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“[T]he problem is a classic one; it was formulated during the war, and efforts to solve it
so sapped the energies and minds of Allied analysts that the suggestion was made that
the problem be dropped over Germany, as the ultimate instrument of intellectual
sabotage” - Peter Whittle (on the bandit problem)



Motivation and applications

Clinical trials (Thompson ‘33)
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Intro to stochastic bandits

K arms; unknown sequence of stochastic rewards R{, R,, ... € [O,l]K; R;~v
Foreachroundt =1,2,...,T (assume horizon T is known; will say more later)
* Choose arm A; € [K]

* Obtain reward Rt,At and only see Rt,At

Problem was introduced by Robbins (1952).
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Intro to stochastic bandits

K arms; unknown sequence of stochastic rewards Ry, Ry, ... € [0,1]%; R,~v
Foreachroundt =1,2,...,T (assume horizon T is known; will say more later)

* Choose arm A; € |K]

* Obtain reward R; 4, and only see Ry 4,

Arm i has mean u; which is unknown.

Goal: Find a policy that minimizes the regret

Reg(T) =T -y —E z Rt 4, W= max g

tE[T]

R d of best —
eward ot best arm Algorithm’s reward

Ideally, we would like that Reg(T) = o(T).



Exploration-Exploitation tradeoff

At each time step, we can either:
1. (Exploit) Pull the arm we think is the best one; or

2. (Explore) Pull an arm we think is suboptimal.

1. We do not know which is the best arm so if we keep exploiting, we may keep
pulling a suboptimal arm which may incur large regret.

2. If we explore, we gather information about the arms, but we pull suboptimal
arms so may incur large regret again!

Challenge is to tradeoff exploration and exploitation!



Explore-then-commit (ETC)

Perhaps the simplest algorithm that provably gets sublinear regret!

/I_et T, be a hyper-parameter and assume T = K - T',.
1. Pull each of K arms T’ times.
2. Compute empirical average f1; of each arm.

\3. Pull arm with largest empirical average for remaining T — K - T, rounds.

‘Theorem. Let A; := p* — 11; be suboptimality of arm i. Then

2

J
~

J

N\ LE[K] ,f

Suboptimality of each additional step.
“Cost of exploration”
Note: The term A; exp (—T

2
A
) is small when T is large.



Explore-then-commit (ETC)

(Theorem. Let A; = u* — u; be suboptimality of arm i. Then

N2
Reg(T)<TOZA+(T K-Typ) - ZAexp( —T, C>
\ E[K]

* This illustrates exploratlon-epr0|tat|on tradeoff:
* Explore too much (T, large) then first term is large.
* Exploit too much (T small) then second term is large.

* Can we tune exploration (i.e. T;y) to get sublinear regret?
* Yes! Choose Ty = T'?/3. Can show that Reg(T) = O(K - T?/3).
* If K = 2 arms, can use a data-dependent T, to get Reg(T) = O(T'/?)

[Garivier, Kaufmann, Lattimore NeurlPS ‘16]



Explore-then-commit (ETC)

(Theorem. Let A; = u* — u; be suboptimality of arm i. Then A
A2
Reg(T)<TOZA+(T K-Typ) - ZAexp< —T, C>
N L€[K] J
Sketch.

* Initially, we try each arm i for T, trials; this incurs regret T, - A;

* Next, we exploit; we only pull arm i again if empirical average of arm i is at least
that of best arm.

2
* This happens with probability at most exp ( —T - AC)

* Summing the contribution from all arms gives the claimed regret.



Aside: Doubling Trick

* Previously, we assumed that time horizon T is known beforehand.
* The doubling trick can be used to get around that.

* Suppose that some algorithm A has regret o(T) if it knew the time
horizon beforehand.

e At every power of 2 step (i.e. at step 2% for some k), we reset A and
assume time horizon is 2%.

* Then this gives an algorithm with regret o(t) for all t, i.e. an “anytime
algorithm”.



Upper confidence bound (UCB) algorithm

* Based on the idea of “optimism in the face of uncertainty.”
e Algorithm: compute the empirical mean of each arm and a confidence interval,
use the upper confidence bound as a proxy for goodness of arm.

* Note: confidence interval chosen so that true mean is very unlikely to be
outside of confidence interval.



Upper confidence bound (UCB) algorithm

Start by pulling each arm once.




Upper confidence bound (UCB) algorithm

. U3 l Start by pulling each arm once.

Arm 3 has the highest UCB, we pull that next.




Upper confidence bound (UCB) algorithm

Start by pulling each arm once.

Arm 3 has the highest UCB, we pull that next.

Now, arm 2 has the highest UCB; we pull arm 2.




Upper confidence bound (UCB) algorithm

ﬁet 6 € (0,1) be a hyper-parameter. \
 Pull each of K arms once.
e Fort=K+1,K+2,..,T
1. Let N;(t) be number of times arm i was pulled so far and fi;(t) be
empirical average.

