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“[T]he problem is a classic one; it was formulated during the war, and efforts to solve it 
so sapped the energies and minds of Allied analysts that the suggestion was made that 
the problem be dropped over Germany, as the ultimate instrument of intellectual 
sabotage” - Peter Whittle (on the bandit problem)



Motivation and applications

Clinical trials (Thompson ‘33)

Online ads

Search results

Many others: network routing, 
recommender systems, etc.
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Intro to stochastic bandits

𝐾 arms; unknown sequence of stochastic rewards 𝑅1, 𝑅2, … ∈ [0,1]𝐾; 𝑅𝑡~𝜈

For each round 𝑡 = 1,2,… , 𝑇 (assume horizon 𝑇 is known; will say more later)

• Choose arm 𝐴𝑡 ∈ [𝐾]

• Obtain reward 𝑅𝑡,𝐴𝑡 and only see 𝑅𝑡,𝐴𝑡

? ? ??

Problem was introduced by Robbins (1952).



Pull arm 3

? ? ?0.2

Pull arm 1

0.01 ? ??

Pull arm 3

? ? ?0.6



Intro to stochastic bandits
𝐾 arms; unknown sequence of stochastic rewards 𝑅1, 𝑅2, … ∈ [0,1]𝐾; 𝑅𝑡~𝜈

For each round 𝑡 = 1,2,… , 𝑇 (assume horizon 𝑇 is known; will say more later)

• Choose arm 𝐴𝑡 ∈ [𝐾]

• Obtain reward 𝑅𝑡,𝐴𝑡 and only see 𝑅𝑡,𝐴𝑡
Arm 𝑖 has mean 𝜇𝑖 which is unknown.

Goal: Find a policy that minimizes the regret

𝑅𝑒𝑔 𝑇 = 𝑇 ⋅ 𝜇∗ − 𝐸 ෍

𝑡∈ 𝑇

𝑅𝑡,𝐴𝑡

Ideally, we would like that 𝑅𝑒𝑔 𝑇 = 𝑜(𝑇).

Reward of best arm

𝜇∗ = max
𝑖

𝜇𝑖

Algorithm’s reward



Exploration-Exploitation tradeoff
At each time step, we can either:

1. (Exploit) Pull the arm we think is the best one; or

2. (Explore) Pull an arm we think is suboptimal.

1. We do not know which is the best arm so if we keep exploiting, we may keep 
pulling a suboptimal arm which may incur large regret.

2. If we explore, we gather information about the arms, but we pull suboptimal 
arms so may incur large regret again!

Challenge is to tradeoff exploration and exploitation!



Explore-then-commit (ETC)
Perhaps the simplest algorithm that provably gets sublinear regret!

Let 𝑇0 be a hyper-parameter and assume 𝑇 ≥ 𝐾 ⋅ 𝑻𝟎.
1. Pull each of 𝐾 arms 𝑻𝟎 times.
2. Compute empirical average ෝ𝜇𝑖 of each arm.
3. Pull arm with largest empirical average for remaining 𝑇 − 𝐾 ⋅ 𝑇0 rounds.

Theorem. Let Δ𝑖 ≔ 𝜇∗ − 𝜇𝑖 be suboptimality of arm 𝑖. Then

𝑅𝑒𝑔 𝑇 ≤ 𝑻𝟎 ෍

𝑖∈ 𝐾

𝚫𝒊 + 𝑇 − 𝐾 ⋅ 𝑻𝟎 ⋅ ෍

𝑖∈[𝐾]

𝚫𝒊 exp −𝑻𝟎 ⋅
𝚫𝒊
𝟐

𝐶

“Cost of exploration”
Suboptimality of each additional step.

Note: The term 𝚫𝒊 exp −𝑻𝟎 ⋅
𝚫𝒊
𝟐

4
is small when 𝑻𝟎 is large.



Explore-then-commit (ETC)

Theorem. Let Δ𝑖 ≔ 𝜇∗ − 𝜇𝑖 be suboptimality of arm 𝑖. Then

𝑅𝑒𝑔 𝑇 ≤ 𝑻𝟎 ෍

𝑖∈ 𝐾

𝚫𝒊 + 𝑇 − 𝐾 ⋅ 𝑻𝟎 ⋅ ෍

𝑖∈[𝐾]

𝚫𝒊 exp −𝑻𝟎 ⋅
𝚫𝒊
𝟐

𝐶

• This illustrates exploration-exploitation tradeoff:

• Explore too much (𝑇0 large) then first term is large.

