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e Graphs are everywhere.
e Machine Learning tasks on graphs:

e Node classification
e Link prediction

Neighbourhood identification
e ...
e Representation learning on graphs: learn vector rerpresentations
of nodes or subgraphs for downstream ML tasks.



Motivation

Figure 1: Facebook friendship network


http://kateto.net/2014/04/facebook-data-collection-and-photo-network-visualization-with-gephi-and-r/
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Figure 2: Schizophrenia PPIs


https://en.wikipedia.org/wiki/File:Schziophrenia_PPI.jpg
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Figure 3: Perozzi et al. 2014. [6]

e The vector representation of nodes should preserve information
about pairwise relationships.
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e The vector representation of nodes should preserve information
about pairwise relationships.

e But mapping from non-Euclidean space to a feature vector is not
straightforward.
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Undirected graph G = (V, ), |V| = n nodes
Adjacency matrix A € R"*", binary or weighted

Degree matrix D where D;; = ZJ. Ajj, diagonal
May also have node attributes X € R"*¢



Node Embeddings - Shallow Embeddings

Encoder-decoder framework

ENC(V;) = ZV,'
Z € R™*" v; = one-hot



Node Embeddings - Shallow Embeddings

Encoder-decoder framework

ENC(V;) = ZV,'
Z € R™*" v, = one-hot

DEC(ENC(v;), ENC(v;)) = DEC(z;, zj) = sg(vi, v})
where sg is a pre-defined similarity metric between two nodes,
defined over the graph.
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Node Embeddings - Shallow Embeddings

e Matrix factorization-based approaches:
o Deterministic similarity measure such as Aj.
e Minimize the reconstruction error:
L =3, 0(DEC(z:, 2), 56(vi, vj)) = 127 Z = S5
e Random walk approaches:
e Stochastic measure of node similarity based on random walk
statistics.
e Decoder uses softmax over the inner products of the encoded
features.

See Hamilton et al. 2017 [3] for an in-depth review.
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Node Embeddings - Shallow Embeddings

These approaches are simple and intuitive.
e But ...

e No parameter sharing as the encoder is just a lookup table.
e Overfitting
e \ery costly as for large n

e Not utilizing node features X.

e Inherently transductive.

Instead of a lookup table, we could use a neural network to encode a
node’s local structure.

We will focus on methods using convolution operations on graphs.



Convolution on Graphs
(Graph-CNN)



Convolution on Graphs - a Spectral Formulation

How do we define localized convolutional filters on graphs?

We don’t have grids or sequences to define a fixed-size neighborhood.

10



the Graph Laplacian

Unormalized graph Laplacian A =D — A

e Symmetric normalized graph Laplacian
L:=D"Y2AD™Y2 = |, - D71/2AD~1/2

e L=LT>0

e Multiplicity of the eigenvalue 0 indicates the number of connected
components in the graph.

Labeled graph Degree matrix Adjacency matrix Laplacian matrix
2 00000 010010 2 -1 0 0 -1 0
o 03 0000 101010 =il 3 -1 0 -1 0
e o o 002000 010100 0 -1 2 -1
.‘ 000300 001011 0 0 -1 3 -1 -1
e e 000030 110100 -1 -1 0 -1
000001 000100 0 0 0 -1 0 1

Figure 4: Example of Laplacian Matrix
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https://en.wikipedia.org/wiki/Laplacian_matrix

the Graph Laplacian

Since L= LT =0, for £ € [1, n], it has

e Complete set of orthonormal eigenvectors {u;} € R"
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the Graph Laplacian

Since L= LT =0, for £ € [1, n], it has

e Complete set of orthonormal eigenvectors {u;} € R"

e also called "Fourier modes”, " Fourier basis functions”
e related to spectral clustering

e Corresponding ordered real nonnegative eigenvalues {\;}

e "frequencies of the graph”

o L=UNUT, U=u,...,uy), N=diag(A1,...,\n)
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Spectral Filtering

Let x € R" be a signal vector for all the nodes (we can generalize this to
a vector per node). The graph Fourier transform of x is defined as

£=U"x

and the inverse GFT is is x = UX.

13



Spectral Filtering

Let x € R" be a signal vector for all the nodes (we can generalize this to
a vector per node). The graph Fourier transform of x is defined as

£=U"x

and the inverse GFT is is x = UX.
Define the spectral convolution as the multiplication of a signal with a
filter gy = diag(#) parameterized by coefficients § € R” in the Fourier
domain as

go+x = UggUTx

GFT of x, apply filter in Fourier domain, then transform back. Note that
go is a function of A.