2. Let UCB;(t) = f;(t) + \[2 1og( )/N (®)
3. Playarminargmax UCB;(t). /

Claim. Fix an arm i. Then with probability at least 1 — 26, we have

i — A ()] < Zlog( )/N (t)




Upper confidence bound (UCB) algorithm

Theorem. Let A; :== u* — u; be suboptimality of arm i. If we choose §~1/T?: h
C log(T
Reg(T) < C z A; + Z Ag( )

L i€[K] i:A;>0 ‘ y

Always have to pay. \

This turns out to mean the following:

If A; > 0, we only pull arm i roughly A7 % log(T) times
incurring regret A; each time.



Upper confidence bound (UCB) algorithm

Theorem. Let A; = u* — u; be suboptimality of arm i. If we choose 6~1/T?: h
C log(T
Reg(T) < C z A; + Z Ag( )

L i€[K] i:A;>0 ‘ y

Sketch.
* Fact. Reg (T) — Zi:Ai>0 AiE[Ni (T)] (N;(T) counts number of times arm i was pulled up to time T)

Want to bound E[N;(T)] whenever A; > 0.
W.h.p. UCB;(t) = fi;(t) + \/z log () /N:(t) < p; + 2Jz log () /N;(t)
If N;(t) = Q (log (%) A{Z) then UCB;(t) < u* so will pull O (log (E) A{Z) w.h.p.

To conclude, if A; > 0 then A,E[N;(T)] S O (log (%) Ai_l).
Choose §~1/T? to beat union bound.




Upper confidence bound (UCB) algorithm

Theorem. Let A; = u* — u; be suboptimality of arm i. If we choose 6~1/T?:

Reg(T) < C z A, + Z C log(T)

| . A;
N IE[K] 1:A;>0

This is an instance-dependent bound but we can also get a instance-free bound.

~
Corollary. If we choose 6~1/T? then

Reg(T) < 0 ({TK ‘logT)

\

So regret is O (\/T - log T). (Recall that ETC has regret O, (T2/3).)
It is possible to get regret O(VTK) [Audibert, Bubeck ‘10]; this is optimal.

UCB can also be extended to heavier tails (e.g. [Bubeck, Cesa-Bianchi, Lugosi '13])



e-greedy algorithm

/Let €x+1, €Ex+2, - € [0,1] be an exploration schedule. N

e Pull each of K arms once.
e Fort=K+1,K+2,..
1. With probability €;, pull a random arm; otherwise pull arm with highest

\_ empirical mean. )

Theorem. For an appropriate choice of €;, can show
Reg(t) = 0(t?*/3(K logt)'/3).

Choosing €, = t~1/3(K - log t)1/3 will give the theorem (see Theorem 1.4 in book
by Slivkins).



Adversarial bandits

ﬁssume K experts and rewards 1, € [0,1]%

Initialize p; (e.g. uniform distribution over experts)

Fortimet =1,2,...

1. Algorithm plays according to p;; say chooses action j

2. Algorithm gains (p;, 1) (expected reward over randomness of action)
Q. Algorithm receives 1; ; and updates p; to get p; 4.

™~

The only difference with expert setting (where 73 is revealed).

Goal: minimize “pseudo”-regret over all reward vectors (same as experts)

Reg(T) = f’é‘ﬁﬁz Tti — Z@t,rt)

t



Adversarial bandits and Exp3

ﬁssume K experts and rewards 1, € [0,1]%

Initialize p; (e.g. uniform distribution over experts)

Fortimet =1,2,...

1. Algorithm plays according to p;; say chooses action j

2. Algorithm gains (p;, 1) (expected reward over randomness of action)
Q. Algorithm receives 1; ; and updates p; to get p; 4.

A nifty trick:
* Algorithm only receives 1y ;; ideally, we would like 7;

. ~ Ttj . . . . ~ .
* Define 7 ; = p—’ if algorithm chose action j and 7; ; = 0 otherwise.
t,Jj ’

* Then E|7] = 1, i.e. algorithm can get an unbiased estimate of 7.
* One gets Exp3 algorithm by replacing 7 in MWU with 7|



Exp3

/IVIWU. Assume K experts and rewards 1; € [0,1]%; step size n
Initialize Ry = (0, ..., 0)

Fortimet=1,2,...,T

1. Setpy; = EXP(TIRt—Lj) [Z¢_1 Where Z;_y = Y, exp(NR¢_q,).
2. Follow expert j with prob. p; ;. Expected reward is (p;, 7¢).

3. Algorithm observes 1.

Q Update: Ry j = Ri_1,j + 1 forallj.




Exp3

éxp& Assume K experts and rewards 1, € [0,1]%; step size n \
Initialize Ry = (0, ..., 0)

Fortimet=1,2,...,T

1. Setpy; = eXp(’?Rt—Lj) [Zs—1 where Z;_1 = ) exp(MR¢_q).

2. Follow expert j with prob. p, ;. Expected reward is (p;, 7).

3. Algorithm observes r; ;. Set 7, ; = r /P, if follow expert j; else 7, ; = 0.

Q Update: R, ; = R;_; j + T for all j. /




Exp3

Theorem. In the experts setting with K experts, MWU has regret 0(\/T -log K).

