
Thompson Sampling
Jason Hartford

“randomly take action according to the probability you believe it is the optimal action”  - Thompson 1933 



History

Thompson was interested in the 
problem of assigning 
treatments to individuals…


Need to explore which of the 
two treatments is more 
successful, but also want to 
minimize the number of times 
you give patients the 
suboptimal treatment.


Fewer citations than a 
typical GAN paper 😕



History
Not much interest for 80 years 
until a number of authors 
noticed it performed well 
empirically [e.g. Graepel et al. 
2010].


The first frequentist regret 
bounds that matched lower 
bounds up to a log factor were 
due to Agrawal and Goyal 
[2012, 2013a].


Baselines have changed 
a lot since 2010…



Thompson Sampling Algorithm
Very intuitive algorithm which has been reinvented multiple times.


• Start with prior over parameters. Think: a prior over the possible explanations 
for way the environment works. 

• Sample a particular set of parameters from the prior. Think: pick one of those 
explanations.


• Select � . Think: maximize reward given 
your choice of explanation.


• Observe reward and update posterior. Think: update your model of the world

arm = arg maxi rewardi |parameters



Beta - Bernoulli Example

form distribution on (0, 1). At time t, having ob-
served Si(t) successes (reward = 1) and Fi(t) failures
(reward = 0) in ki(t) = Si(t) + Fi(t) plays of arm
i, the algorithm updates the distribution on µi as
Beta(Si(t) + 1, Fi(t) + 1). The algorithm then sam-
ples from these posterior distributions of the µi’s,
and plays an arm according to the probability of its
mean being the largest.

Algorithm 1: Thompson Sampling using Beta pri-
ors
For each arm i = 1, . . . , N set Si = 0, Fi = 0.
foreach t = 1, 2, . . . , do

For each arm i = 1, . . . , N , sample ✓i(t) from
the Beta(Si + 1, Fi + 1) distribution.
Play arm i(t) := argmaxi ✓i(t) and observe
reward rt.
If rt = 1, then Si(t) = Si(t) + 1, else
Fi(t) = Fi(t) + 1.

end

We have provided the details of TS with Beta pri-
ors for the Bernoulli bandit problem.A simple exten-
sion of this algorithm to general reward distributions
with support [0, 1] is described in [2], which seam-
lessly extends results for Bernoulli bandits to general
stochastic bandit problem.

Thompson Sampling using Gaussian priors

As before, let ki(t) denote the number of plays of
arm i until time t� 1, i(t) denote the arm played at
time t. Let ri(t) denote the reward of arm i at time
t, and define µ̂i(t) as:

µ̂i(t) =

Pt�1
w=1:i(w)=i ri(t)

ki(t) + 1
.

Note that µ̂i(1) = 0. To derive TS algorithm with
Gaussian priors, assume that the likelihood of re-
ward ri(t) at time t, given parameter µi, is given
by the pdf of Gaussian distribution N (µi, 1). Then,
assuming that the prior for µ at time t is given by
N (µ̂i(t),

1
ki(t)+1 ), and arm i is played at time t with

reward r, it is easy to compute the posterior dis-
tribution

Pr(µ̃i|ri(t)) / Pr(ri(t)|µ̃i) Pr(µ̃i)

as Gaussian distribution N (µ̂i(t+1), 1
ki(t+1)+1 ). In

TS with Gaussian priors, for each arm i, we will
generate an independent sample ✓i(t) from the dis-
tribution N (µ̂i(t),

1
ki(t)+1 ) at time t. The arm with

maximum value of ✓i(t) will be played.

Algorithm 2: Thompson Sampling using Gaussian
priors

For each arm i = 1, . . . , N set ki = 0, µ̂i = 0.
foreach t = 1, 2, . . . , do

For each arm i = 1, . . . , N , sample ✓i(t)
independently from the N (µ̂i,

1
ki+1 )

distribution.
Play arm i(t) := argmaxi ✓i(t) and observe
reward rt.

Set µ̂i(t) =
(µ̂i(t)ki(t)+rt)

ki(t)+1 , ki(t) = ki(t) + 1.

end

1.3 Our results

In this article, we bound the finite time expected
regret of TS. From now on we will assume that the
first arm is the unique optimal arm, i.e., µ⇤ = µ1 >

argmaxi 6=1 µi. Assuming that the first arm is an
optimal arm is a matter of convenience for stating
the results and for the analysis and of course the
algorithm does not use this assumption. The as-
sumption of unique optimal arm is also without loss
of generality, since adding more arms with µi = µ

⇤

can only decrease the expected regret; details of this
argument were provided in [2].

