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Background



Sparse and overcomplete image models

"The mammalian visual cortex has evolved over millions of years to
effectively cope with images of the natural environment. Given the
importance of using resources efficiently in the competition for survival, it
is reasonable to think that the cortex has discovered efficient coding
strategies for representing natural images.”

— Olshausen & Field, 1996, Sparse Coding with an Overcomplete Basis
Set: A Strategy Employed by V1 ?



Sparse and overcomplete image models

e Sparse
e Natural images may generally be described in terms of a small
number of structural primitives
e Model appropriate distribution
e Capture higher order correlation
e Overcomplete
e Robust, less sensitive to noise and other form of degradation
e Flexible in matching the generative model to the input structure

a. b.
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FIGURE 1. Sparse coding. (z) An image is represented by a small number of “active” code elements, a;, out of a large set.

Which elements are active varies from one image to the next. (b) Since a given element in a sparse code will most of the time be

inactive, the prabability distribution of its activity will be highly peaked around zero with heavy tails. This is in contrast to a
code where the probability distribution of activity is spread more evenly among a range of values (such as a Gaussian)
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Definitions and goal

e We want to represent signal x € R™

e A basis called dictionary D = [d; - - - di] € R™*k
Note that k > m so D is overcomplete

e Each column d; in the dictionary is called an atom

Goal: We want to find a linear combination of a "few" atoms from D
—_————

] o ] sparsity
that is "close” to the original signal x.

low reconstruction error
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What is the dictionary D?
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What is the dictionary D?

e We can use predefined dictionary D, e.g. wavelet transform.

e However, learned dictionary has led to state-of-the-art performance
for numerous tasks



Definitions and goal

What is the dictionary D?

e We can use predefined dictionary D, e.g. wavelet transform.

e However, learned dictionary has led to state-of-the-art performance
for numerous tasks

This is when the problem gets really interesting!
Real goal: Learn the dictionary D and a sparse representation with low
reconstruction error.



Applications

Dictionary learning for classification:

e Associate label information with dictionary learning

JIANG ET AL.: LABEL CONSISTENT K-SVD: LEARNING A DISCRIMINATIVE DICTIONARY FOR RECOGNITION
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Applications
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Fig. 5. Example images from classes with high classification accuracy
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Applications

Online dictionary learning for visual tracking:
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Naiyan Wang, Jingdong Wang and Dit-Yan Yeung, Online
Robust Non-negative Dictionary Learning for Visual
Tracking,2013 8



Supervised Dictionary Learning




Problem setting

Remember that for a fixed dictionary D = [d; - - - dx] € R™¥ and a
signal x € R”, our goal is to learn a sparse coding with low
reconstruction error, so the objective is

R*(x,D) = min ||x — DaH% + Mllaflx
a€RkK

e /; norm leads to sparsity, but no analytic link between value of A\;
and sparsity

e We can use Iy norm instead, but then the objective function will not
be convex

e In practice, ; norm is more stable



Problem setting

For a learned dictionary D, the objective function becomes
min|x — Dat[|3 + Al
a,D

Note that D and « can be scaled at the same time, so we need to add
constraint ||di||2 < 1 for every i.
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Problem setting

For a learned dictionary D, the objective function becomes
min||x — Der[|3 + Ml|er]ly
a,D

Note that D and « can be scaled at the same time, so we need to add
constraint ||d;||2 < 1 for every i.

Now consider the classic classification setting, i.e., each signal belongs to
one of p different classes. For simplicity, we assume that p = 2 for now
and the label value y € {—1,+1}.
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Problem setting

For a learned dictionary D, the objective function becomes
min||x — Dall3 + Mllallx
a,D

Note that D and « can be scaled at the same time, so we need to add
constraint ||di||2 < 1 for every i.

Now consider the classic classification setting, i.e., each signal belongs to
one of p different classes. For simplicity, we assume that p = 2 for now
and the label value y € {—1,+1}.

Aside from learning dictionary D and sparse coding «, we also want to
learn the classification model.
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Classification model

Two simple classification models are used here:

e Linearin a: f(x,a,0) = w'a + b, where § = {w € R¥ b c R}
parametrizes the model
e Just a hyperplane, simplest model
e Bilinear in x and a: f(x,,0) = x" Wa + b, where
9:{W€R"Xk7b€R}
e W has more parameters than w so this model can be more complex
e W can be viewed as a linear filter encoding x into a model for the

coefficients «

11



Classification model

The objective for logistic regression is:
m
min Z Clyif (xi, a1, 0)) + A 10113
i=

where C = log(1 + e™¥) is the logistic loss.
Since we want to learn jointly dictionary D, coefficients « and model
parameter 6, we put the two objectives together and get

m
1 . . . PR— . 2 . 2
Lr)nel,na (; Clyif (xi i, 0)) + Xollxi — Devi|3 + )‘1”0441) + 20113

We will refer to this model as SDL-G(supervised dictionary learning,
generative)
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Notation simplification

Now we simplify the notation, let

S(ai, xi, D,0,y;) = C(yif(xi, i, 0)) + Xollxi — Dail|3 + A1]|ai]l1 and
S*(xi, D,0,y;) = ming S(a, x;, D, 0, y;).