• Exploit too much (𝑇0 small) then second term is large.

• Can we tune exploration (i.e. 𝑇0) to get sublinear regret?

• Yes! Choose 𝑇0 = 𝑇2/3. Can show that 𝑅𝑒𝑔 𝑇 = 𝑂(𝐾 ⋅ 𝑇2/3).

• If 𝐾 = 2 arms, can use a data-dependent 𝑇0 to get 𝑅𝑒𝑔 𝑇 = 𝑂(𝑇1/2)
[Garivier, Kaufmann, Lattimore NeurIPS ‘16]



Explore-then-commit (ETC)

Theorem. Let Δ𝑖 ≔ 𝜇∗ − 𝜇𝑖 be suboptimality of arm 𝑖. Then

𝑅𝑒𝑔 𝑇 ≤ 𝑻𝟎 ෍

𝑖∈ 𝐾

𝚫𝒊 + 𝑇 − 𝐾 ⋅ 𝑻𝟎 ⋅ ෍

𝑖∈[𝐾]

𝚫𝒊 exp −𝑻𝟎 ⋅
𝚫𝒊
𝟐

𝐶

Sketch.

• Initially, we try each arm 𝑖 for 𝑇0 trials; this incurs regret 𝑇0 ⋅ Δ𝑖

• Next, we exploit; we only pull arm 𝑖 again if empirical average of arm 𝑖 is at least 
that of best arm.

• This happens with probability at most exp −𝑻𝟎 ⋅
𝚫𝒊
𝟐

𝐶
.

• Summing the contribution from all arms gives the claimed regret.



Aside: Doubling Trick

• Previously, we assumed that time horizon 𝑇 is known beforehand.

• The doubling trick can be used to get around that.

• Suppose that some algorithm 𝒜 has regret 𝑜(𝑇) if it knew the time 
horizon beforehand.

• At every power of 2 step (i.e. at step 2𝑘 for some 𝑘), we reset 𝒜 and 
assume time horizon is 2𝑘.

• Then this gives an algorithm with regret 𝑜(𝑡) for all 𝑡, i.e. an “anytime 
algorithm”.



Upper confidence bound (UCB) algorithm

• Based on the idea of “optimism in the face of uncertainty.”

• Algorithm: compute the empirical mean of each arm and a confidence interval; 
use the upper confidence bound as a proxy for goodness of arm.

• Note: confidence interval chosen so that true mean is very unlikely to be 
outside of confidence interval.



Upper confidence bound (UCB) algorithm

𝜇1

𝜇2 𝜇3

Start by pulling each arm once.



Upper confidence bound (UCB) algorithm

𝜇1

𝜇2 𝜇3

Start by pulling each arm once.

Arm 3 has the highest UCB, we pull that next.
Ƹ𝜇1

Ƹ𝜇2
Ƹ𝜇3



Upper confidence bound (UCB) algorithm

𝜇1

𝜇2 𝜇3

Start by pulling each arm once.

Arm 3 has the highest UCB, we pull that next.

Now, arm 2 has the highest UCB; we pull arm 2.

Ƹ𝜇1

Ƹ𝜇2
Ƹ𝜇3



Upper confidence bound (UCB) algorithm
Let 𝛿 ∈ (0,1) be a hyper-parameter.
• Pull each of 𝐾 arms once.
• For 𝑡 = 𝐾 + 1,𝐾 + 2,… , 𝑇

1. Let 𝑁𝑖(𝑡) be number of times arm 𝑖 was pulled so far and Ƹ𝜇𝑖(𝑡) be 
empirical average.

2. Let 𝑈𝐶𝐵𝑖 𝑡 = Ƹ𝜇𝑖 𝑡 + 𝟐 𝐥𝐨𝐠
𝟏

𝜹
/𝑵𝒊 𝒕

3. Play arm in argmax𝑈𝐶𝐵𝑖(𝑡).

Claim. Fix an arm 𝑖. Then with probability at least 1 − 2𝛿, we have 

𝜇𝑖 − ො𝜇𝑖 𝑡 ≤ 𝟐 𝐥𝐨𝐠
𝟏

𝜹
/𝑵𝒊 𝒕



Upper confidence bound (UCB) algorithm
Theorem. Let Δ𝑖 ≔ 𝜇∗ − 𝜇𝑖 be suboptimality of arm 𝑖. If we choose 𝛿~1/𝑇2:

𝑅𝑒𝑔 𝑇 ≤ 𝐶 ෍

𝑖∈ 𝐾

Δ𝑖 + ෍

𝑖:Δ𝑖>0

𝐶 log 𝑇

Δ𝑖

Always have to pay.
This turns out to mean the following:

If Δ𝑖 > 0, we only pull arm 𝑖 roughly Δ𝑖
−2 log 𝑇 times 

incurring regret Δ𝑖 each time.



Upper confidence bound (UCB) algorithm
Theorem. Let Δ𝑖 ≔ 𝜇∗ − 𝜇𝑖 be suboptimality of arm 𝑖. If we choose 𝛿~1/𝑇2:

𝑅𝑒𝑔 𝑇 ≤ 𝐶 ෍

𝑖∈ 𝐾

Δ𝑖 + ෍

𝑖:Δ𝑖>0

𝐶 log 𝑇

Δ𝑖

Sketch.
• Fact. 𝑅𝑒𝑔 𝑇 = σ𝑖:Δ𝑖>0

Δ𝑖𝐸[𝑁𝑖 𝑇 ] (𝑁𝑖 𝑇 counts number of times arm 𝑖 was pulled up to time 𝑇)

• Want to bound 𝐸[𝑁𝑖 𝑇 ] whenever Δ𝑖 > 0.

• W.h.p. 𝑈𝐶𝐵𝑖 𝑡 = Ƹ𝜇𝑖 𝑡 + 2 log
1

𝛿
/𝑁𝑖 𝑡 ≤ 𝜇𝑖 + 2 2 log

1

𝛿
/𝑁𝑖 𝑡

• If 𝑁𝑖 𝑡 ≥ Ω log
1

𝛿
Δ𝑖
−2 then 𝑈𝐶𝐵𝑖 𝑡 < 𝜇∗ so will pull 𝑂 log

1

𝛿
Δ𝑖
−2 w.h.p.

• To conclude, if Δ𝑖 > 0 then Δ𝑖𝐸[𝑁𝑖 𝑇 ] ≲ 𝑂 log
1

𝛿
Δ𝑖
−1 .

• Choose 𝜹~𝟏/𝑻𝟐 to beat union bound.



Upper confidence bound (UCB) algorithm
Theorem. Let Δ𝑖 ≔ 𝜇∗ − 𝜇𝑖 be suboptimality of arm 𝑖. If we choose 𝛿~1/𝑇2:

𝑅𝑒𝑔 𝑇 ≤ 𝐶 ෍

𝑖∈ 𝐾

Δ𝑖 + ෍

𝑖:Δ𝑖>0

𝐶 log 𝑇

Δ𝑖

This is an instance-dependent bound but we can also get a instance-free bound.

Corollary. If we choose 𝛿~1/𝑇2 then

𝑅𝑒𝑔 𝑇 ≤ 𝑂 𝑇𝐾 ⋅ log 𝑇

So regret is 𝑂𝐾 𝑇 ⋅ log 𝑇 . (Recall that ETC has regret 𝑂𝐾 𝑇2/3 .)

It is possible to get regret 𝑂 𝑇𝐾 [Audibert, Bubeck ‘10]; this is optimal.

UCB can also be extended to heavier tails (e.g. [Bubeck, Cesa-Bianchi, Lugosi ’13])



𝜖-greedy algorithm

Let 𝜖𝐾+1, 𝜖𝐾+2, … ∈ [0,1] be an exploration schedule.
• Pull each of 𝐾 arms once.
• For 𝑡 = 𝐾 + 1,𝐾 + 2,…

1. With probability 𝜖𝑡, pull a random arm; otherwise pull arm with highest 
empirical mean.

Theorem. For an appropriate choice of 𝜖𝑡, can show
𝑅𝑒𝑔 𝑡 = 𝑂(𝑡2/3 𝐾 log 𝑡 1/3).