Upper bounds

Theorem 1. For the N -armed stochastic bandit
problem, TS algorithm, using Beta priors has ex-
pected regret

E[R(T )]  (1 + ✏)
NX

i=2

lnT

d(µi, µ1)
�i +O(

N

✏2
)

in time T , where d(µi, µ1) = µi log
µi

µ1
+ (1 �

µi) log
(1�µi)
(1�µ1)

. The big-Oh notation assumes
µi,�i, i = 1, . . . , N to be constants.

Theorem 2. For the N -armed stochastic bandit
problem, TS using Beta priors, has expected regret

E[R(T )]  O(
p
NT lnT )

in time T , where the big-Oh notation hides only the
absolute constants.

Theorem 3. For the N -armed stochastic bandit
problem, TS using Gaussian priors, has expected re-
gret

E[R(T )]  O(
p
NT lnN)

in time T � N , where the big-Oh notation hides only
the absolute constants.

3
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Regret bounds [Agrawal & Goyal 2013]
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Upper confidence bound (UCB) algorithm
Theorem. Let Δ𝑖 ≔ 𝜇∗ − 𝜇𝑖 be suboptimality of arm 𝑖. If we choose 𝛿~1/𝑇2:

𝑅𝑒𝑔 𝑇 ≤ 𝐶 ෍
𝑖∈ 𝐾

Δ𝑖 + ෍
𝑖:Δ𝑖>0

𝐶 log 𝑇
Δ𝑖

Sketch.
• Fact. 𝑅𝑒𝑔 𝑇 = σ𝑖:Δ𝑖>0 Δ𝑖𝐸[𝑁𝑖 𝑇 ] (𝑁𝑖 𝑇 counts number of times arm 𝑖 was pulled up to time 𝑇)

• Want to bound 𝐸[𝑁𝑖 𝑇 ] whenever Δ𝑖 > 0.

• W.h.p. 𝑈𝐶𝐵𝑖 𝑡 = Ƹ𝜇𝑖 𝑡 + 2 log 1
𝛿
/𝑁𝑖 𝑡 ≤ 𝜇𝑖 + 2 2 log 1

𝛿
/𝑁𝑖 𝑡

• If 𝑁𝑖 𝑡 ≥ Ω log 1
𝛿
Δ𝑖−2 then 𝑈𝐶𝐵𝑖 𝑡 < 𝜇∗ so will pull 𝑂 log 1

𝛿
Δ𝑖−2 w.h.p.

• To conclude, if Δ𝑖 > 0 then Δ𝑖𝐸[𝑁𝑖 𝑇 ] ≲ 𝑂 log 1
𝛿
Δ𝑖−1 .

• Choose 𝜹~𝟏/𝑻𝟐 to beat union bound.

UCB from 
last week
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Proof idea
Recall from last week: � 


So we need to bound � : the expected number of times each 
suboptimal arm is played.


Use two events to split up the expectation: 


• �  - the event that the sampled parameter is far from � 


• �  - the event that the estimated mean �  is from from �

R(T) = ∑
i:Δi>0

Δi𝔼 [ki(T)]

𝔼 [ki(T)]

Eθ
i (t) μi

E ̂μ
i (t) ̂μi μi
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✓
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�
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TX
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⇣
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i (t), E
✓
i (t)

⌘

+
TX

t=1

Pr
⇣
i(t) = i, Eµ

i (t)
⌘

🌟

Number of times 
arm �  is pulledi



Proof idea

0 1
�μi �μ1

E ̂μ
i (t) := { ̂μi < xi}

Eθ
i (t) := {θi < yi}

�xi �yi

E [ki(T )] =
TX

t=1

Pr(i(t) = i) =
TX

t=1

Pr
�
i(t) = i, Eµ

i (t), E
✓
i (t)

�

+
TX

t=1

Pr
⇣
i(t) = i, Eµ

i (t), E
✓
i (t)

⌘

+
TX

t=1

Pr
⇣
i(t) = i, Eµ

i (t)
⌘

🌟

Bounded by linear 
function prob of 

playing 🌟

Number of times 
arm �  is pulledi

We’ll show that…



Proof idea

0 1
�μi �μ1

E ̂μ
i (t) := { ̂μi < xi}

Eθ
i (t) := {θi < yi}

�xi �yi

E [ki(T )] =
TX

t=1

Pr(i(t) = i) =
TX

t=1

Pr
�
i(t) = i, Eµ

i (t), E
✓
i (t)

�

+
TX

t=1

Pr
⇣
i(t) = i, Eµ

i (t), E
✓
i (t)

