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Motivation

I Consider the modifications below:
I Bandit 1: {10, 2, 9, 7, 6, 0, 0, 0, . . .}
I Bandit 2: {5, 4, 3, 9, 1, 0, 0, 0, . . .}

I What is the policy that maximized lim
T−→∞E

[∑T−1
t=0 atrit (ιit )

]
I a = 0.1: “Future is not so important”

I 10a0 + 5a1 + 4a2 + 3a3 + 9a4 + 2a5 + 8a6 + . . .

I a = 0.9: “Future is (almost) as important as the present"
I 10a0 + 2a1 + 8a2 + 7a3 + 6a4 + 5a5 + 4a6 + . . .

I a = 0.5: “Future is somewhat important"
I 10a0 + 5a1 + 2a2 + 8a3 + 7a4 + 6a5 + 4a6 + . . .
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Markov Decision Process (MDP)

I State: Defined on a state space Θ andσ-algebraX of subsets of Θ which includes every
subset of consisting just one element of Θ

I Action: When the process is in state x, the set of control may be applied: Ω(x).
I Probability: P(A | x, u) is the probability that the state y of the process at time t + 1

belongs to A(∈ X ), given at time t the process is in state x and control u is applied.
I Rewards: Application of control u at time t with the process in state x yields a reward

atR(x, u) (0 < a < 1).
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MDP Policies

Definition
Any rule, including randomized rules, which for all t specifies the control to be applied at time t
as a function of t, the states at times 0, . . . , t, and controls applied at times 0, . . . , t− 1.

Deterministic Policies
Policies that involve no randomization.

Stationary Policies
Policies that involve no explicit time-dependence.

Markov Policies
Policies for which the control chosen at time t is independent of the states and the controls
applied at times 0, 1, . . . , t− 1.
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Optimal Policy of MDP

Blackwell's Theorem (1965)
If the control set Ω(x) is finite and the same for all x, then there is a deterministic stationary
Markov policy for which, for any initial state, the total expected reward is the supremum of the
total expected reward for the class of all policies.

Optimal Policy
A policy which achieves the supremum of total expected rewards.

Assumptions
It is assumed throughout the presentation that Ω(x) is finite for all x and the supremum of the
total expected reward is finite. (Therefore we can restrict our attention to deterministic
stationary policies only.)
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Bandit Process
Definition
A bandit process is an MDP for which

I Set of controls: Ω(x) = {0, 1}, where
I Control 0: Freezes the process P(x | x, 0) = 1 and R(x, 0) = 0,∀ x.
I Control 1: Continuation control. No restriction on the transition probabilities and rewards.

Process Time t
The number of times control 1 has been applied to a bandit process, where

I The state at process time t is denoted by x(t).
I The reward between times t and t + 1 if control 1 is applied is applied at each stage is

atR(x(t), 1), abbreviated as atR(t).

Standard Bandit Process
A bandit process for which, for someλ, R(x, 1) = λ,∀x.
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Bandit Process

Freezing Rule f
An arbitrary policy for a Bandit process. Given any freezing rule f ,

I f (t) is the number of times control 0 is applied, before the (t + 1)st application of control 1.

Deterministic Policy
Deterministic stationary Markov policies divide the state space Θ into

I Stopping Set: Control 0 is applied
I Continuation Set: Control 1 is applied

Stopping Rule and Stopping Time
For some sequentially determined random variable τ , called stopping time, we have

I f (t) = 0,∀t < τ and f (τ) = +∞.

10 / 34



Bandit Process Theorems Calculations of DAIs Applications Conclusions

Dynamic Allocation Index
Expected Total Reward

I Freezing Rule f : Rf (D) = E
∑∞

t=0 at+f (t)R(t), R(D) = sup
f

Rf (D)

I Stopping Rule τ : Rτ (D) = E
∑τ−1

t=0 atR(t), R(D) = sup
τ

Rτ (D)

Expected Rewards per Unit of Discounted Time

I Freezing Rule f : Wf (D) = E
∑∞

t=0 at+f (t), νf (D) =
Rf (D)
Wf (D) , and ν(D) = sup

f :f (0)=0
νf (D)

I Stopping Rule τ : Wτ (D) = E
∑τ−1

t=0 at, ντ (D) = Rτ (D)
Wτ (D) , and ν(D) = sup

τ>0
ντ (D)

I All these quantities depend on initial state of the bandit process x(0)
I ν(D, x) is defined as the Dynamic Allocation Index.
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Forward Induction Theorems
Superprocess (M, g)
Given any Markov decision processM, with a deterministic stationary Markov policy g, a
bandit process may be defined by at each time t either apply

I Freeze control 0, or the control given by g.

