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Why Does Deep Learning Work?

Common refrains from deep learning:

e “Always make your neural network as big as possible!”

e “Neural networks generalize because they're trained with
stochastic gradient descent (SGD)."

e “Sharp minima are bad and shallow minima are good.”

e “SGD finds flat local minima.”

Where do these ideas come from?
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Deep Learning Works!



Deep Learning Works: Object Localization
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Object localization with Fast
R-CNNs [1].

https://arxiv.org/abs/1707.07012

https://towardsdatascience.com /deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9
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Deep Learning Works: Image Segmentation

Image segmentation using fully convolutional networks [3].

https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1802.02611
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Deep Learning Works: Machine Translation (1)
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google's free service instantly translates words X le service gratuit de google traduit instantanément ¢
les mots
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Google's Neural Machine Translation System:

e consists of a deep LSTM network with 8 encoder and 8
decoder layers using attention and residual connections.

e reduced translation errors “by an average of 60% compared
to Google's phrase-based” system.
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Deep Learning Works: Machine Translation (2)
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Berlin POLIZEI BERLIN The
Berlin police informs about bur-
glary protection On Thursday,
23rd May 2019, between 3:00
pm and 6:00 pm, police officers
hold an information event on bur-
glary protection in their residen-
tial area. In the process, the po-
lice will visit residential buildings
and shops and inform you directly
about security options. At the
same time, police officers at an
information stand in the Hagel-
berger Str. 34, 10965 Berlin show
them, with the help of window
and door models, how they can

effectively secure their property...



Deep Learning Works: Generative Models

StyleGAN: image generatation with hierarchical style transfer [2].

https://arxiv.org/abs/1812.04948
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Deep Learning Works: Model Sizes (1)

Top-1 accuracy [%]

Accuracy on ImageNet (2012 ILSVRC)
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Deep Learning Works: Model Sizes (2)

Accuracy on ImageNet (2012 ILSVRC): Exponentially more
parameters are needed to improve accuracy.
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Deep Learning Works: Bias-Variance

But what about

the bias-variance trade-off?

Let y = f(x) + ¢, where € NN(O,U2)1

Error

)°| = sias )]+ var [F(0] + 02

Total Error

Variance

Optimum Model Complexity

o

Model Complexity
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Bias-Variance: Deep Models

We expect bigger architectures to:
e have lower bias because have they more parameters,

e but higher variance across different training sets.

85 1
NASNet-A (6 @ 4032)
NASNet-A (7 @ 1920) _....DPN13T. Y=V
" - Irception-| ,A.V—N‘Q&M2 PolyNet
— 80 {nasNetA(s @‘_1__533;»7}'70.‘9;;0'"_\/ f ResNeXt-101
® u " Xception
§ e - Shouldn’
_% '/ Inception-v3 ResNet-152 ou n t we
2 P
[0} 4 / @ Inception-v2 h . .
S ®1.® see this In
- NASNet-A (4 @ 1056)
o VGG-16 ! H h
g { ShuffleNet [ ] aCtlon Wlt
Q 70 1 . MobileNet
L deep models?
65 T T T T T T T

0 20 40 60 80 100 120 140

# parameters (millions)

https://arxiv.org/abs/1707.07012
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Bias-Variance: Optimization Bias

Maybe we're overfitting architectures to the test set!

- ImageNet
100 CIFAR-10 [¢]

New test accuracy (%)

New test accuracy (top-1, %)

80 90 100 60 70 80
Original test accuracy (%) Original test accuracy (top-1, %)
===~ l|deal reproducibility Model accuracy = —— Linear fit

New Test Sets for CIFAR-10 and ImageNet [4]:
e ‘“the relative order of models is almost exactly preserved"

e ‘“there are no diminishing returns in accuracy”

https://arxiv.org/abs/1902.10811
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Bias-Variance: What's Happening?

Why do bigger neural networks lead
to better accurracy?

The issue is how we think about
model “capacity”.
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Perceptron: An Instructive Example
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Learning Theory: A Brief Introduction

Statistical learning theory tries to develop guarantees for the
performance of machine learning models.

e Let D = {(xj, i)}/, be a training set of input-output pairs.
» D is formed by sampling (x,y) ~ p(x,y) n times.
e Let H be a hypothesis class.

> F is a fixed set of prediction functions f(x) = y that we
pre-select.

» H could be SVMs with RBF kernels, one-layer neural networks,
etc.

e A learning algorithm takes D as input and returns feH.

What does it mean to generalize in this framework?
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Learning Theory: Risk and ERM

Let £ be a loss function. We care about the risk,

R(f) = Ep(xy) [£(F(x), ¥)] -

We don't know p(x,y), but we do have the training set D. The
empirical risk is simply the loss on D,

= 03" £(FGx))
i=1

Empirical risk minimization (ERM) is the learning algorithm

f:minR (f) = min = L(f(x;)
feH = nz i), Yi)

This is simple — choose f to minimize the training loss.
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Perceptron: Definition

Perceptron is an early linear model for binary classification.
e letxeRYandy € {-1,1}.
e 7 is the set of hyper-planes defined by w € RY.
e Given weight vector w, f,,(x) = sign({w, x)).

Perceptron is a neural network with one unit and sign activation.

Weight

Constant | 1 \
W,
\Welghted
% \ Sum
W,
\ Output
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Wn-1 / Step Function
i / P

Wi
xn/r n

Input

https://www.javatpoint.com/pytorch-perceptron
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Perceptron: Learning Algorithm

Perceptron works by iteratively correcting its mistakes.