⌘

+
TX

t=1

Pr
⇣
i(t) = i, Eµ

i (t)
⌘

🌟

Bounded by linear 
function prob of 

playing 🌟
Rare once mean 
is concentrated

Number of times 
arm �  is pulledi

We’ll show that…



Proof idea

0 1
�μi �μ1

E ̂μ
i (t) := { ̂μi < xi}

Eθ
i (t) := {θi < yi}

�xi �yi

E [ki(T )] =
TX

t=1

Pr(i(t) = i) =
TX

t=1

Pr
�
i(t) = i, Eµ

i (t), E
✓
i (t)

�

+
TX

t=1

Pr
⇣
i(t) = i, Eµ

i (t), E
✓
i (t)

⌘

+
TX

t=1

Pr
⇣
i(t) = i, Eµ

i (t)
⌘

🌟

Bounded by linear 
function prob of 

playing 🌟
Rare once mean 
is concentrated

Rare (using 
Chernoff)

Number of times 
arm �  is pulledi

We’ll show that…



Proof idea
E [ki(T )] =
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on whether we are proving problem-dependent bound
or problem-independent bound, and will be described
at the approporiate points in the proof. Define
Li(T ) =

lnT
d(xi,yi)

, and µ̂i(t) = Si(t)/(ki(t) + 1) (note

that µ̂i(t) = 0 when ki(t) = 0). Define E
µ
i (t) as the

event that µ̂i(t)  xi. Define E
✓
i (t) as the event that

✓i(t)  yi.

Intuitively, E
µ
i (t), E

✓
i (t) are the events that µ̂i(t)

and ✓i(t), respectively, are not too far from the mean
µi. As we show later, these events will hold with high
probability for most time steps.

Definition 3. Define filtration Ft�1 as the history
of plays until time t� 1, i.e.

Ft�1 = {i(w), ri(w)(w), i = 1, . . . , N,w = 1, . . . , t�1},

where i(t) denotes the arm played at time t, and ri(t)
denotes the reward observed for arm i at time t.

Definition 4. Define, pi,t as the probability

pi,t = Pr(✓1(t) > yi|Ft�1).

Note that pi,t is determined by Ft�1.

We prove the following lemma for Thompson Sam-
pling, irrespective of the type of priors (e.g., Beta or
Gaussian) used.

Lemma 1. For all t 2 [1, T ], and i 6= 1,

Pr
�
i(t) = i, E

µ
i (t), E

✓
i (t)) Ft�1

�

 (1� pi,t)

pi,t
Pr

�
i(t) = 1, Eµ

i (t), E
✓
i (t) Ft�1

�
,

where pi,t = Pr(✓1(t) > yi|Ft�1).

Proof. Note that whether Eµ
i (t) is true or not is de-

termined by Ft�1. Assume that filtration Ft�1 is
such that E

µ
i (t) is true (otherwise the probability

on the left hand side is 0 and the inequality is triv-
ially true). It then su�ces to prove that

Pr
�
i(t) = i E

✓
i (t),Ft�1

�

 (1� pi,t)

pi,t
Pr

�
i(t) = 1 E

✓
i (t),Ft�1

�
. (1)

Let Mi(t) denote the event that arm i exceeds all
the suboptimal arms at time t. That is,

Mi(t) : ✓i(t) � ✓j(t), 8j 6= 1.

We will prove the following two inequalities which
immediately give (1).

Pr
�
i(t) = 1 E

✓
i (t),Ft�1

�

� pi,t · Pr
�
Mi(t) E

✓
i (t),Ft�1

�
, (2)

Pr
�
i(t) = i E

✓
i (t),Ft�1

�

 (1� pi,t) · Pr
�
Mi(t) E

✓
i (t),Ft�1

�
. (3)

We have

Pr
�
i(t) = 1 E

✓
i (t),Ft�1

�

� Pr
�
i(t) = 1,Mi(t) E

✓
i (t),Ft�1

�

= Pr
�
Mi(t) E

✓
i (t),Ft�1

�
· Pr

�
i(t) = 1 Mi(t), E

✓
i (t),Ft�1

�
.

(4)

Now, given Mi(t), E✓
i (t), it holds that for all j 6=

i, j 6= 1,
✓j(t)  ✓i(t)  yi,

and so

Pr(i(t) = 1 Mi(t), E
✓
i (t),Ft�1)

� Pr(✓1(t) > yi Mi(t), E
✓
i (t),Ft�1)

= Pr(✓1(t) > yi Ft�1)

= pi,t.

