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Why Does Deep Learning Work?

Common refrains from deep learning:

• “Always make your neural network as big as possible!”

• “Neural networks generalize because they’re trained with
stochastic gradient descent (SGD).”

• “Sharp minima are bad and shallow minima are good.”

• “SGD finds flat local minima.”

Where do these ideas come from?
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Deep Learning Works!
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Deep Learning Works: Object Localization

https://arxiv.org/abs/1707.07012

https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9
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Object localization with Fast
R-CNNs [1].



Deep Learning Works: Image Segmentation

Image segmentation using fully convolutional networks [3].
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https://arxiv.org/abs/1411.4038

https://arxiv.org/abs/1802.02611
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Deep Learning Works: Machine Translation (1)

Google’s Neural Machine Translation System:

• consists of a deep LSTM network with 8 encoder and 8
decoder layers using attention and residual connections.

• reduced translation errors “by an average of 60% compared
to Google’s phrase-based” system.
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Deep Learning Works: Machine Translation (2)

Berlin POLIZEI BERLIN The

Berlin police informs about bur-

glary protection On Thursday,

23rd May 2019, between 3:00

pm and 6:00 pm, police officers

hold an information event on bur-

glary protection in their residen-

tial area. In the process, the po-

lice will visit residential buildings

and shops and inform you directly

about security options. At the

same time, police officers at an

information stand in the Hagel-

berger Str. 34, 10965 Berlin show

them, with the help of window

and door models, how they can

effectively secure their property...
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Deep Learning Works: Generative Models

StyleGAN: image generatation with hierarchical style transfer [2].

https://arxiv.org/abs/1812.04948
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Deep Learning Works: Model Sizes (1)

Accuracy on ImageNet (2012 ILSVRC)

https://arxiv.org/abs/1810.00736
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Deep Learning Works: Model Sizes (2)

Accuracy on ImageNet (2012 ILSVRC): Exponentially more
parameters are needed to improve accuracy.
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https://arxiv.org/abs/1707.07012
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Deep Learning Works: Bias-Variance

But what about the bias-variance trade-off?

Let y = f (x) + ε, where ε ∼ N (0, σ2),

E
[(

y − f̂ (x)
)2]

= Bias
[
f̂ (x)

]2
+ Var

[
f̂ (x)

]
+ σ2

http://scott.fortmann-roe.com/docs/BiasVariance.html

11/35



Bias-Variance: Deep Models

We expect bigger architectures to:

• have lower bias because have they more parameters,

• but higher variance across different training sets.
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Shouldn’t we
see this in

action with
deep models?

https://arxiv.org/abs/1707.07012
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Bias-Variance: Optimization Bias

Maybe we’re overfitting architectures to the test set!
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New Test Sets for CIFAR-10 and ImageNet [4]:

• “the relative order of models is almost exactly preserved”

• “there are no diminishing returns in accuracy”

https://arxiv.org/abs/1902.10811
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Bias-Variance: What’s Happening?

Why do bigger neural networks lead
to better accurracy?

The issue is how we think about
model “capacity”.
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Perceptron: An Instructive Example
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Learning Theory: A Brief Introduction

Statistical learning theory tries to develop guarantees for the
performance of machine learning models.

• Let D = {(xi , yi )}ni=1 be a training set of input-output pairs.
I D is formed by sampling (x , y) ∼ p(x , y) n times.

• Let H be a hypothesis class.
I H is a fixed set of prediction functions f (x) = ŷ that we

pre-select.
I H could be SVMs with RBF kernels, one-layer neural networks,

etc.

• A learning algorithm takes D as input and returns f̂ ∈ H.

What does it mean to generalize in this framework?
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Learning Theory: Risk and ERM

Let L be a loss function. We care about the risk,

R(f ) = Ep(x ,y) [L(f (x), y)] .

We don’t know p(x , y), but we do have the training set D. The
empirical risk is simply the loss on D,

RD(f ) =
1

n

n∑
i=1

L(f (xi ), yi ).

Empirical risk minimization (ERM) is the learning algorithm

f̂ = min
f ∈H

RD(f ) = min
f ∈H

1

n

n∑
i=1

L(f (xi ), yi ).

This is simple – choose f̂ to minimize the training loss.
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Perceptron: Definition

Perceptron is an early linear model for binary classification.

• Let x ∈ Rd and y ∈ {−1, 1}.
• H is the set of hyper-planes defined by w ∈ Rd .

• Given weight vector w , fw (x) = sign(〈w , x〉).

Perceptron is a neural network with one unit and sign activation.

https://www.javatpoint.com/pytorch-perceptron
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Perceptron: Learning Algorithm

Perceptron works by iteratively correcting its mistakes.

Algorithm 1 Perceptron Algorithm

1: w0 ← 0
2: for t = 0 . . .N − 1 do
3: select (xt , yt) ∈ D
4: if sign(〈wt , xt〉) 6= yt then
5: wt+1 ← wt + ytxt
6: else
7: wt+1 ← wt

8: end if
9: end for

10: return wN

https://commons.wikimedia.org/wiki/File:Perceptron example.svg
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Perceptron: Mistake Bound

Theorem (Perceptron Mistake Bound)

We need two assumptions for perceptron to work:

• the data is linearly separable with margin γ.

• the input features have bounded norm: ‖x‖2 ≤ R ∀x
Then perceptron makes at most R2/γ2 mistakes during training:

N−1∑
t=0

1 (sign〈wt , xt〉) 6= yt) ≤
R2

γ2
.

See bonus slides for proof.

γ

w∗

γ

R
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Perceptron: First Risk Bound

Consider doing one pass through the data to get {w0, . . . ,wn−1}.