So we can write the objective as

min Y " S(ai,xi, D, 0,y;) + X2|6]]3 = min > 5% (xi, D, 6, y:) + |03
=

D,f,a 4
i=1

And for a new signal X, the prediction would be

argminS™(%, D, 0, y)
y
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A more discriminative version

We can make this model more discriminative because we want to have
S*(xi, D,0,y;) less than S*(x;, D, 0, —y;). Thus, we can put
S*(xi, D,0,—y;) — S*(x;, D, 0, y;) into the logistic loss C(-) and get:

min (Z C(S* (i, D,0, %) — §"(x, D, e,y,-))) + 2allol

However, this problem is more difficult to solve this than SDL-G.(Not
convex)
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SDL-D

To make the discriminative objective easier to solve, we mix it with
SDL-G and get

(Z /’LC(S*(Xh D,H, _y/) - 5*(XI'? D797y/')) + (1 - /L)S*(Xi’ D797y")> + )\2”9“3

i=1

Note that we have constraint ||d;|| < 1 for each /.
We refer to this model as SDL-D(supervised dictionary learning,
discriminative)
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Extension to multiclass

e All of the above models admits a straightforward multiclass
extension, by using softmax function

CGi(xt, - . xp) = Iog(zjf;l €**) and learn one model 0; per class

e Other possible approaches such as one-vs-all or one-vs-one are also
possible, and which one is the best is still remain open
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Probabilistic interpretation of the linear model
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Figure 1: Graphical model for the proposed generative/discriminative learning framework.

Mairal, Bach, Ponce, Sapiro and Zisserman, Supervised
Dictionary Learning, 2009

w has a Gaussian prior, p(w) o e~ 2llwl
Each atom d; ~ S"~! and are independent
«; are latent variables with a Laplace prior, p(a;) oc e Alleillx

Conditional probability of x; is Gaussian, i.e.,

D2 , .
—Mollxi—Daill; Al x;'s are independent

p(Xi‘Ck,', D) X e
e Conditional probability of y; is given by
P(yi = elaj, w) = e=ew i J(e= i 4 e o)
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Probabilistic interpretation of the linear model

e Under this graphical model, MAP estimation of the joint distribution
p({xi,yi}™,, D, w) gives SDL-G.

e Similarly, MAP estimation of the conditional distribution
p({)/i}ﬂl'/ D, W|{Xi}/(l1)'

e SDL-D is a classical trade-off between generative and discriminative,
where generative components are added to discriminative
frameworks to add robustness, e.g., to noise and occlusions.

18



Kernel interpretation of the bilinear model

e The bilinear model does not admit a straightforward probabilistic
interpretation with kernel K(x1,x) = af axx] x.

e However, it admits a kernel interpretation. For simplicity, we ignore
the constant b here, so logistic regression objective can be written as

m e )\2
g =) log(1+e"t) + Z2|0]3
=i

where f(x;) = x” Way;
e By Representer Theorem(Schlkopf, Herbrich, and Smola), the
optimal f can be written as

f(x) = _Z@-K(x,x,-)

19



Kernel interpretation of the bilinear model

If you are not convinced, here is my derivation:

og i 1
OWpq Z e—vif(x) 4 15 i + Wpq
i=1
. 1
o= I e
qu - Zl e—}’if(Xf) + 1Xl Oé,-

m

* 1 =
W=D ey 1e o = 2 Beical

i=1

Then the prediction is

f(x):x *a = x (Zﬁ,x, ,)a—ZB,a QiX; X—ZB, (x,x7)

20



Training procedure

Input: n (signal dimensions): (x;, ;) , (training signals); k (size of the dictionary); Ao, A1, A2
(parameters): 0 << gy << pp << ... < iy < 1 (increasing sequence).
Output: D € R™" k (dictionary); & (parameters).
Initialization: Set D to a random Gaussian matrix with normalized columns. Set 8 to zero.
Loop: Forp = py, ..., [T,
Loop: Repeat until convergence (or a fixed number of iterations).
» Supervised sparse coding: Solve, foralli=1,..., m,

a) = argming S(a, x;, D, 8, —1) (10
af = argmin, S(a, x;, D, 0, 4+1) U
» Dictionary and parameters update: Solve

m
%{él (Z pC((S(af _ x:, D0, —y;) — Sl ., z;,D,0,y:)))+

i,

(1—p)S(al,, z:.D.0,y) + |0 ) st i, [[dsllz < 1. (1D)