13



Spectral Filtering

e But since gp is non-parametric, learning is expensive.
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e But since gp is non-parametric, learning is expensive.

e And it's not localized in space.
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Spectral Filtering

e But since gp is non-parametric, learning is expensive.

e And it's not localized in space.

Solution: Approximate gp(A) with a polynomial filter

K-1
go(N) = ) Ok,
k=0
where 6 = [0y, . ..,0k_1] is now of size independent of n.

14



Spectral Filtering

e But computing the eigendecomposition of L is also expensive for
large graphs
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Spectral Filtering

e But computing the eigendecomposition of L is also expensive for
large graphs

Solution: Approximate gg(A\) with a K*™M-order truncated expansion of
Chebyshev polynomials Ty (x):

K—

Zekn/\

k=0

,_.

with a rescaled A = %/\ —1,.

The Chebyshev polynomials are recursively defined as
Ti(x) = 2xTk—1(x) — Tk—2(x), with To(x) =1 and T1(x) =

15



Spectral Filtering

The filtering operation gy * x can now be written as

8o * X = UggUTX

K—1
~ U( S o Tk(f\)) UTx
k=0
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8o * X = UggUTX

K—1
~ U( S o Tk(f\)) UTx
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Spectral Filtering

The filtering operation gy * x can now be written as

8o * X = UggUTX

K—1
~ U( S o Tk(f\)) UTx
k=0

K-1 R
= Z ‘9k Tk(L)X
k=0

with [ = /\2 L — I,, and the last equality comes from
Lk = (UNUT)k = UNUT.

16



Spectral Filtering

The spectral filter represented by L is also localized:

e It can be shown that dg(i,j) > k' = (L¥');; = 0, where dg(i,})
is the shortest path distance between two vertices.
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Spectral Filtering

The spectral filter represented by L is also localized:

e It can be shown that dg(i,j) > k' = (L¥');; = 0, where dg(i, )
is the shortest path distance between two vertices.

e gy operates on the K-hop neighbors of a vertex!

Now we got rid of the eigendecomposition.
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Spectral Filtering

The spectral filter represented by L is also localized:

e It can be shown that dg(i,j) > k' = (L¥');; = 0, where dg(i, )
is the shortest path distance between two vertices.

e gy operates on the K-hop neighbors of a vertex!

Now we got rid of the eigendecomposition.

So what’s the algorithm?
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Chebyshev Spectral Graph Convolution

We had a feature matrix X € R"9 let H, = T(L)X € R"*?, then we
have

Ho = X

Hy =[x

Hy = 2LHy 1 — Hi_»

18



Chebyshev Spectral Graph Convolution

We had a feature matrix X € R"9 let H, = T(L)X € R"*?, then we
have

Ho = X
Hy =[x
Hy = 2LHy 1 — Hi_»

The filtering operation costs O(K|£|), and the corresponding K-hop
convolution operation is

K—1
X = Z HiO,
k=0

where @, € RYX™ for a desired output size m. We can now use X’ as a
feature extractor (node embeddings).

18



Graph-CNN

Remarks:

e Convolution followed by non-linear activation.
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e Graph clustering, but NP-hard.
e Greedy algorithm: Graclus multilevel clustering, gives successive
coarsened graphs.
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Graph-CNN

Remarks:

e Convolution followed by non-linear activation.
e Graph coarsening/downsampling to group together similar vertices.

e Graph clustering, but NP-hard.
e Greedy algorithm: Graclus multilevel clustering, gives successive
coarsened graphs.

e Graph pooling: create balanced binary tree to remember which
nodes were matched to perform pooling.

e For more information, see [1, 4].

19



Graph-CNN

Input graph signals > Feature extraction > Classification > Output signals

e.g. bags of words Convolutional layers Fully connected layers e.g. labels
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Figure 5: Architecture of a CNN on graphs and the four ingredients of a
(graph) convolutional layer. Defferrard et al. 2016 [1].
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Graph Convolutional Networks
(GCN)




Kipf & Welling [5] introduced the multi-layer Graph Convolutional
Network (GCN) with the following layer-wise propagation rule:

Hg+1 = U(D_I/ZAD_l/szwé)) (1)

where A= A+ I, is the adjacency matrix of the undirected graph G with
added self-loops, o(-) is some nonlinear activation, and Hy = X.