The second last equality follows because the events
Mi(t) and E

✓
i (t), 8i 6= 1 involve conditions on

only ✓j(t) for j 6= 1, and given Ft�1 (and hence
µ̂j(t), kj(t), 8j), ✓1(t) is independent of all the other
✓j(t), j 6= 1, and hence independent of these events.
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using Lemma 1, we can bound the first term above
as:
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The inequality marked (⇤) uses the observation that
pi,t = Pr(✓1(t) > yi|Ft�1) changes only when the
distribution of ✓1(t) changes, that is, only on the
time step after each play of first arm. Thus, pi,t is
same at all time steps t 2 {⌧k + 1, . . . , ⌧k+1}, for
every k. We prove the following lemma to bound
the sum of 1

pi,⌧k+1
.

Lemma 2. Let ⌧j denote the time step at which j
th

trial of first arm happens, then

E[ 1
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1�µ1
.

Proof. The proof of this inequality involves some
careful algebraic manipulations using tight estimates
for partial Binomial sums provided by [13]. Refer to
Appendix B.3 for details.

For the remaining two terms in Equation (5), we
prove the following lemmas.

Lemma 3.
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Pr
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i(t) = i, E

µ
i (t)

⌘
 1

d(xi, µi)
+ 1.

Proof. This follows from the Cherno↵-Hoe↵ding
bounds for concentration of µ̂i(t). Appendix B.1
has details.

Lemma 4.
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⌘
 Li(T ) + 1.

Proof. This follows from the observation that ✓i(t)
is well-concentrated around its mean when ki(t) is
large, that is, larger than Li(T ). Appendix B.2 has
details.

For obtaining the problem-dependent bound of The-
orem 1, for some 0 < ✏  1, we set xi 2 (µi, µ1)
such that d(xi, µ1) = d(µi, µ1)/(1 + ✏), and set
yi 2 (xi, µ1) such that d(xi, yi) = d(xi, µ1)/(1+✏) =
d(µi, µ1)/(1 + ✏)2 (1). This gives

Li(T ) =
lnT

d(xi, yi)
= (1 + ✏)2

lnT

d(µi, µ1)
.

Also, by some simple algebraic manipulations of the
equality d(xi, µ1) = d(µi, µ1)/(1 + ✏), we can obtain
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· d(µi, µ1)
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µi(1�µ1)

⌘ ,
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 2

(xi � µi)2
= O(

1

✏2
).

Here order notation is hiding functions of µis and
�is, since they are assumed to be constants. Sub-
stituing in Equation (5), and Equation (6), we get,
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 24
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✓
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+
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lnT
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+O(
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)

= O(1) + (1 + ✏)2
lnT

d(µi, µ1)
+O(
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).

The order notation above hides dependence on µis
and �is. This gives expected regret bound

E[R(T )] =
X

i

�iE[ki(T )]


X

i

(1 + ✏)2
lnT

d(µi, µ1)
�i +O(

N

✏2
)


X

i

(1 + ✏
0)

lnT

d(µi, µ1)
�i +O(

N

✏02
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1This way of choosing thresholds, in order to obtain
bounds in terms of KL-divergences d(µi, µ1) rather than
�is, is inspired by [9, 17, 14].
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For this one uses the fact that Chernoff implies this probability decreases 
exponentially in the number of times that the arm is played.
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Application



Requirements.
How do we use these ideas in more complicated settings (e.g. contextual 
bandits, reinforcement learning)?


In order to apply Thompson Sampling, you need two things:


• Proper uncertainty estimates of the parameters of your model.


• A way of updating posterior given new data.


This is straightforward with conjugate models (e.g. GPs work well).


What about neural nets? Isn’t Bayesian Deep Learning all the rage? 



Deep reinforcement learning with Thompson 
Sampling ideas

Paper makes two contributions:


1. Discusses the limitations of popular approaches to uncertainty 
quantification.


2. Proposes a bootstrap approach with a prior function.

Randomized Prior Functions for Deep Reinforcement Learning [Osband et al. NeurIPS 2018]



Problems with popular Bayesian deep learning 
approaches

• Dropout as posterior approximation: dropout rate, � , doesn’t depend 
on the data so posterior doesn’t concentrate… improvements that make �  
data-dependent suffer from variational critique. 


• Variational inference and Bellman error: using the wrong loss (MSE) 
does not propagate uncertainty correctly. (Comment: weird critique)


• Distributional RL: models distribution over rewards, � , not 
distribution over model parameters, � .

p
p

ℙ(r |θ)
θ



Randomized prior functions for deep ensembles 

• Standard bootstrap is easy to implement: train K neural networks in 
parallel random samples (with replacement) of your data. Use 
appropriately scaled variance of predictions as an estimate of confidence 
intervals.


