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Background



Sparse and overcomplete image models

”The mammalian visual cortex has evolved over millions of years to

effectively cope with images of the natural environment. Given the

importance of using resources efficiently in the competition for survival, it

is reasonable to think that the cortex has discovered efficient coding

strategies for representing natural images.”

— Olshausen & Field, 1996, Sparse Coding with an Overcomplete Basis

Set: A Strategy Employed by V1 ?
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Sparse and overcomplete image models

• Sparse

• Natural images may generally be described in terms of a small

number of structural primitives

• Model appropriate distribution

• Capture higher order correlation

• Overcomplete

• Robust, less sensitive to noise and other form of degradation

• Flexible in matching the generative model to the input structure
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Introduction



Definitions and goal

• We want to represent signal x ∈ Rm

• A basis called dictionary D = [d1 · · · dk ] ∈ Rm×k

Note that k > m so D is overcomplete

• Each column di in the dictionary is called an atom

Goal: We want to find a linear combination of a ”few” atoms︸ ︷︷ ︸
sparsity

from D

that is ”close” to the original signal x︸ ︷︷ ︸
low reconstruction error

.
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Definitions and goal

What is the dictionary D?
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Definitions and goal

What is the dictionary D?

• We can use predefined dictionary D, e.g. wavelet transform.

• However, learned dictionary has led to state-of-the-art performance

for numerous tasks
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Definitions and goal

What is the dictionary D?

• We can use predefined dictionary D, e.g. wavelet transform.

• However, learned dictionary has led to state-of-the-art performance

for numerous tasks

This is when the problem gets really interesting!

Real goal: Learn the dictionary D and a sparse representation with low

reconstruction error.
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Applications

Dictionary learning for classification:

• Associate label information with dictionary learning
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Applications

Jiang, Lin and Davis, Label Consistent K-SVD: Learning a

Discriminative Dictionary for Recognition, 2013 7



Applications

Online dictionary learning for visual tracking:

Naiyan Wang, Jingdong Wang and Dit-Yan Yeung,Online

Robust Non-negative Dictionary Learning for Visual

Tracking,2013 8



Supervised Dictionary Learning



Problem setting

Remember that for a fixed dictionary D = [d1 · · · dk ] ∈ Rn×k and a

signal x ∈ Rn, our goal is to learn a sparse coding with low

reconstruction error, so the objective is

R∗(x ,D) = min
α∈Rk
‖x − Dα‖2

2 + λ1‖α‖1

• l1 norm leads to sparsity, but no analytic link between value of λ1

and sparsity

• We can use l0 norm instead, but then the objective function will not

be convex

• In practice, l1 norm is more stable
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Problem setting

For a learned dictionary D, the objective function becomes

min
α,D
‖x − Dα‖2

2 + λ1‖α‖1

Note that D and α can be scaled at the same time, so we need to add

constraint ‖di‖2 ≤ 1 for every i .
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Problem setting

For a learned dictionary D, the objective function becomes

min
α,D
‖x − Dα‖2

2 + λ1‖α‖1

Note that D and α can be scaled at the same time, so we need to add

constraint ‖di‖2 ≤ 1 for every i .

Now consider the classic classification setting, i.e., each signal belongs to

one of p different classes. For simplicity, we assume that p = 2 for now

and the label value y ∈ {−1,+1}.
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Problem setting

For a learned dictionary D, the objective function becomes

min
α,D
‖x − Dα‖2

2 + λ1‖α‖1

Note that D and α can be scaled at the same time, so we need to add

constraint ‖di‖2 ≤ 1 for every i .

Now consider the classic classification setting, i.e., each signal belongs to

one of p different classes. For simplicity, we assume that p = 2 for now

and the label value y ∈ {−1,+1}.
Aside from learning dictionary D and sparse coding α, we also want to

learn the classification model.
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Classification model

Two simple classification models are used here:

• Linear in α: f (x , α, θ) = wTα + b, where θ = {w ∈ Rk , b ∈ R}
parametrizes the model

• Just a hyperplane, simplest model

• Bilinear in x and α: f (x , α, θ) = xTWα + b, where

θ = {W ∈ Rn×k , b ∈ R}
• W has more parameters than w so this model can be more complex

• W can be viewed as a linear filter encoding x into a model for the

coefficients α
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Classification model

The objective for logistic regression is:

min
θ

m∑
i=1

C (yi f (xi , αi , θ)) + λ2‖θ‖2
2

where C = log(1 + e−x) is the logistic loss.