21



GCN

Recall the Chebyshev spectral graph convolution derived earlier,

K-1

8o * X = Z 0, Tk([)x
k=0

For K = 2 and approximate Amax &~ 2, we have
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GCN

Recall the Chebyshev spectral graph convolution derived earlier,

K-1

8o * X = Z 0, Tk([)x
k=0

For K = 2 and approximate Amax &~ 2, we have

89 A X = 90X—|—91[X

= fox + 91( L= In)X

max

~ Opx + el(L = /,,)X
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GCN

Recall the Chebyshev spectral graph convolution derived earlier,

K-1

8o * X = Z 0, Tk([)x
k=0

For K = 2 and approximate Amax &~ 2, we have

89 A X = 90X—|—01[X
2

:90x+91(>\ L—1))x

max
~ Opx + el(L = /,,)X
= Oox — ;D2 AD~1/?x
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GCN

Recall the Chebyshev spectral graph convolution derived earlier,

K-1

8o * X = Z 0, Tk([)x
k=0

For K = 2 and approximate Amax &~ 2, we have

89 A X = 90X—|—01[X
2

:90x+91(>\ L—1))x

max

~ Ogx + 01(L — I,)x

= Oox — ;D2 AD~1/?x

= 0(ln + D™?AD™?)x By letting 6 = 6p = —6;

The eigenvalues of I, + D~Y/2AD~1/2 are in range [0, 2], which may lead
to numerical instability in repeated applications of this filter.

22



Renormalization trick:

In + D—1/2AD—1/2 N 5—1/2A~ﬁ—1/2

Generalizing to node signals of multiple dimensions and using W as the
parameters instead of 6§, we get the convolution operation (prior to

activation) in eq.1,
Z =D Y2ADY2XW

where W € RY*™ for a desired output size m.
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Renormalization trick:

In + D—1/2AD—1/2 N 5—1/2A~ﬁ—1/2

Generalizing to node signals of multiple dimensions and using W as the
parameters instead of 6§, we get the convolution operation (prior to
activation) in eq.1,

Z =D7Y2AD"V2Xxw

where W € RY*™ for a desired output size m.
The cost of the filtering operation (prior to multiplication by W) is
O(|€]), and and all matrix multiplications here can be efficiently

computed.

23



GCN - Semi-supervised Classification

To perform semi-supervised classification under this framework, first
compute A=D"Y2AD~12 The 2-layer forward model used is

Y = softmax(A ReLU(AXW,) W)

The cross-entropy loss is applied over all labeled examples

K
EZ_ZZYicln?ic

i€y c=1

where ), is the set of node indices where labels exist.

24



Remarks:

e No longer limited to the explicit parameterization given by the
Chebyshev polynomials.

25



Remarks:

e No longer limited to the explicit parameterization given by the
Chebyshev polynomials.

e Alleviate the problem of overfitting on local neighborhood structures
for graphs with very wide node degree distributions.

25



Remarks:

e No longer limited to the explicit parameterization given by the
Chebyshev polynomials.

e Alleviate the problem of overfitting on local neighborhood structures
for graphs with very wide node degree distributions.

e Scalable.

25



Remarks:

e No longer limited to the explicit parameterization given by the
Chebyshev polynomials.

e Alleviate the problem of overfitting on local neighborhood structures
for graphs with very wide node degree distributions.

e Scalable.

e But it is transductive in nature.

25



Inductive Representation

Learning on Large Graphs
(GraphSAGE)




GraphSAGE

Goal: Efficiently generate node embeddings for nodes unseen at training
time, or entirely new graphs.

e Essential for high throughput, production level systems.
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GraphSAGE

Goal: Efficiently generate node embeddings for nodes unseen at training
time, or entirely new graphs.

e Essential for high throughput, production level systems.
e Generalization across graphs with similar structures.

e How to achieve this without re-training with the entire graph?
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GraphSAGE

GraphSAGE: Sample and Aggregate (Hamilton et al. [2])

e Train a set of aggregator functions that learn to aggregate feature
information from a node’s local neighborhood.
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GraphSAGE: Sample and Aggregate (Hamilton et al. [2])

e Train a set of aggregator functions that learn to aggregate feature
information from a node’s local neighborhood.

e Learn how to aggregate node features, degree statistics, etc.

o At test time, apply the learned aggregation functions to generate
embeddings for entirely unseen nodes.
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GraphSAGE

GraphSAGE: Sample and Aggregate (Hamilton et al. [2])

e Train a set of aggregator functions that learn to aggregate feature
information from a node’s local neighborhood.

e Learn how to aggregate node features, degree statistics, etc.

o At test time, apply the learned aggregation functions to generate
embeddings for entirely unseen nodes.

e Unsupervised loss function.