• Doesn’t give a way of introducing a prior. Proposed solution:

3 Randomized prior functions for deep ensembles

Section 2 motivates the need for e�ective uncertainty estimates in deep RL. We note that
crucial failure cases of several popular approaches can arise even with simple linear models.
As a result, we take a moment to review the setting of Bayesian linear regression. Let
◊ œ Rd with prior N(◊, ⁄I) and data D = {(xi, yi)}n

i=1 for xi œ Rd and yi = ◊
T

xi + ‘i with
‘i ≥ N(0, ‡

2) iid. Then, conditioned on D, the posterior for ◊ is Gaussian:

E[◊ |D]=
3

1
‡2 X

T
X+ 1

⁄
I

4≠13
1
‡2 X

T
y+ 1

⁄
◊

4
, Cov[◊ |D]=

3
1
‡2 X

T
X+ 1

⁄
I

4≠1
. (3)

Equation (3) relies on Gaussian conjugacy and linear models, which cannot easily be extended
to deep neural networks. The following result shows that we can replace this analytical result
with a simple computational procedure.
Lemma 3 (Computational generation of posterior samples).
Let f◊(x) = x

T
◊, ỹi ≥ N(yi, ‡

2) and ◊̃ ≥ N(◊, ⁄I). Then the either of the following
optimization problems generate a sample ◊ | D according to (3):

arg min
◊

nÿ

i=1
Îỹi ≠ f◊(xi)Î2

2 + ‡
2

⁄
Î◊̃ ≠ ◊Î

2
2, (4)

◊̃ + arg min
◊

nÿ

i=1
Îỹi ≠ (f◊̃ + f◊) (xi)Î2

2 + ‡
2

⁄
Î◊Î

2
2. (5)

Proof. To prove (4) note that the solution is Gaussian and then match moments; equation
(5) then follows by relabeling [49].

Lemma 3 is revealing since it allows us to view Bayesian regression through a purely
computational lens: ‘generate posterior samples by training on noisy versions of the data,
together with some random regularization’. Even for nonlinear f◊, we can still compute (4)
or (5). Although the resultant f◊ will no longer be an exact posterior, at least it passes the
‘sanity check’ in this simple linear setting (unlike the approaches of Section 2). We argue
this method is quite intuitive: the perturbed data D̃ = {(xi, ỹi)}n

i=1 is generated according
to the estimated noise process ‘t and the sample ◊̃ is drawn from prior beliefs. Intuitively (4)
says to fit to D̃ and regularize weights to a prior sample of weights ◊̃; (5) says to generate a
prior function f◊̃ and then fit an additive term to noisy data D̃ with regularized complexity.
This paper explores the performance of each of these methods for uncertainty estimation
with deep learning. We find empirical support that method (5) coupled with a randomized
prior function significantly outperforms ensemble-based approaches without prior mechanism.
We also find that (5) significantly outperforms (4) in deep RL. We suggest a major factor in
this comes down to the huge dimensionality of neural network weights, whereas the output
policy or value is typically far smaller. In this case, it makes sense to enforce prior beliefs in
the low dimensional space. Further, the initialization of neural network weights plays an
important role in their generalization properties and optimization via stochastic gradient
descent (SGD) [23, 38]. As such, (5) may help to decouple the dual roles of initial weights as
both ‘prior’ and training initializer. Algorithm 1 describes our approach applied to modern
deep learning architectures.

Algorithm 1 Randomized prior functions for ensemble posterior.
Require: Data D™{(x,y)|xœX ,yœY}, loss function L, neural model f◊ :X æY,

Ensemble size KœN, noise procedure data_noise, distribution over priors P™{P(p)|p:X æY}.
1: for k = 1, .., K do
2: initialize ◊k ≥ Glorot initialization [23].
3: form Dk = data_noise(D) (e.g. Gaussian noise or bootstrap sampling [50]).
4: sample prior function pk ≥ P.
5: optimize Ò◊|◊=◊k

L(f◊ + pk; Dk) via ADAM [28].
6: return ensemble {f◊k + pk}K

k=1.
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function’ for an ensemble of neural networks. RLSVI with linear function approximation
and Gaussian noise guarantees a bound on expected regret of Õ(


|S||A|T ) in the tabular

setting [49].3 Similarly, analysis for the bandit setting establishes that K = Õ(|A|) models
trained online can attain similar performance to full resampling each episode [36]. Our work
in this paper pushes beyond the boundaries of these analyses, which are presented as ‘sanity
checks’ that our algorithm is at least sensible in simple settings, rather than a certificate
of correctness for more complex ones. The rest of this paper is dedicated to an empirical
investigation of our algorithm through computational experiments. Encouragingly, we find
that many of the insights born out of simple problems extend to more complex ‘deep RL’
settings and good evidence for the e�cacy of our algorithm.