Algorithm 1 Perceptron Algorithm

[ay

DWW — 0
fort=0...N—1do
select (x¢, yt) € D
if sign({ws, x¢)) # v+ then
Wetl = We + YiXe
else
Wil S Wt
end if
. end for
. return wy

© e N TR N

—
o

https://commons.wikimedia.org/wiki/File:Perceptron_example.svg
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Perceptron: Mistake Bound

Theorem (Perceptron Mistake Bound)

We need two assumptions for perceptron to work:
e the data is linearly separable with margin ~.
e the input features have bounded norm: ||x|» < R Vx

Then perceptron makes at most R?/~? mistakes during training:

=
o

: R?
1 (sign{we, xt)) 7 ye) < 5

Il
o

t

See bonus slides for proof.
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Perceptron: First Risk Bound

Consider doing one pass through the data to get {wp, ..., wy_1}.

The expected risk if we use w’ ~ Uniform ({wp, ..., w,_1}) is
R(’?w’) = I['Ep(x,y)IE’DIEl“ [R(Sign«wta X>) # }/)] :

Renaming (x, y) to be (x¢, yt),

R(fur) = EpEe [1(sign((we, xt)) # y2)]
n—1
© S Asign( (e x) # )

t=0

This is the number of mistakes perceptron makes during training!

1 R? :
<Ep|-— (by the mistake bound)
ny
_1r
=
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Perceptron: Second Risk Bound

Now, let's use the final wy obtained by iterating through D until
all examples are correctly classified.

R(Fu) = Epry) En [1(sign((w, x)) # 1)].

Again, rename (x, y) to be a new example (x,, y,) for D.
R(fun) = EpU(sn.y) [L(sign((wi, Xn)) # ya)] -

Let wy’ be the weights obtained without example (x;, y;):

n

Z l(sign((W,\_,j,Xj>) # ¥j)

Jj=0

R(Fun) = Epuixnyn) ]

< 1 R—2 (by the mistake bound)
“\n+1) 2% Y
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Perceptron: Conclusions

Random Selection Final Weights
D% o GE
n 72 Vs n+1 72

Perceptron shows us:

e Risk has a complex dependence on the parameterization:
» R/~ somehow measures the model capacity.

e Risk has a complex dependence on optimization:
» Exactly optimizing perceptron gives only minor improvement.
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Why Does Deep Learning Work?
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Deep Learning: Different Stories

There are two deep learning stories.

What We Expect What We See
More Parameters More Parameters
J \
Higher Model Capacity ”
4 4
More Overfitting Better Generalization

Take-Home Message: model capacity is not just parameters!
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Deep Learning: Filling in the Gap

We're quickly filling in the gap with possible sources
of implicit and explicit regularization.

What'’s Actually Happening

More Parameters

I
{SGD, Architecture, Dropout, L2, Sharp Local Minima, Interpolation}

4

Controlled Capacity

4

Better Generalization
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Deep Learning: Frontiers of Research
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e Sharp vs Flat Minima: Some local minima generalize much
better than others.

e Implict Bias of SGD: SGD regularizes towards particular
solutions that generalize well.

e Interpolation: Highly over-parameterized models don't obey

traditional bias-variance tradeoff.
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Summary

Here’s what we discussed today:
e Deep neural networks work very well for a variety of
problems.
e Making neural networks bigger improves performance even
when training accuracy has saturated.
e Number of parameters may be a poor measure of capacity.
e New research looks at the capacity of neural networks via

» types of local minima,
» properties of optimization procedures,
» the role of over-parameterization/interpolation.
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Signup

Signup Sheet
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https://tinyurl.com/y4pn846v
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Simons Institute.
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https://simons.berkeley.edu/workshops/schedule/10624

Bonus Slides
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Bonus: Perceptron Mistake Bound (1)

Theorem (Perceptron Mistake Bound)

We need two assumptions for perceptron to work:
e the data is linearly separable with margin ~.
e the input features have bounded norm: ||x|2 < R Vx

Then perceptron makes at most R?/~? mistakes during training:

=
-

. R?2
1 (sign{we, xt)) # yt) < per

....
Il
o

Starting Place: The proof focuses on the angle between the
normal vector for a max-margin hyperplane w* and w;:

(e, wa) < [lwe|2[|w[|2
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Bonus: Perceptron Mistake Bound (2)

Let {0... T — 1} be iterations where perceptron makes a mistake.
Proof.

1. Margin of v = Iw* € RY, y; x (w*, x;) > v[|w*|2 = v

» Since the margin between any x and the hyperplane given by
w* is (w*, x) /|| w*||2.

2. WLOG, let ||w*||2 = 1 (rescaling doesn't affect hyperplanes).
3. {wr,w*) = (0, w*) + ZZ-:_OI Ve(xe, w*) > T %y

4. lwrl? = w2 + (wr—1, yr—1x7—1) + [|[x7-1])? <
Iwr_1] + R?

5. By recursion on (4), [|wr|? < T * R?
6. (wr,w*) < |wrll|w*|| = Ty < TY25xR= T < R%/4?
L]
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Bonus: Towards Generalization Bounds

Intuitive Definition: fgeneralizes well if the empirical risk is a
good approximation of the risk:

Ro(F) = = 3 £(F(0). %) = Epgey) [£0F00. )] = R(F).
i=1

Formal(ish) Definition: 7 generalizes well if there are ¢,6 > 0

such that A A
Pro (Rp(f) > R(F) + e) <.

e f is a random variable because D is random.

o fis good with high-probability if the empirical risk is small.
» roughly the idea of “probably, approximately correct” learning.
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