Choosing 𝜖𝑡 = 𝑡−1/3 𝐾 ⋅ log 𝑡 1/3 will give the theorem (see Theorem 1.4 in book 
by Slivkins).



Adversarial bandits

The only difference with expert setting (where 𝑟𝑡 is revealed).

Goal: minimize “pseudo”-regret over all reward vectors (same as experts)

𝑅𝑒𝑔 𝑇 = max
𝑖∈[𝐾]

෍

𝑡

𝑟𝑡,𝑖 −෍

𝑡

𝑝𝑡 , 𝑟𝑡

Assume 𝐾 experts and rewards 𝑟𝑡 ∈ 0,1 𝐾

Initialize 𝑝1 (e.g. uniform distribution over experts)
For time 𝑡 = 1, 2,…
1. Algorithm plays according to 𝑝𝑡; say chooses action 𝑗
2. Algorithm gains 𝑝𝑡 , 𝑟𝑡 (expected reward over randomness of action)

3. Algorithm receives 𝒓𝒕,𝒋 and updates 𝑝𝑡 to get 𝑝𝑡+1.



Adversarial bandits and Exp3

A nifty trick:
• Algorithm only receives 𝑟𝑡,𝑗; ideally, we would like 𝑟𝑡

• Define ǁ𝑟𝑡,𝑗 =
𝑟𝑡,𝑗

𝑝𝑡,𝑗
if algorithm chose action 𝑗 and ǁ𝑟𝑡,𝑗 = 0 otherwise.

• Then 𝐸 ǁ𝑟𝑡 = 𝑟𝑡, i.e. algorithm can get an unbiased estimate of 𝑟𝑡.
• One gets Exp3 algorithm by replacing 𝑟𝑡 in MWU with ǁ𝑟𝑡!

Assume 𝐾 experts and rewards 𝑟𝑡 ∈ 0,1 𝐾

Initialize 𝑝1 (e.g. uniform distribution over experts)
For time 𝑡 = 1, 2,…
1. Algorithm plays according to 𝑝𝑡; say chooses action 𝑗
2. Algorithm gains 𝑝𝑡 , 𝑟𝑡 (expected reward over randomness of action)

3. Algorithm receives 𝒓𝒕,𝒋 and updates 𝑝𝑡 to get 𝑝𝑡+1.



Exp3

MWU. Assume 𝐾 experts and rewards 𝑟𝑡 ∈ 0,1 𝐾; step size 𝜂
Initialize 𝑅0 = (0,… , 0)
For time 𝑡 = 1, 2,… , 𝑇

1. Set 𝑝𝑡,𝑗 = exp 𝜂𝑅𝑡−1,𝑗 /𝑍𝑡−1 where 𝑍𝑡−1 = σ𝑖 exp(𝜂𝑅𝑡−1,𝑖).

2. Follow expert 𝑗 with prob. 𝑝𝑡,𝑗. Expected reward is 𝑝𝑡 , 𝑟𝑡 .

3. Algorithm observes 𝒓𝒕.
4. Update: 𝑅𝑡,𝑗 = 𝑅𝑡−1,𝑗 + 𝒓𝒕,𝒋 for all 𝑗.



Exp3

Exp3. Assume 𝐾 experts and rewards 𝑟𝑡 ∈ 0,1 𝐾; step size 𝜂
Initialize 𝑅0 = (0,… , 0)
For time 𝑡 = 1, 2,… , 𝑇

1. Set 𝑝𝑡,𝑗 = exp 𝜂𝑅𝑡−1,𝑗 /𝑍𝑡−1 where 𝑍𝑡−1 = σ𝑖 exp(𝜂𝑅𝑡−1,𝑖).

2. Follow expert 𝑗 with prob. 𝑝𝑡,𝑗. Expected reward is 𝑝𝑡 , 𝑟𝑡 .

3. Algorithm observes 𝒓𝒕,𝒋. Set ෤𝒓𝒕,𝒋 = 𝒓𝒕,𝒋/𝒑𝒕,𝒋 if follow expert 𝒋; else ෤𝒓𝒕,𝒋 = 𝟎.

4. Update: 𝑅𝑡,𝑗 = 𝑅𝑡−1,𝑗 + ෤𝒓𝒕,𝒋 for all 𝑗.



Exp3

Theorem. In the experts setting with 𝐾 experts, MWU has regret 𝑂( 𝑇 ⋅ log𝐾).