4.2 Computational experiments
Our experiments focus on a series of environments that require deep exploration together
with increasing state complexity [27, 49]. In each of our domains, random actions are very
unlikely to achieve a reward and exploratory actions may even come at a cost. Any algorithm
without prior motivation will have no option but to explore randomly, or worse, eschew
exploratory actions completely in the name of premature and sub-optimal exploitation. In
our experiments we focus on a tabula rasa setting in which the prior function is drawn as
a random neural network. Although our prior distribution P could encode task-specific
knowledge (e.g. through sampling the true Q

ú), we leave this investigation to future work.
4.2.1 Chain environments
We begin our experiments with a family of chain-like environments that highlight the need
for deep exploration [62]. The environments are indexed by problem scale N œN and action
mask W ≥Ber(0.5)N◊N , with S={0,1}

N◊N and A={0,1}. The agent begins each episode in
the upper left-most state in the grid and deterministically falls one row per time step. The
state encodes the agent’s row and column as a one-hot vector stœS. The actions {0,1} move
the agent left or right depending on the action mask W at state st, which remains fixed.
The agent incurs a cost of 0.01/N for moving right in all states except for the right-most, in
which the reward is 1. The reward for action left is always zero. An episode ends after N

time steps so that the optimal policy is to move right each step and receive a total return of
0.99; all other policies receive zero or negative return. Crucially, algorithms without deep
exploration take �(2N ) episodes to learn the optimal policy [52].4

Figure 3: Only bootstrap with additive prior network (BSP) scales gracefully to large problems.
Plotting BSP on a log-log scale suggests an empirical scaling Tlearn = Õ(N3); see Figure 8.

Figure 3 presents the average time to learn for N = 5, .., 60 up to 500K episodes over 5
seeds and ensemble K = 20. We say that an agent has learned the optimal policy when
the average regret per episode drops below 0.9. We compare three variants of BootDQN,
depending on their mechanism for ‘prior’ e�ects. BS is bootstrap without prior mechanism.
BSR is bootstrap with l2 regularization on weights per (4). BSP is bootstrap with additive
prior function per (5). In each case we initialize a random 20-unit MLP; BSR regularizes to
these initial weights and BSP trains an additive network. Although all bootstrap methods
significantly outperform ‘-greedy, only BSP successfully scales to large problem sizes.
Figure 4 presents a more detailed analysis of the sensitivity of our approach to the tuning
parameters of di�erent regularization approaches. We repeat the experiments of Figure 3

3Regret measures the shortfall in cumulative rewards compared to that of the optimal policy.
4The dashed lines indicate the 2N dithering lower bound. The action mask W means this cannot

be solved easily by evolution or policy search evolution, unlike previous ‘chain’ examples [47, 54].
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(a) Only BSP learns a performant policy. (b) Inspecting the first 500 episodes.

Figure 5: Learning curves for the modified cartpole swing-up task.

Figure 5 compares the performance of DQN with ‘-greedy, bootstrap without prior (BS),
bootstrap with prior networks (BSP) and the state-of-the-art continuous control algorithm
D4PG, itself an application of ‘distributional RL’ [4]. Only BSP learns a performant policy;
no other approach ever attains any positive reward. We push experimental details, including
hyperparameter analysis, to Appendix B.2. These results are significant in that they show
that our intuitions translate from simple domains to more complex nonlinear settings,
although the underlying state is relatively low dimensional. Our next experiments investigate
performance in a high dimensional and visually rich domain.

4.2.3 Montezuma’s revenge

Our final experiment comes from the Arcade Learning Environment and the canonical
sparse reward game, Montezuma’s Revenge [9]. The agent interacts directly with the pixel
values and, even under an optimal policy, there can be hundreds of time steps between
rewarding actions. This problem presents a significant exploration challenge in a visually rich
environment; many published algorithms are essentially unable to attain any reward here
[42, 41]. We compare performance against a baseline distributed DQN agent with double
Q-learning, prioritized experience replay and dueling networks [25, 24, 59, 72]. To save
computation we follow previous work and use a shared convnet for the ensemble uncertainty
[47, 3]. Figure 6 presents the results for varying prior scale — averaged over three seeds. Once
again, we see that the prior network can be absolutely critical to successful exploration.