Forwards Induction Policy
For the Markov decision processM, whose state at time zero is x0,

I Find a policy γ1 and a stopping timeσ1, such that the discounted average reward per unit
time of the superprocess (M, g) up to the stopping time τ is maximized over g and τ , by
setting (g, τ) = (γ1, σ1). That is νγ1σ1 (M) = ν(M, x0)

I Let x1 be the random state of the superprocess (M, γ1) at timeσ1. Define the policy γ2
andσ2 such that νγ2σ2 (M, x1) = ν(M, x1)

I And so on.
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Theorems

A Family of Alternative Bandit Processes
Formed by bringing together a set of n bandit processes, with the constraint that

I Control 1 must be applied to just one bandit process at a time
I Control 0 is applied to the other (n− 1) bandit processes.

The Forwards Induction Theorem
For a simple family of alternative bandit problem processes a policy is optimal if and only if it
coincides almost always with a forward induction policy.

DAI Theorem
For a simple family of alternative bandit processes a policy is optimal if and only if

I At each stage the bandit process selected for continuation is almost always one of those
whose dynamic allocation index (DAI) is then maximal.
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More Properties of DAI

Definition
The DAI for a bandit process D in state x may be written more precisely as

ν(D, x) = sup
{f :f (0)=0}

[
E
[∑∞

t=0 at+f (t)R(x(t), 1) | x(0) = x
]

E
[∑∞

t=0 at+f (t) | x(0) = x
] ]

(1)

= sup
{τ>0}

ντ (D, x) = sup
{τ>0}

[
E
[∑τ−1

t=0 atR(x(t), 1) | x(0) = x
]

E
[∑τ−1

t=0 at | x(0) = x
] ]

(2)

Remarks
Expression (2) correspond to the case where the stopping set is used. We will focus on this case,
first.
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Lemma

The supreme in (3) is attained by setting Θ0 = {y ∈ Θ : ν(D, y) < ν(D, x)}.

Proof.
Dropping the condition x(0) = x from the notation, for any non-random s ∈ Z+ and τ ,

ντ (D, x) =

[
E
∑σ−1

t=0 atR(x(t), 1) + E
[
E
∑τ−1

t=s atR(x(t), 1) | x(s)
]

E
∑σ−1

t=0 at + E
[
E
∑τ−1

t=s at | x(s)
] ]

, (3)

whereσ = min(s, τ). If τ > s, then

E

[
τ−1∑
t=s

atR(x(t), 1) | x(s)

]
/E

[
τ−1∑
t=s

at | x(s)

]
= ντ−s(D, x(s)) ≤ ν(D, x(s)), (4)
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Lemma

Proof.
(Continued.) From (3) and (4) it follows that if the probability of the event

Es = {τ > s ∩ ν(D, x(s)) < ντ (D, x)} (5)

is positive, and define a random variable ρ, where

ρ =

{
s if event Es occurs,
τ otherwise.

(6)

Then, we have
νρ(D, x) > ντ (D, x). (7)

Thus, if τ is such that the supremum is attained in (2) we must haveP(∪∞s=1Es) = 0.
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Lemma

Proof.
(Continued.) P{∪∞s=1Es} = 0, where Es = {τ > s ∩ ν(D, x(s)) < ντ (D, x)} is equivalent to

I The probability that, starting in state x, the bandit process D passes through a state which
belongs to the set Θs = {y ∈ Θ : ν(D, y) < ν(D, x)} before process time τ is zero.

I Thus the stopping set Θ0 which defines τ must include Θs (except for a subset that will
not be reached before τ ).

A similar argument shows thatP{ν(D, x(τ)) > ν(D, x) | x(0) = x} = 0.
I Since otherwise ντ (D, x) could be increased by increasing τ in an appropriate fashion for

those realizations of D for which ν(D, x(τ)) > ν(D, x).
Also, ντ (D, x) is unaffected by the inclusion or exclusion from Θ0 of states belonging to the set
Θe = {y ∈ Θ : ν(D, y) = ν(D, x)}.
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Two Simple Cases for Calculating DAI

Consider any bandit process D and an arbitrary state x. Dropping D from the notations, we have

ν(x) = sup
τ>0

ντ (x) = sup
τ>0

Rτ (x)

Wτ (x)
= sup

σ≥0

R(x, 1) + aE[Rσ(x(1)) | x(0) = x]

1 + aE[Wσ(x(1)) | x(0) = x]
, (8)

where τ andσ are stopping ties, and τ is restricted to be positive.

Case 1: The Deteriorating Case

I We haveP{ν(x(1)) ≤ ν(x(0)) | x(0) = 0} = 1
I Since ν(x(1)) = sup

σ>0

Rσ(x(1))
Wσ(x(1)) , we have ν(x) = R(x, 1).

I One-step look ahead policy is optimal.
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Two Simple Cases for Calculating DAI

ν(x) = sup
τ>0

ντ (x) = sup
τ>0

Rτ (x)

Wτ (x)
= sup

σ≥0

R(x, 1) + aE[Rσ(x(1)) | x(0) = x]

1 + aE[Wσ(x(1)) | x(0) = x]
. (9)

Case 2: The Improving Case

I We haveP{ν(x(s)) ≥ ν(x(s− 1)) · · · ≥ ν(x(1)) ≥ ν(x(0)) | x(0) = x} = 1, for some
non-random integer s.