N J

a )
Theorem. In the bandits setting with K experts, Exp3 has regret 0(\/TK -log K).

N J

Proof for Exp3 is nearly identical to MWU!
(See [Bubeck, Cesa-Bianchi “12] or Lecture 17 in Nick Harvey’s CPSC 531H course.)

In the bandits setting, can get 0(\/ TK) regret and this is optimal [Audibert, Bubeck ‘10]



Application: Learning Diverse Rankings

Paper is Learning Diverse Rankings with Multi-Armed Bandits by Radlinsky,
Kleinberg, Joachims (ICML ‘08)

e Setting is web search
* A user enters a search query
* We want to ensure that a relevant document is near the top.
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The 2019 Volkswagen Beetle is one of the most loved compact cars around the world. Discover what
makes this iconic bug so unique. Get behind the wheel ...

What are beetles? - Insects in the City
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Beetles are the most common type of insect. Beetles are everywhere. But beetles can be confused
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The Fraser Valley Bandits are a Canadian professional basketball team based in Abbotsford, British
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An example of a search which
is not diverse at all.

Those searching for bandit
algorithms would not click.



Application: Learning Diverse Rankings

e Setting is web search
* A user enters a search query
* We want to ensure that a relevant document is near the top.

* Model this as follows.
* Let D be a set of documents (for one fixed query).

* A user u; comes with some “type” which is a prob. vector p; indicating
probability of clicking a specific document.

* If user clicks, get reward of 1; if user leaves, get reward of O.
e Goal: Maximize number of user clicks.

* Note that offline problem is NP-hard (for one user, we need to solve max
coverage problem); but we can get (1 — 1/e)-approximation.



Ranked Explore and Commit

Algorithm 1 Ranked Explore and Commit e Model users as static
1: input: Documents (d,..,d,), parameters ¢, 9, k. identities.
2: x + [2k?/e?log(2k/H)]
3: (by, X ,br) «— k arbitrary documents. + Start at the first rank (top of
4: for i=1... k do At every rank
5. Vj.p; —0 we page).
6: for counter=1 ... x do Loop @ times © 1TY €VEry possible document
7 fOI‘ j:]_ .. 1N dO over every document dj for that p05|t|0n d bunCh Of
3: b; « d; times.
9: EilSpl&y {‘bl, ce ,bk} to user; record clicks ° Whichever document has the
10: if user clicked on b; then p; <+ p; +1 most hits at that rank is
11: end for .
9. end for chosen to be in that rank.
13: j* «— argman p] Commit to best document at this rank ° Repeat thls for every rank'
14: b; — dj*

15: end for




Ranked Explore and Commit

-~

Theorem. With a suitable choice of parameters, payoff for ranked ETC after T

rounds is at least (

1—2) - OPT = 0y, (T?).
e \ !

~

If OPT = Q(T) (i.e. a constant fraction of users want to click on some document)

N\

Optimal payoff on offline setting.

then ranked ETC is competitive with optimal offline algorithm.



Ranked Bandits Algorithm

Algorithm 2 Ranked Bandits Algorithm

1: initialize MAB1(n),..., MABk(n)

2: fort =1... T do

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

fOIA‘ i=1... kdo Sequentially select documents
b;(t) « select-arm (MAB;)
if b;(¢) € 1(t), .., b;—1(t)} then
b;(t) < arbitrary unselected document
else X
b (t) «— bi(t)
end if
end for
display {b1(¢),...,bk(t)} to user; record clicks
fori=1... kdo Determine feedback for MAB;

if user clicked b;(¢) and b;(¢) = b;(¢) then

Replace repeats

fie =1
else

fie =0
end if

update (MAB;, arm = b;(t), reward = fi)
end for

20: end for

Initialize MABs

* Here, users can change over time.

Instantiate a multi-armed bandit
algorithm for each rank.

For each rank, we ask algorithm for a
document.

Bandit corresponding to rank r gets
reward 1 if page is clicked; else gets
Zero.

Note that the MAB algorithm can be
arbitrary.



Ranked Bandits Algorithm

(Theorem. With a suitable choice of parameters, payoff for ranked bandits after T A
rounds is at least (1 — 1) +OPT — k - R(T), where R(T) is regret of MAB

e

\algorithm. / \ P

/ b
Number of slots (documents to show)
Optimal payoff in offline setting.

For e.g., if we use Exp3 then R(T) = 0y, ,(T'/?).

If OPT = Q(T) (i.e. a constant fraction of users want to click on some document)
then ranked bandits is competitive with optimal offline algorithm.
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Recap

We introduced stochastic bandits problem and saw two algorithms:
Explore-then-commit which has an initial exploration stage and then commits for the
rest of time

Upper-confidence bound algorithm which maintains a confidence interval for each
arm and uses the upper-confidence as a proxy.

We introduced adversarial bandits and saw the Exp3 algorithm.

Some references:
e Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems by Bubeck and
Cesa-Bianchi
* Introduction to Online Convex Optimization by Hazan
* Introduction to Online Optimization by Bubeck
e Bandit Algorithms by Lattimore and Szepesvari
* Introduction to Multi-Armed Bandits by Slivkins