Figure 6: The prior network qualitatively changes behavior on Montezuma’s revenge.

5 Conclusion
This paper highlights the importance of uncertainty estimates in deep RL, the need for
an e�ective ‘prior’ mechanism, and its potential benefits towards e�cient exploration. We
present some alarming shortcomings of existing methods and suggest bootstrapped ensembles
with randomized prior functions as a simple, practical alternative. We support our claims
through an analysis of this method in the linear setting, together with a series of simple
experiments designed to highlight the key issues. Our work leaves several open questions.
What kinds of prior functions are appropriate for deep RL? Can they be optimized or
‘meta-learned’? Can we distill the ensemble process to a single network? We hope this work
helps to inspire solutions to these problems, and also build connections between the theory
of e�cient learning and practical algorithms for deep reinforcement learning.
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Results

4 Deep reinforcement learning
Algorithm 1 might be applied to model or policy learning approaches, but this paper focuses
on value learning. We apply Algorithm 1 to deep Q networks (DQN) [42] on a series of tasks
designed to require good uncertainty estimates. We train an ensemble of K networks {Qk}

K
k=1

in parallel, each on a perturbed version of the observed data Ht and each with a distinct
random, but fixed, prior function pk. Each episode, the agent selects j ≥ Unif([1, .., K])
and follows the greedy policy w.r.t. Qj for the duration of the episode. This algorithm
is essentially bootstrapped DQN (BootDQN) except for the addition of the prior function
pk [47]. We use the statistical bootstrap rather than Gaussian noise (5) to implement a
state-specific variance [19].
Let “ œ [0, 1] be a discount factor that induces a time preference over future rewards. For
a neural network family f◊, prior function p, and data D = {(st, at, rt, s

Õ
t) we define the

“-discounted empirical temporal di�erence (TD) loss,

L“(◊; ◊
≠

, p, D) :=
ÿ

tœD

Q

cart + “ max
aÕœA

target Q˙ ˝¸ ˚
(f◊≠ + p)(sÕ

t, a
Õ) ≠

online Q˙ ˝¸ ˚
(f◊ + p)(st, at)

R

db

2

. (6)

Using this notation, the learning update for BootDQN with prior functions is a simple
application of Algorithm 1, which we outline below. To complete the RL algorithm we
implement a 50-50 ensemble_buffer, where each transition has a 50% chance of being
included in the replay for model k = 1, .., K. For a complete description of BootDQN+prior
agent, see Appendix A.

Algorithm 2 learn_bootstrapped_dqn_with_prior
Agent: ◊1, .., ◊K trainable network parameters

p1, .., pK fixed prior functions
L“(◊= · ; ◊

≠= · , p= · , D= · ) TD error loss function
ensemble_buffer replay bu�er of K-parallel perturbed data

Updates: ◊1, .., ◊K agent value function estimate
1: for k in (1, . . . , K) do
2: Data Dk Ω ensemble_buffer[k].sample_minibatch()
3: optimize Ò◊|◊=◊k

L(◊; ◊k, pk, Dk) via ADAM [28].

4.1 Does BootDQN+prior address the shortcomings from Section 2?
Algorithm 2 is a simple modification of vanilla Q-learning: rather than maintain a single
point estimate for Q, we maintain K estimates in parallel, and rather than regularize each
estimate to a single value, each is individually regularized to a distinct random prior function.
We show that that this simple and scalable algorithm overcomes the crucial shortcomings
that a�ict existing methods, as outlined in Section 2.
X Posterior concentration (Section 2.1): Prior function + noisy data means the ensemble

is initially diverse, but concentrates as more data is gathered. For linear-gaussian systems
this matches Bayes posterior, bootstrap o�ers a general, non-parametric approach [16, 18].

X Multi-step uncertainty (Section 2.2): Since each network k trains only on its own
target value, BootDQN+prior propagates a temporally-consistent sample of Q-value [49].

X Epistemic vs aleatoric (Section 2.3): BootDQN+prior optimises the mean TD loss (6)
and does not seek to fit the noise in returns, unlike ‘distributional RL’ [7].

X Task-appropriate generalization (Section 2.4): We explore according to our uncer-
tainty in the value Q, rather than density on state. As such, our generalization naturally
occurs in the space of features relevant to the task, rather than pixels or noise [6].

