CNN, train RPN again, and then train Fast R-CNN again
- Option 2: Train the whole network simultaneously
- By ignoring the derivative of the box coordinates, one can (approximately) train the whole network at once. Apparently it works without affecting efficiency by much.

Mask R-CNN

Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick

Adapt Faster R-CNN to do segmentation?

- Can we in some way adapt Faster R-CNN to do segmentation?
- Idea: For each Rol box, have a separate network to predict pixel mask
- Add this as a branch to Faster R-CNN and perform end-to-end training
- Some tweaks are needed to the Faster R-CNN architecture

Rol Pool vs Rol Align

Rol Pool

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27		0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70		0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26		0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.8	0.29	0.75	0.62	0.25	Truncation). 85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.8	0.34	0.03	0.33	0.48). 32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
							0.32	+ MaxPool	1.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.8	0.88	0.07	0.01	0.48). 19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	(1	0.24	0.35	0.50	0.91		5. 83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

Rol Pool vs Rol Align

Rol Align

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.8	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.	0.34	0.03	0.33	0.48
0.19	0.69	0.09	0.8	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.1	0.24	0.35	0.50	0.91

	0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
	0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
Bilinear Interpolation	0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
MaxPool Or Avg	0.85	0.34	0.7	0.8	0.79	0.75	0.62	0.25
	0.74	0.72	0.3	0.34	0.03	0.33	0.48	

Mask prediction branch

- Fully convolutional network (2 or 4 layers depending on the backbone)
- Outputs, for each class, a small binary mask (14×14 ou 28×28)
- In the end uses only one of these masks depending on the class prediction
- Mask loss is given by cross-entropy
- Upsampling technique of the mask not clearly stated (I think)

Network architecture

https://arxiv.org/pdf/1703.06870v3.pdf

Segmentation examples

https://arxiv.org/pdf/1703.06870v3.pdf

Using Mask R-CNN for pose estimation

- Task: for each region, predict K keypoints types (left shoulder, right elbow, etc.)
- Each keypoint is represented by a 1-hot bitmap
- Cross-entropy loss

Using Mask R-CNN for pose estimation

https://arxiv.org/pdf/1703.06870v3.pdf