Since we want to learn jointly dictionary D, coefficients α and model

parameter θ, we put the two objectives together and get

min
D,θ,α

(
m∑
i=1

C (yi f (xi , αi , θ)) + λ0‖xi − Dαi‖2
2 + λ1‖αi‖1

)
+ λ2‖θ‖2

2

We will refer to this model as SDL-G(supervised dictionary learning,

generative)
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Notation simplification

Now we simplify the notation, let

S(αi , xi ,D, θ, yi ) = C (yi f (xi , αi , θ)) + λ0‖xi − Dαi‖2
2 + λ1‖αi‖1 and

S∗(xi ,D, θ, yi ) = minα S(α, xi ,D, θ, yi ).

So we can write the objective as

min
D,θ,α

m∑
i=1

S(αi , xi ,D, θ, yi ) + λ2‖θ‖2
2 = min

D,θ

m∑
i=1

S∗(xi ,D, θ, yi ) + λ2‖θ‖2
2

And for a new signal x̂ , the prediction would be

argmin
y

S∗(x̂ ,D, θ, y)
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A more discriminative version

We can make this model more discriminative because we want to have

S∗(xi ,D, θ, yi ) less than S∗(xi ,D, θ,−yi ). Thus, we can put

S∗(xi ,D, θ,−yi )− S∗(xi ,D, θ, yi ) into the logistic loss C (·) and get:

min
D,θ

(
m∑
i=1

C (S∗(xi ,D, θ,−yi )− S∗(xi ,D, θ, yi ))

)
+ λ2‖θ‖2

2

However, this problem is more difficult to solve this than SDL-G.(Not

convex)
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SDL-D

To make the discriminative objective easier to solve, we mix it with

SDL-G and get

(
m∑
i=1

µC (S∗(xi ,D, θ,−yi )− S∗(xi ,D, θ, yi )) + (1− µ)S∗(xi ,D, θ, yi )

)
+ λ2‖θ‖2

2

Note that we have constraint ‖di‖ ≤ 1 for each i .

We refer to this model as SDL-D(supervised dictionary learning,

discriminative)

15



Extension to multiclass

• All of the above models admits a straightforward multiclass

extension, by using softmax function

Ci (x1, · · · , xp) = log(
∑p

j=1 e
xj−xi ) and learn one model θi per class

• Other possible approaches such as one-vs-all or one-vs-one are also

possible, and which one is the best is still remain open
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Probabilistic interpretation of the linear model

Mairal, Bach, Ponce, Sapiro and Zisserman, Supervised

Dictionary Learning, 2009

• w has a Gaussian prior, p(w) ∝ e−λ2‖w‖2
2

• Each atom di ∼ Sn−1 and are independent

• αi are latent variables with a Laplace prior, p(αi ) ∝ e−λ1‖αi‖1

• Conditional probability of xi is Gaussian, i.e.,

p(xi |αi ,D) ∝ e−λ0‖xi−Dαi‖2
2 . All xi ’s are independent

• Conditional probability of yi is given by

p(yi = ε|αi ,w) = e−εw
Tαi/(e−w

Tαi + ew
Tαi )
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Probabilistic interpretation of the linear model

• Under this graphical model, MAP estimation of the joint distribution

p({xi , yi}mi=1,D,w) gives SDL-G.

• Similarly, MAP estimation of the conditional distribution

p({yi}mi=1,D,w |{xi}mi=1).

• SDL-D is a classical trade-off between generative and discriminative,

where generative components are added to discriminative

frameworks to add robustness, e.g., to noise and occlusions.
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Kernel interpretation of the bilinear model

• The bilinear model does not admit a straightforward probabilistic

interpretation with kernel K (x1, x2) = αT
1 α2x

T
1 x2.

• However, it admits a kernel interpretation. For simplicity, we ignore

the constant b here, so logistic regression objective can be written as

g =
m∑
i=1

log(1 + e−yi f (xi )) +
λ2

2
‖θ‖2

2

where f (xi ) = xTi Wαi

• By Representer Theorem(Schlkopf, Herbrich, and Smola), the

optimal f can be written as

f (x) =
m∑
i=1

βiK (x , xi )
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Kernel interpretation of the bilinear model

If you are not convinced, here is my derivation:

∂g

∂Wpq
= −

m∑
i=1

1

e−yi f (xi ) + 1
xpi α

q
i + Wpq

W ∗pq =
m∑
i=1

1

e−yi f (xi ) + 1
xpi α

q
i

W ∗ =
m∑
i=1

1

e−yi f (xi ) + 1
xi · αT

i =
m∑
i=1

βixi · αT
i

Then the prediction is

f (x) = xTW ∗α = xT

(
m∑
i=1

βixi · αT
i

)
α =

m∑
i=1

βiα
Tαix

T
i x =

m∑
i=1

βiK (x , xi )
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Training procedure

• Supervised sparse coding

• Dictionary and parameters update
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Training procedure

• Supervised sparse coding can be solved efficiently by fixed-point

continuation method(FPC).