X Intrinsic motivation (comparison to BootDQN without prior): In an environment with
zero rewards, a bootstrap ensemble may simply learn to predict zero for all states. The prior
pk can make this generalization unlikely for Qk at unseen states s̃ so E[max–Qk(s̃,–)]>0;
thus BootDQN+prior seeks novelty even with no observed rewards.

Another source of justification comes from the observation that BootDQN+prior is an
instance of randomized least-squares value iteration (RLSVI), with regularization via ‘prior
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trained online can attain similar performance to full resampling each episode [36]. Our work
in this paper pushes beyond the boundaries of these analyses, which are presented as ‘sanity
checks’ that our algorithm is at least sensible in simple settings, rather than a certificate
of correctness for more complex ones. The rest of this paper is dedicated to an empirical
investigation of our algorithm through computational experiments. Encouragingly, we find
that many of the insights born out of simple problems extend to more complex ‘deep RL’
settings and good evidence for the e�cacy of our algorithm.

4.2 Computational experiments
Our experiments focus on a series of environments that require deep exploration together
with increasing state complexity [27, 49]. In each of our domains, random actions are very
unlikely to achieve a reward and exploratory actions may even come at a cost. Any algorithm
without prior motivation will have no option but to explore randomly, or worse, eschew
exploratory actions completely in the name of premature and sub-optimal exploitation. In
our experiments we focus on a tabula rasa setting in which the prior function is drawn as
a random neural network. Although our prior distribution P could encode task-specific
knowledge (e.g. through sampling the true Q

ú), we leave this investigation to future work.
4.2.1 Chain environments
We begin our experiments with a family of chain-like environments that highlight the need
for deep exploration [62]. The environments are indexed by problem scale N œN and action
mask W ≥Ber(0.5)N◊N , with S={0,1}

N◊N and A={0,1}. The agent begins each episode in
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The agent incurs a cost of 0.01/N for moving right in all states except for the right-most, in
which the reward is 1. The reward for action left is always zero. An episode ends after N

time steps so that the optimal policy is to move right each step and receive a total return of
0.99; all other policies receive zero or negative return. Crucially, algorithms without deep
exploration take �(2N ) episodes to learn the optimal policy [52].4

Figure 3: Only bootstrap with additive prior network (BSP) scales gracefully to large problems.
Plotting BSP on a log-log scale suggests an empirical scaling Tlearn = Õ(N3); see Figure 8.

Figure 3 presents the average time to learn for N = 5, .., 60 up to 500K episodes over 5
seeds and ensemble K = 20. We say that an agent has learned the optimal policy when
the average regret per episode drops below 0.9. We compare three variants of BootDQN,
depending on their mechanism for ‘prior’ e�ects. BS is bootstrap without prior mechanism.
BSR is bootstrap with l2 regularization on weights per (4). BSP is bootstrap with additive
prior function per (5). In each case we initialize a random 20-unit MLP; BSR regularizes to
these initial weights and BSP trains an additive network. Although all bootstrap methods
significantly outperform ‘-greedy, only BSP successfully scales to large problem sizes.
Figure 4 presents a more detailed analysis of the sensitivity of our approach to the tuning
parameters of di�erent regularization approaches. We repeat the experiments of Figure 3

3Regret measures the shortfall in cumulative rewards compared to that of the optimal policy.
4The dashed lines indicate the 2N dithering lower bound. The action mask W means this cannot
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bootstrap with prior networks (BSP) and the state-of-the-art continuous control algorithm
D4PG, itself an application of ‘distributional RL’ [4]. Only BSP learns a performant policy;
no other approach ever attains any positive reward. We push experimental details, including
hyperparameter analysis, to Appendix B.2. These results are significant in that they show
that our intuitions translate from simple domains to more complex nonlinear settings,
although the underlying state is relatively low dimensional. Our next experiments investigate
performance in a high dimensional and visually rich domain.
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values and, even under an optimal policy, there can be hundreds of time steps between
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Things I didn’t get to…
• Bayesian regret vs frequentist regret. See https://tor-lattimore.com/

downloads/book/book.pdf chapter 34 for details.


• Bayesian regret bounds - easier to prove and look very much like the UCB 
proof from last week. See https://tor-lattimore.com/downloads/book/
book.pdf chapter 36 for details.


• The role of priors in Bayesian bandits. In supervised learning, priors are 
overwhelmed by the data eventually; in online learning a bad prior can 
mean you don’t explore a good action (not such an issue with typical 
choices of priors - e.g. uniform).

https://tor-lattimore.com/downloads/book/book.pdf
https://tor-lattimore.com/downloads/book/book.pdf
https://tor-lattimore.com/downloads/book/book.pdf
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