The expected risk if we use w ′ ∼ Uniform ({w0, . . . ,wn−1}) is

R(f̂w ′) = Ep(x ,y)EDEt [1(sign(〈wt , x〉) 6= y)] .

Renaming (x , y) to be (xt , yt),

R(f̂w ′) = EDEt [1(sign(〈wt , xt〉) 6= yt)]

= ED

[
1

n

n−1∑
t=0

1(sign(〈wt , xt〉) 6= yt)

]
This is the number of mistakes perceptron makes during training!

≤ ED
[

1

n

R2

γ2

]
(by the mistake bound)

=
1

n

R2

γ2
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Perceptron: Second Risk Bound

Now, let’s use the final wN obtained by iterating through D until
all examples are correctly classified.

R(f̂wN
) = Ep(x ,y)ED [1(sign(〈wN , x〉) 6= y)] .

Again, rename (x , y) to be a new example (xn, yn) for D.

R(f̂wN
) = ED∪(xn,yn) [1(sign(〈wN , xn〉) 6= yn)] .

Let w−jN be the weights obtained without example (xj , yj):

R(f̂wN
) = ED∪(xn,yn)

 1

n + 1

n∑
j=0

1(sign(〈w−jN , xj〉) 6= yj)

 .
≤
(

1

n + 1

)
R2

γ2
. (by the mistake bound)
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Perceptron: Conclusions

Random Selection Final Weights(
1
n

)
R2

γ2 v.s.

(
1

n+1

)
R2

γ2

Perceptron shows us:

• Risk has a complex dependence on the parameterization:
I R/γ somehow measures the model capacity.

• Risk has a complex dependence on optimization:
I Exactly optimizing perceptron gives only minor improvement.
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Why Does Deep Learning Work?
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Deep Learning: Different Stories

There are two deep learning stories.

What We Expect What We See

More Parameters More Parameters
⇓ ⇓

Higher Model Capacity ??
⇓ ⇓

More Overfitting Better Generalization

Take-Home Message: model capacity is not just parameters!
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Deep Learning: Filling in the Gap

We’re quickly filling in the gap with possible sources
of implicit and explicit regularization.

What’s Actually Happening

More Parameters
⇓{

SGD, Architecture, Dropout, L2, Sharp Local Minima, Interpolation
}

⇓
Controlled Capacity

⇓
Better Generalization
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Deep Learning: Frontiers of Research

• Sharp vs Flat Minima: Some local minima generalize much
better than others.

• Implict Bias of SGD: SGD regularizes towards particular
solutions that generalize well.

• Interpolation: Highly over-parameterized models don’t obey
traditional bias-variance tradeoff.
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Summary

Here’s what we discussed today:

• Deep neural networks work very well for a variety of
problems.

• Making neural networks bigger improves performance even
when training accuracy has saturated.

• Number of parameters may be a poor measure of capacity.
• New research looks at the capacity of neural networks via

I types of local minima,
I properties of optimization procedures,
I the role of over-parameterization/interpolation.
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Signup

Signup Sheet
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https://tinyurl.com/y4pn846v
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• The perceptron example and analysis comes from Sasha
Rakhlin and Peter Bartlett.
I See their excellent series on generalization from the

Simons Institute.
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https://simons.berkeley.edu/workshops/schedule/10624


Bonus Slides
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Bonus: Perceptron Mistake Bound (1)

Theorem (Perceptron Mistake Bound)

We need two assumptions for perceptron to work:

• the data is linearly separable with margin γ.

• the input features have bounded norm: ‖x‖2 ≤ R ∀x
Then perceptron makes at most R2/γ2 mistakes during training:

N−1∑
t=0

1 (sign〈wt , xt〉) 6= yt) ≤
R2

γ2
.

Starting Place: The proof focuses on the angle between the
normal vector for a max-margin hyperplane w∗ and wt :

〈wt ,w∗〉 ≤ ‖wt‖2‖w∗‖2
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Bonus: Perceptron Mistake Bound (2)

Let {0 . . .T − 1} be iterations where perceptron makes a mistake.

Proof.

1. Margin of γ ⇒ ∃w∗ ∈ Rd , yi ∗ 〈w∗, xi 〉 ≥ γ‖w∗‖2 = γ
I Since the margin between any x and the hyperplane given by

w∗ is 〈w∗, x〉/‖w∗‖2.

2. WLOG, let ‖w∗‖2 = 1 (rescaling doesn’t affect hyperplanes).

3. 〈wT ,w
∗〉 = 〈0,w∗〉+

∑T−1
t=0 yt〈xt ,w∗〉 ≥ T ∗ γ

4. ‖wT‖2 = ‖wT−1‖2 + 〈wT−1, yT−1xT−1〉+ ‖xT−1‖2 ≤
‖wT−1‖+ R2

5. By recursion on (4), ‖wT‖2 ≤ T ∗ R2

6. 〈wT ,w
∗〉 ≤ ‖wT‖‖w∗‖ ⇒ T ∗ γ ≤ T 1/2 ∗ R ⇒ T ≤ R2/γ2
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Bonus: Towards Generalization Bounds

Intuitive Definition: f̂ generalizes well if the empirical risk is a
good approximation of the risk:

RD(f̂ ) =
1

n

n∑
i=1

L(f̂ (xi ), yi ) ≈ Ep(x ,y)

[
L(f̂ (x), y)

]
= R(f̂ ).

Formal(ish) Definition: f̂ generalizes well if there are ε, δ > 0
such that

PrD

(
RD(f̂ ) ≥ R(f̂ ) + ε

)
≤ δ.

• f̂ is a random variable because D is random.

• f̂ is good with high-probability if the empirical risk is small.
I roughly the idea of “probably, approximately correct” learning.
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