• The dictionary updating objective is not convex in general, but a

local minimum can be obtained using projected gradient descent.

This local minimum is good enough for classification tasks in

practice.
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Experiments
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Experiments
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Online Dictionary Learning



Why online learning?

The optimization problem is a significant computation challenge for

dictionary learning.

• Very large training sets, particularly in the context of image

processing tasks.

• Dynamic training data changing over time, such as video sequences.
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Why online learning?

The optimization problem is a significant computation challenge for

dictionary learning.

• Very large training sets, particularly in the context of image

processing tasks.

• Dynamic training data changing over time, such as video sequences.

Online approach can address this issue.

• Process one or a small batch of the training set at one time.

• Techniques based on stochastic approximation like first-order

stochastic gradient descent with projection works, and it is possible

to go further.
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Problem formulation

The empirical cost function is

fn(D) =
1

n

n∑
i=1

l(xi ,D)

where l(xi ,D) = minα∈Rk
1
2‖x − Dα‖2

2 + λ‖α‖1

Recall that our dictionary learning problem formulation:

min
D∈C

fn(D)

where C = {D ∈ Rm×k s.t. ∀j = 1, · · · , k , dT
j dj ≤ 1}
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Stochastic approximation

Actually, we are not interested in minimizing the empirical cost fn(D),

but minimizing the expected cost f (D) defined as the following:

f (D) = Ex [l(x ,D)] = lim
n→∞

fn(D)

Thus, we can use stochastic approximation.

The classical projected first-order stochastic gradient descent consists of

a sequence of updates of D:

Dt = ΠC
[
Dt−1 −

ρ

t
∇D l(xt ,Dt−1)

]
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Online dictionary learning algorithm

• In the dictionary update step, we

compute Dt by minimizing over C the

function

f̂t(D) =
1

t

t∑
i=1

1

2
‖xi − Dαi‖2

2 + λ‖αi‖1

• Note that f̂t and ft are different! ft
minimize over D and all α while f̂t
minimize over D given α. f̂t acts as a

surrogate of ft .

• f̂t aggregates the past information

computed during previous steps, namely

αi , it is an upper bound of ft .

• f̂t is close to f̂t−1, so Dt can be obtained

efficiently using Dt−1 as warm restart.
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Dictionary update

• This algorithm is

block-coordinate descent with

warm restart.

• This convex optimization

problem admits separable

constraints in the updated

blocks(columns), convergence to

a global optimum is

guaranteed(Bertsekas, 1999).

• In practice, α is sparse so A in

general concentrated on the

diagonal, making

block-coordinate descent more

efficient.(One iteration!)
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Optimization of the algorithm

The above algorithm can be further optimized.

• Handling fixed-size datasets

• If the dataset is finite, same data point may be examined several

times. Instead, we can cycle over a randomly permuted training set.

• In our training, we can remove the ”old” information concerning x

from At and Bt by

At ← At−1 + αtα
T
t − αt0α

T
t0

• Mini-batch extension: Use a batch of data points instead of one in

each iteration
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Convergence analysis

This algorithm is simple. What nice property does it have?
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Convergence analysis

This algorithm is simple. What ”nice” property does it have?

• Stochasticity

• Non-convexity
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Convergence analysis

This algorithm is simple. What ”nice” property does it have?

• Stochasticity

• Non-convexity

This means the convergence analysis is hard.

31



Sketch of proof sketch

First we need to have the following three assumptions:

(A) The data admits a bounded probability density p with compact support K .

(B) The quadratic surrogate function f̂ (t) are strictly convex with lower-bounded

Hessians.

(C) The sparse coding solution is unique under some sufficient conditions.

Proposition 1

Under assumptions (A)-(C):

• f̂t(Dt) converges a.s.;

• f (Dt) − f̂t(Dt) converges a.s. to 0; and

• f (Dt) converges a.s.

Proposition 2

Under assumptions (A) to (C), Dt is asymptotically close to the set of stationary

points of the dictionary learning prob- lem with probability one.

Core theorem used is in Borwein, J., & Lewis, A. (2006). Convex analysis and non-

linear optimization: theory and examples. Springer.
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Experiments
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Experiments
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Summary



Summary and my opinion

• Dictionary learning learns an overcomplete basis called dictionary

and a sparse representation of the training data.

• The sparse coding is efficient in representing certain signals, e.g.

natural images and achieves state-of-art performance in some tasks.

• We can use supervised dictionary learning for classification tasks.

• Online learning techniques can be used for large-scaled or dynamic

dataset.
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Questions?
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Thank you and wish everyone a great summer!
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