27



GraphSAGE - Embedding Generation

Assume Vk € {1,..., K}, the AGGREGATE, functions are learned, as well
as a set of weights W, the embedding generation procedure is

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
Input : Graph G(V, £); input features {x,,, Vv € V}; depth K; weight matrices
WF Vk € {1, ..., K'}; non-linearity o; differentiable aggregator functions
AGGREGATE, Vk € {1, ..., K }; neighborhood function N : v — 2V
Output : Vector representations z, for allv € V
hl « x,,Yv e V;
fork =1..K do
for v € V do
hf,) ¢ AGGREGATE,({hf™!, Vu € N'(v)});

5 h* « & (Wk - CONCAT(h*—1, hﬁ[(z,)))

B W

6 end

7 | hE <« hE/|hk|s, Yo eV
s end

9 Z, hﬁ",Vv <%

Figure 6: Hamilton et al. [2]
28



GraphSAGE - Embedding Generation

k=2 .-

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure 7: Hamilton et al. [2]

After K iterations, each node's embedding will contain information for all
its K-hop neighbors. In the minibatch setting, first forward sample the
required neighborhood sets and then run the inner loop.

29



GraphSAGE

e Uniformly sample a fixed-size set of neighbors to keep the
computional cost of each batch under control.
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GraphSAGE

e Uniformly sample a fixed-size set of neighbors to keep the
computional cost of each batch under control.

e Graph-based loss function (unsupervised):

JQ(ZU) = - |og(J(ZLTI-ZV)) -Q- EVnNPn(V) |0g(0(—ZuTZvn))

v: a node that co-occurs near u on a fixed-length random walk

o: sigmoid

P,: negative sampling distribution

Q: number of negative samples
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GraphSAGE

e Uniformly sample a fixed-size set of neighbors to keep the
computional cost of each batch under control.

e Graph-based loss function (unsupervised):

JQ(ZU) = - |og(J(ZLTI-ZV)) -Q- EVnNPn(V) |0g(0(—ZuTZvn))

e v: a node that co-occurs near u on a fixed-length random walk
e o: sigmoid
e P,: negative sampling distribution
e Q: number of negative samples
e Can also replace/augment this loss with a supervised, task-specific

objective.
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GraphSAGE - Aggregator Functions

e Mean aggregator
o Elementwise mean of {hf™' Vu € N(v)}.
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GraphSAGE - Aggregator Functions

e Mean aggregator
o Elementwise mean of {hf™' Vu € N(v)}.
e LSTM aggregator

e LSTMs operate on sequences.
e Apply LSTMs to a random permutation of a node’s neighbors.
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GraphSAGE - Aggregator Functions

e Mean aggregator
o Elementwise mean of {hf™' Vu € N(v)}.
e LSTM aggregator

e LSTMs operate on sequences.
e Apply LSTMs to a random permutation of a node’s neighbors.

e Pooling aggregator

e Each neighbor's vector is independently fed through a FC layer.
e Then perform elementwise max-pooling.
e AGGREGATE}® = max({o(W,oohk, 4 b),Vu; € N(v)})
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Other methods

SplineConv from Fey et al.: SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels (CVPR 2018)
GCNConv from Kipf and Welling: Semi-Supervised Classification with Graph Convolutional Networks (ICLR 2017)
ChebConv from Defferrard et al.: Convalutional Neural Networks on Graphs with Fast Localized Spectral Filtering (NIPS
2016)

NNConv adapted from Gilmer et al.: Neural Message Passing for Quantum Chemistry (ICML 2017)

GATConv from VeliGkovi¢ et al: Graph Attention Networks (ICLR 2018)

SAGEConv from Hamilton et al.: Inductive Representation Learning on Large Graphs (NIPS 2017)

GraphConv from, e.g., Morris et al.: Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks (AAAI 2019)
GINConv from Xu et al.: How Powerful are Graph Neural Networks? (ICLR 2019)

ARMAConv from Bianchi et al.: Graph Neural Networks with Convolutional ARMA Filters (CoRR 2019)

SGConv from Wu et al.: Simplifying Graph Convolutional Networks (CoRR 2019)

APPNP from Klicpera et al.: Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019)

AGNNConv from Thekumparampil et al.: Attention-based Graph Neural Network for Semi-Supervised Learning (CoRR
2017)

RGCNConv from Schlichtkrull et al.: Modeling Relational Data with Graph Convolutional Networks (ESWC 2018)
EdgeConv from Wang et al.: Dynamic Graph CNN for Learning on Point Clouds (CoRR, 2018)

PointConv (including Iterative Farthest Point Sampling and dynamic graph generation based on nearest neighbor or
maximum distance) from Qi et al.: PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation (CVPR
2017) and PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space (NIPS 2017)

XConv from Li et al: PointCNN: Convolution On X-Transformed Points (NeurlPS 2018)

Figure 8: PyTorch geometric
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https://github.com/rusty1s/pytorch_geometric

Deep Graph Library (DGL)

Figure 9: DGL

@ PyTorch

geometric

Figure 10: PyTorch geometric
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https://github.com/dmlc/dgl
https://github.com/rusty1s/pytorch_geometric
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