Figure 2: SDL: Supervised dictionary learning algorithm.

e Supervised sparse coding
e Dictionary and parameters update
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Training procedure

e Supervised sparse coding can be solved efficiently by fixed-point
continuation method(FPC).

e The dictionary updating objective is not convex in general, but a
local minimum can be obtained using projected gradient descent.
This local minimum is good enough for classification tasks in

practice.

dE

5= (X w,:(w, - Daj.)ail)
=L z—{-L+1}

oF

o Z u;;_;:\?(?{‘wra,-‘_; + b)a; ..

i=1 z={—1,41}

% = N waeVewTar, +b),

i=1z={—1,+1}
where iz = —p2VC(S(a] .. D,0,~v:) = S(a] 4, 2, D:0.01)) + (1~ p)Lsm.

22



Experiments

RECL [ SDL-GL [ SOL-DL [ RECBL [[ k-NN. 73 ]| SVM-Gauss
MNIST 133 336 105 341 5.0 14
USPS 6.83 6.67 35 438 52 47

Table 1: Error rates on the MNIST and USPS datasets in percents for the REC, SDL-G L and
SDL-D L approaches, compared with k-nearest neighbor and SVM with a Gaussian kemel [20].

(a) REC, MNIST

S SIE
2 7 0
(h) SDL-D, MNIST 0 02 04 06 08 L0

Figure 3: On the left, a reconstructive and a discriminative dictionary. On the right. average error
rate in percents obtained by our dictionaries learned in a discriminative framework (SDL-D L) for
various values of . when used at test time in a reconstructive framework (REC-L).

[ RECL [ SDLGL [ SDL-UL [ RECBL [ SDL-GBL [ SOL-UDBL | Gain
300 RS a7 EEREY 76,34 2634 7634 0%
1500 46.8 46.3 42 227 223 223 2%
3000 45.17 45.1 406 21.99 21 2122 4%
6000 4571 4368 30.77 19.77 1875 18.61 6%
15000 47.54 46.15 38.99 18.2 1726 1548 15%
30000 47.28 45.1 383 18.99 16.84 1426 25%

Table 2: Emor rates for the texture classification task using various methods and sizes m of the
training set. The last column indicates the gain between the error rate of REC BL and SDL-D BL.
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Experiments

(b) Texture 2

Figure 4: Left: test textures. Right: reconstructive and discriminative dictionaries
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Online Dictionary Learning




Why online learni

The optimization problem is a significant computation challenge for
dictionary learning.

e Very large training sets, particularly in the context of image
processing tasks.

e Dynamic training data changing over time, such as video sequences.

25



Why online learning?

The optimization problem is a significant computation challenge for
dictionary learning.
e Very large training sets, particularly in the context of image

processing tasks.
e Dynamic training data changing over time, such as video sequences.

Online approach can address this issue.

e Process one or a small batch of the training set at one time.

e Techniques based on stochastic approximation like first-order
stochastic gradient descent with projection works, and it is possible

to go further.
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Problem formulation

The empirical cost function is

n

f(D) = %Z I(xi, D)

i=1

where /(x;, D) = min,cp« 3]|x — Dal|3 + Allalx
Recall that our dictionary learning problem formulation:

Bea (P)

where C = {D ¢ R™k st Vj=1,---  k, o’JTdJ <1}

26



Stochastic approximation

Actually, we are not interested in minimizing the empirical cost f,(D),
but minimizing the expected cost (D) defined as the following:

f(D) = Ex [I(x, D)] = lim £,(D)

Thus, we can use stochastic approximation.
The classical projected first-order stochastic gradient descent consists of
a sequence of updates of D:

D, =T¢ [Dt—l - gvD/(Xta Dt—l)

27



Online dictionary learning algorithm

e In the dictionary update step, we
Algorithm 1 Online dictionary leaming. compute D; by minimizing over C the
Require: x € B™ ~ p(x) (random variable and an algo- function
rithm to draw 1.1.d samples of p), A € I (regularization
parameter), Dy = B™*F (initial dictionary), T' (num-
ber of iterations).

