Thompson Sampling
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“randomly take action according to the probability you believe it is the optimal action” - Thompson 1933
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Not much interest for 80 years
until a number of authors
noticed it performed well
empirically [e.g. Graepel et al.
2010].

The first frequentist regret
bounds that matched lower
bounds up to a log factor were
due to Agrawal and Goyal
[2012, 20134a].
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Abstract

We describe a new Bayesian click-through rate
(CTR) prediction algorithm used for Sponsored
Search in Microsoft’s Bing search engine. The
algorithm is based on a probit regression model
that maps discrete or real-valued input features to
probabilities. It maintains Gaussian beliefs over
weights of the model and performs Gaussian
online updates derived from approximate
message passing. Scalability of the algorithm is
ensured through a principled weight pruning
procedure and an approximate parallel
implementation. We discuss the challenges
arising from evaluating and tuning the predictor
as part of the complex system of sponsored
search where the predictions made by the
algorithm decide about future training sample
composition. Finally, we show experimental
results from the production system and compare
to a calibrated Naive Bayes algorithm.

K

of CTR prediction is absolutely crucial to Sponsored
Search advertising because it impacts user experience,
profitability of advertising and search engine revenue.

Recognising the importance of CTR estimation for online
advertising, management at Bing/adCenter decided to run
a competition to entice people across the company to
develop the most accurate and scalable CTR predictor.
The algorithm described in this publication tied for first
place in the first competition and won the subsequent
competition based on prediction accuracy. As a
consequence, it was chosen to replace Bing’s previous
CTR prediction algorithm, a transition that was completed
in the summer of 2009.

The paper makes three major contributions. First, it
describes the Sponsored Search application scenario, the
key role of CTR prediction in general, and the particular
constraints derived from the task, including accuracy,
calibration, scalability, dynamics, and exploration.
Second, i1t describes a new Bayesian online learning
algorithm for binary prediction, subsequently referred to
as adPredictor. The algorithm is based on a generalised

Baselines have changed

a lot since 2010...



Thompson Sampling Algorithm

Very intuitive algorithm which has been reinvented multiple times.

o Start with prior over parameters. Think: a prior over the possible explanations
for way the environment works.

« Sample a particular set of parameters from the prior. Think: pick one of those
explanations.

» Select arm = arg max; reward; | parameters. Think: maximize reward given
your choice of explanation.

* Observe reward and update posterior. Think: update your model of the world



Beta - Bernoulli Example

Algorithm 1: Thompson Sampling using Beta pri-
Or'S

For each arm¢:=1,..., N set S; =0, F; = 0.
foreacht =1,2,..., do

For each arm ¢ = 1,..., N, sample 60;(¢) from

the Beta(S; + 1, F; + 1) distribution.

Play arm i(t) := arg max; #;(t) and observe
reward 7.

It ry = 1, then S;) = Si) + 1, else

Fz(t) — Fz(t) + 1.

end




Regret bounds [Agrawal & Goyal 2013]

Theorem 1. For the N-armed stochastic bandit
problem, TS algorithm, using Beta priors has ezx-
pected regret

in time T, where d(p;, 1) = Wi log% + (1 —

;) log 8:51% The big-Oh notation assumes

i, A;,t=1,..., N to be constants.



Regret bounds [Agrawal & Goyal 201 3]

Theorem 1. For the N-armed stochastic bandit
problem, TS algorithm, using Beta priors has ezx-
pected regret
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Proof idea

Recall from last week: R(T) = Z A b [kl-(T)]
1:A>0)

So we need to bound I [kl-(T)] : the expected number of times each
suboptimal arm is played.

Use two events to split up the expectation:

9 .
» E7(?) - the event that the sampled parameter is far from y;

. Ef(t) - the event that the estimated mean fi; is from from
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Proof idea
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Proof idea

El/-i(f) = ;i < X}

K Hi
EY(t) == {0, <y}

5[k (7)) = Y- Pr(ilt) = i) = Y Pr (i(t) = i [B(. BY(®))

We’ll show that...

Bounded by linear
function prob of

playing

Rare once mean
IS concentrated

Rare (using
Chernoff)
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Proof idea

Probability of
. playing the

* optimal arm in the
*nice” case

Coefficient decreases
exponentially fast with
plays of opt

Acknowledgement. We thank Emil Jerabek for
telling us about his estimates of partial binomial
sums. We also thank MathOverflow for connecting
us with Emil.



log(T)

ZPI (z(t) = iaqug(t)’E’f(t)) = d(xi, yi)

Sketch: - given that 4, is less than x;, we can only sample @ greater than y, before the posterior
concentrates around its mean.

log T |
It takes at most X 5 ) samples for this to happen and thereafter 6 exceeds y with probability ?
Xis Vi




Proof idea

+Z::Pr(z'(t): E—(t))
Xi //t_> Yi
0 | | 1

Hi Hq

&

o 1

Pr(z't:z',E;‘t)g - 1.
> Pr (i) =i, BI0) < g

For this one uses the fact that Chernoff implies this probability decreases
exponentially in the number of times that the arm is played.
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Putting it together

We set X; and y; to get appropriate bounds.