Theorem. In the bandits setting with 𝐾 experts, Exp3 has regret 𝑂( 𝑇𝐾 ⋅ log𝐾).

Proof for Exp3 is nearly identical to MWU!
(See [Bubeck, Cesa-Bianchi ‘12] or Lecture 17 in Nick Harvey’s CPSC 531H course.)

In the bandits setting, can get 𝑂 𝑇𝐾 regret and this is optimal [Audibert, Bubeck ‘10]



Application: Learning Diverse Rankings

Paper is Learning Diverse Rankings with Multi-Armed Bandits by Radlinsky, 
Kleinberg, Joachims (ICML ‘08)

• Setting is web search

• A user enters a search query

• We want to ensure that a relevant document is near the top.



User may mean the insect or 
the car and both appear on 
the top few.



An example of a search which 
is not diverse at all.

Those searching for bandit 
algorithms would not click.



Application: Learning Diverse Rankings

• Setting is web search

• A user enters a search query

• We want to ensure that a relevant document is near the top.

• Model this as follows.

• Let 𝒟 be a set of documents (for one fixed query).

• A user 𝑢𝑡 comes with some “type” which is a prob. vector 𝑝𝑡 indicating 
probability of clicking a specific document.

• If user clicks, get reward of 1; if user leaves, get reward of 0.

• Goal: Maximize number of user clicks.

• Note that offline problem is NP-hard (for one user, we need to solve max 
coverage problem); but we can get (1 − 1/𝑒)-approximation.



Ranked Explore and Commit

• Model users as static 
identities.

• Start at the first rank (top of 
we page).

• Try every possible document 
for that position a bunch of 
times.

• Whichever document has the 
most hits at that rank is 
chosen to be in that rank.

• Repeat this for every rank.



Ranked Explore and Commit

Theorem. With a suitable choice of parameters, payoff for ranked ETC after 𝑇

rounds is at least 1 −
1

𝑒
⋅ 𝑂𝑃𝑇 − 𝑂𝑛,𝑘(𝑇

2/3).

If 𝑂𝑃𝑇 ≥ Ω(𝑇) (i.e. a constant fraction of users want to click on some document) 
then ranked ETC is competitive with optimal offline algorithm.

Optimal payoff on offline setting.



Ranked Bandits Algorithm
• Here, users can change over time.

• Instantiate a multi-armed bandit 
algorithm for each rank.

• For each rank, we ask algorithm for a 
document.

• Bandit corresponding to rank 𝑟 gets 
reward 1 if page is clicked; else gets 
zero.

• Note that the MAB algorithm can be 
arbitrary.



Ranked Bandits Algorithm

Theorem. With a suitable choice of parameters, payoff for ranked bandits after 𝑇

rounds is at least 1 −
1

𝑒
⋅ 𝑂𝑃𝑇 − 𝑘 ⋅ 𝑅(𝑇), where 𝑅(𝑇) is regret of MAB 

algorithm.

For e.g., if we use Exp3 then 𝑅 𝑇 = ෨𝑂𝑛,𝑘 𝑇1/2 .

If 𝑂𝑃𝑇 ≥ Ω(𝑇) (i.e. a constant fraction of users want to click on some document) 
then ranked bandits is competitive with optimal offline algorithm.

Optimal payoff in offline setting.

Number of slots (documents to show)



Empirical Results

All their experiments were with synthetic data.



Recap
• We introduced stochastic bandits problem and saw two algorithms:
• Explore-then-commit which has an initial exploration stage and then commits for the 

rest of time
• Upper-confidence bound algorithm which maintains a confidence interval for each 

arm and uses the upper-confidence as a proxy.

• We introduced adversarial bandits and saw the Exp3 algorithm.

• Some references:
• Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems by Bubeck and 

Cesa-Bianchi
• Introduction to Online Convex Optimization by Hazan
• Introduction to Online Optimization by Bubeck
• Bandit Algorithms by Lattimore and Szepesvári
• Introduction to Multi-Armed Bandits by Slivkins