1: Ag « 0, By < 0 (reset the “past” information). A 11 >
2 fort=1toT do (D) = - § SlIxi = Deaill; + Alleillx
. - ‘ t<— 2
3t Draw x; from p(x). i=1
4:  Sparse coding: compute using LARS
1
n(éargulinﬂxg—D;,Lct|\§+.k|n 1. (8) N .
acke 2 e Note that f; and f; are different! f;
5 A — A, +iaal minimize over D and all o while f;
- 173 . R . 2
6 By — B +xaf. minimize over D given «. f; acts as a
7: Compute D; using Algorithm 2, with D;_; as warm surrogate of £.
restart, so that
11 2
D, 2 al‘grnir1723| x; — Do + Al |1, e f; aggregates the past information
bee L =17 computed during previous steps, namely
= al‘gminT(Tr:kDTDA[] —Tr(DTB))9) «j, it is an upper bound of f;.
Dec

8 end for N N
9: Return Dy (leamed dictionary). e f; is close to f;—1, so D; can be obtained

efficiently using D;_1 as warm restart.

28



Dictionary update

Algorithm 2 Dictionary Update.

Require: [D = [di, ] d;‘_] :5 }"]”"" f(inpu[ dl;nonary )
A =a,...,a;] e B** o e,
B=[b,....b] e Bk =5 xal.
repeat

I
2 forj=1tokdo
3 Update the j-th column to optimize for (9):

1
u; — A—Lbj — Da;) +d;.

73
1 (10)

i max(||uy]|z, ljnuj‘

4: end for
5: until convergence
6 Return D (updated dictionary).

e This algorithm is
block-coordinate descent with
warm restart.

e This convex optimization
problem admits separable
constraints in the updated
blocks(columns), convergence to
a global optimum is
guaranteed(Bertsekas, 1999).

e In practice, « is sparse so A in
general concentrated on the
diagonal, making
block-coordinate descent more
efficient.(One iteration!)
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Optimization of the algorithm

The above algorithm can be further optimized.

e Handling fixed-size datasets
e |f the dataset is finite, same data point may be examined several
times. Instead, we can cycle over a randomly permuted training set.

e |n our training, we can remove the "old” information concerning x
from A: and B; by

T T
At = At + oy — Qo

e Mini-batch extension: Use a batch of data points instead of one in
each iteration

(11)

Ay —pBAL+YT ,Ctalfth,
B: — (B¢ I+Y\; l’“—"?;

where [ is chosen so that 3 = %, where 8 = tn if
t < nand n° +t —nif t > 5, which is compatible with our
convergence analysis.
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Convergence analysis

This algorithm is simple. What nice property does it have?
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Convergence analysis

This algorithm is simple. What "nice” property does it have?

e Stochasticity

e Non-convexity
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Convergence analysis

This algorithm is simple. What "nice” property does it have?

e Stochasticity

e Non-convexity

This means the convergence analysis is hard.
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Sketch of proof sketch

First we need to have the following three assumptions:

(A) The data admits a bounded probability density p with compact support K.
(B) The quadratic surrogate function f(t) are strictly convex with lower-bounded
Hessians.

(C) The sparse coding solution is unique under some sufficient conditions.

Proposition 1
Under assumptions (A)-(C):
o #(D:) converges a.s.;
o (D) — ft(Dt) converges a.s. to 0; and

e f(D;) converges a.s.

Proposition 2

Under assumptions (A) to (C), D; is asymptotically close to the set of stationary
points of the dictionary learning prob- lem with probability one.

Core theorem used is in Borwein, J., & Lewis, A. (2006). Convex analysis and non-
linear optimization: theory and examples. Springer.
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Experiments

Data Signal size m Nb k of atoms | Type
A Bx8=064 256 b&w
B 12x 123 =432 512 color
C 16 » 16 = 256 1024 b&w
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Figure 1. Top: Comparison between online and batch learning for various training set sizes. Bottom: Comparison between our method
and stochastic gradient (SG) descent with different learning rales . In both cases. the value of the objective function evaluated on the

test set is reported as a func

are truncated.

n of computation time on a logarithmic scale. Values of the objective function greater than its initial value
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Figure 2. Inpainting example on a 12-Megapixel image. Top:
Damaged and restored images. Bottom: Zooming on the dam-
aged and restored images. (Best seen in color)
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Summary




Summary and my opinion

e Dictionary learning learns an overcomplete basis called dictionary
and a sparse representation of the training data.

e The sparse coding is efficient in representing certain signals, e.g.
natural images and achieves state-of-art performance in some tasks.

e We can use supervised dictionary learning for classification tasks.

e Online learning techniques can be used for large-scaled or dynamic
dataset.
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Questions?



Thank you and wish everyone a great summer!
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