With this, you get:

[k(T)] < O(1) + (1 + €)*log(T)/d(w;, py) + O(1/€%)

Ugly looking Second sum:
constant from the “cost of Third sum
first sum exploration”



Application



Requirements.

How do we use these ideas in more complicated settings (e.g. contextual
bandits, reinforcement learning)?

In order to apply Thompson Sampling, you need two things:
 Proper uncertainty estimates of the parameters of your model.
A way of updating posterior given new data.

This is straightforward with conjugate models (e.g. GPs work well).

What about neural nets? Isn’t Bayesian Deep Learning all the rage?



Deep reinforcement learning with Thompson
Sampling ideas

There is a long history of research in Bayesian neural networks that never quite became
mainstream practice |37, [43]. Recently, Bayesian deep learning has experienced a resurgence
of interest with a myriad of approaches for uncertainty quantification in fixed datasets and
also sequential decision problems |29, 11, 20l 47]. In this paper we highlight the surprising
fact that many of these well-cited and popular methods for uncertainty estimation in deep
learning can be poor choices for sequential decision problems. We show that this disconnect
is more than a technical detail, but a serious shortcoming that can lead to arbitrarily poor
performance. We support our claims by a series of simple lemmas for simple environments,
together with experimental evidence in more complex settings.

Randomized Prior Functions for Deep Reinforcement Learning [Osband et al. NeurlPS 2018]
Paper makes two contributions:

1. Discusses the limitations of popular approaches to uncertainty
quantification.

2. Proposes a bootstrap approach with a prior function.



Problems with popular Bayesian deep learning
approaches

* Dropout as posterior approximation: dropout rate, p, doesn’t depend

on the data so posterior doesn’t concentrate... improvements that make p
data-dependent suffer from variational critique.

* Variational inference and Bellman error: using the wrong loss (MSE)
does not propagate uncertainty correctly.

» Distributional RL: models distribution over rewards, P(r | &), not
distribution over model parameters, 6.



Randomized prior functions for deep ensembles

Standard bootstrap is easy to implement: train K neural networks in
parallel random samples (with replacement) of your data. Use
appropriately scaled variance of predictions as an estimate of confidence
intervals.

 Doesn’t give a way of introducing a prior. Proposed solution:

Algorithm 1 Randomized prior functions for ensemble posterior.

Require: Data DC{(x,y)|lxeX,yeV}, loss function L, neural model fy: X —),
Ensemble size K €N, noise procedure data_noise, distribution over priors PC{IP(p)|p: X —V}.
l1: for k=1,... K do
2: initialize 0, ~ Glorot initialization [23].
3: form Dy = data_noise(D) (e.g. Gaussian noise or bootstrap sampling [50]).
4.
D

sample prior function py ~ P.
optimize VQ|9:9k£(f9 + Dk} Dk) via ADAM [28]

6: return ensemble { fo, +pk}£<:1.




https://sites.google.com/view/randomized-prior-nips-2018/

Results

Algorithm 2 learn bootstrapped dgn with prior

Agent: 01,..,0Kk trainable network parameters
D1, .., DK fixed prior functions
L,(0=-;0"=-,p=-,D=-) TD error loss function
ensemble buffer replay buffer of K-parallel perturbed data
Updates: 01,..,0x agent value function estimate
1: for £in (1,...,K) do
2: Data Dy % ensemble buffer|k|.sample minibatch()

3: optimize Vgjp—g, L£(0; 0k, pr, Di) via ADAM 28].




https://sites.google.com/view/randomized-prior-nips-2018/

Results
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Figure 6: The prior network qualitatively changes behavior on Montezuma’s revenge.



Things | didn’t get to...

 Bayesian regret vs frequentist regret. See https://tor-lattimore.com/
downloads/book/book.pdf chapter 34 for details.

 Bayesian regret bounds - easier to prove and look very much like the UCB

proof from last week. See https://tor-lattimore.com/downloads/book/
book.pdf chapter 36 for details.

 The role of priors in Bayesian bandits. In supervised learning, priors are
overwhelmed by the data eventually; in online learning a bad prior can

mean you don’t explore a good action (not such an issue with typical
choices of priors - e.g. uniform).
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