I From the above equation, we have

ν(x) = sup
σ>0

E
[∑s−1

t=0 atR(x(t), 1) | x(0) = x
]

+ asE [Rσ(x(s)) | x(0) = x]

1 + a + · · ·+ as−1 + asE[Wσ(x(s)) | x(0) = x]
, (10)

I This will simplify if the defining condition holds for all s and if we set s =∞.
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General Method for Calculating DAI
I When problem does not simplify: use the standard bandit as a calibration device
I Consider simple family of alternative bandit processes {D, λ}, formed by

I An arbitrary bandit process D
I And a standard bandit process with the parameterλ.

I Optimal policies for {D, λ} are DAI policies. Start by
I Continuing D if ν(D) > λ
I Continuing the standard process if ν(D) < λ.
I When ν(0) = λ, optimal policy can start either way.

I Goal: Find a value ofλ such that an optimal policy for {D, λ} can either start with D or the
standard policy.

Maximum Total Expected Reward

R({D, λ}, x) = max(λ/(1− a), R(x, 1) + E [R({D, λ}, y))] . (11)
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The Scheduling Problem
Problem Setup

I j jobs to be carried out by a single machine.
I Times taken to process the jobs: independent integer-valued random variables
I Jobs must be processed one at a time.
I At the beginning of each time unit

I Any job may be selected for processing
I Whether or not the job processed during the preceding time unit has been completed
I There is no penalty involved in switching from one job to another

I Probability that (t + 1) time units are required to complete the processing of job i,
conditioned on more than t time units being needed is pi(t).

I Reward for finishing job i at time s is asVi (0 < a < 1; Vi > 0, i = 1, 2, . . . , n).
I Problem: Decide which job to process next, to maximize the total expected reward.

26 / 34



Bandit Process Theorems Calculations of DAIs Applications Conclusions

The Scheduling Problem
Let D be a bandit process such that

I Θ = {C} ∩ Z, where state C signifies that the job has been completed.

I P(st+1|st = C) =

{
1, if st+1 = C
0, otherwise

, P(st+1|st 6= C) =


p(t), if st+1 = C
1− p(t), if st+1 = st + 1
0, otherwise

I R(st, u = 1) =

{
0, if st = C
ptV, otherwise.

Deteriorating Bandit Process

I If p(t) is a non-increasing function of t.
I Job to to continued at any time is one of those for which pi(ti)Vi is the largest.
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The Scheduling Problem

(Modified) Improving Bandit Process

I If p(t) is a non-decreasing function of t, where ν(C) = 0 and
P{ν(x(s)) ≥ ν(x(s− 1)) · · · ≥ ν(x(1)) ≥ ν(x(0)) ≥ 0 | x(0) = x, x(s) 6= C} = 1,

I By definition,

ν(x) =
E
[∑τ−1

t=0 atR(x(t), 1) |x(0) = x)
]

E [1 + a + . . .+ aτ−1 | x(0) = x]
, (12)

where τ = min{s : x(s) = C}. Rewrite it into the form
I

ν(x) =
V(1− a)E [aτ−1 | x(0) = x]

1− E [aτ | x(0) = x]
(13)
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The Scheduling Problem

(Modified) Improving Bandit Process

I For an arbitrary job with no restriction on the function p(t), τ for which the supremum is
achieved should not be greater than the time taken to complete the job.

I Uncompleted jobs: state coincides with process time, so that the stopping set wich defines
τ must be reached at some non-random (and possibly infinite) time r. Thus, τ is of the
form min{r,min[s : x(s) = C]}. Therefore, we have ν(C) = 0, and

ν(x) = sup
r>0

V(1− a){Eaρ−1 − P(ρ > r)E(aρ−1|ρ > r)}
1− Eaρ + P(ρ > r){E(aρ|ρ > r)− ar}

, (14)

where ρ = min{s : x(s) = C}.
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Multi-Armed Bandit Problem

Problem Setup

I n arms which may be pulled repeatedly in any order.
I Each pull takes one time unit and only one arm maybe pulled at a time
I A pull may result a success or a failure. Bernoulli process with unknown probability θi

(i = 1, 2, . . . , n): sequence of successes and failures result from pulling arm i
I Successful pull at time t yields a reward at (0 < a < 1), while unsuccessful pull yields 0.
I t = 0, θi ∼ (αi(0)+βi(0)+1)!

(α(0)!β(0)!) θ
αi(0)
i (1− θi)

βi(0), i.e., Beta dist. with (αi(0), βi(0)).
I If in the first t pulls there are r successes (αi(t), βi(t)) = (αi(0) + r, βi(0) + t− r)

I If the (t + 1)st pull on arm i takes place at time s, the expected reward, conditioned on the
record of successes and failures up to then, is as times the expected value of a beta variate
with parameters (αi(t), βi(t)), which is ((αi(t) + 1)/(αi(t) + βi(t) + 2).
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Conclusions

I Bandit Process
I Dynamic Allocation Index
I Forward Induction Policy
I Stochastic Scheduling Policy
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THANK YOU
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