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Outline

• Theory
• Weighted majority
• Randomized weighted majority
• General framework – Multiplicative weights update

• Applications
• AdaBoost
• Chernoff bounds
• Online convex optimization
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Theory



Problem Setup

• We are given the task of making a binary prediction on a sequence
of events.

• Rainy tomorrow? TSLA ↑ or ↓?

• But we have no knowledge about it.

• We have access to n experts
• Each will predict 0 or 1 at a given time.
• Each expert has weight w (t)

i , representing its “credibility”.

• At each timestep t, we somehow make a prediction based on the
experts’ predictions.

• The weights will be updated based on the correctness.
• Since we make no assumptions about the experts, we cannot

guarantee an absolute level of quality of our predictions.
• Goal: do as well as the best expert in hindsight.
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Weighted majority

Weighted majority algorithm [2, 1]

• Set w (1)
i = 1 for all i

• For t = 1, 2, . . . ,T
• Experts make their decisions {x1, . . . , xn}
• We choose 1 if

∑
i :xi =1 w (t)

i ≥
∑

i :xi =0 w (t)
i and 0 otherwise

• Reveal the answer and incur a cost
• Update weights

• Incorrect experts: w (t+1)
i = (1 − ε)w (t)

i
• Correct experts: w (t+1)

i = w (t)
i

4



Weighted majority

Theorem 1 ([2, 1])
After T steps, let m(T )

i be the number of mistakes of expert i and M(T )

be the number of mistakes the weighted majority algorithm has made.
Assuming ε ∈ (0, 1

2 ], then we have the following bound:

M(T ) ≤ 2 ln n
ε

+ 2(1 + ε)m(T )
i ∀i

In particular, this holds for i = the best expert, i.e. having the least m(T )
i .
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Weighted majority

Proof.
It is clear that for all expert i , we have

w (T +1)
i = (1− ε)m(T )

i (1)

Let Φ(t) =
∑

i w (t)
i be the potential function, then Φ(1) = n.

Each time we make a mistake, at least half of the weights decreases by
(1− ε). This implies Φ(t+1) ≤ Φ(t)

(
1
2 + 1

2 (1− ε)
)

= Φ(t)(1− ε/2), which
gives us

Φ(T +1) ≤ n(1− ε/2)M(T )
(2)
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Weighted majority

Since Φ(t) ≥ w (t)
i for all i and t, combining the above and applying

− ln(1− x) ≤ x + x2 and ln(x) ≤ x − 1 for x ∈ (0, 1
2 ]

gives us the desired bound

M(T ) ≤ 2 ln n
ε

+ 2(1 + ε)m(T )
i ∀i .
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Weighted majority

Remarks:

• We made no assumptions on the sequence of events nor the quality
of the experts.

• However, when m(T )
i � 2 ln n

ε , then from Theorem 1, the number of
mistakes made by our algorithm will be upper bounded by
approximately twice the number of mistakes made by the best
expert.

• Tight for any deterministic algorithm.
• Can remove the factor of 2 by a randomized version.
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Randomized weighted majority

• Instead of deterministically following the majority, we randomly
select an expert to follow with probability proportional to its weight.

• At the beginning, we select experts uniformly at random.
• As the events unfold, we lower the weights of the poorly performing

ones, so they are less likely to be followed.

• If the events are chosen by an adversary, randomizing the selection
of experts will improve our performance.
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Randomized weighted majority

Randomized weighted majority algorithm[2, 1]

• Set w (1)
i = 1 for all i

• For t = 1, 2, . . . ,T
• Experts make their decisions {x1, . . . , xn}

• We choose xi with probability p(t)
i := w (t)

i∑
j

w (t)
j

= w (t)
i

Φ(t)

• Reveal the answer and incur a cost
• Update weights

• Incorrect experts: w (t+1)
i = (1 − ε)w (t)

i
• Correct experts: w (t+1)

i = w (t)
i
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Randomized weighted majority

Theorem 2 ([2, 1])
After T steps, let m(T )

i be the number of mistakes made by expert i .
Assuming ε ∈ (0, 1

2 ], then the expected number of mistakes M(T ) made
by the randomized weighted majority algorithm satisfies

M(T ) ≤ ln n
ε

+ (1 + ε)m(T )
i ∀i

Again, this holds for i = the best expert.
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Randomized weighted majority

Proof.
Let c(t)

i ∈ {0, 1} be the cost incurred by expert i at time t.

Then the expected cost of our algorithm at a particular timestep t is∑
i c(t)

i p(t)
i = 〈c(t),p(t)〉. After T steps, we have

M(T ) =
T∑

t=1
〈c(t),p(t)〉 (3)
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Randomized weighted majority

For the change in potential,

Φ(t+1) =
∑

i
w (t+1)

i

=
∑

i
w (t)

i (1− εc(t)
i )

= Φ(t) − ε
∑

i
Φ(t)c(t)

i p(t)
i By defn of p(t)

i

= Φ(t)(1− ε〈c(t),p(t)〉)
≤ Φ(t) exp(−ε〈c(t),p(t)〉)

where the last inequality comes from 1 + x ≤ exp(x) for all x .
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Randomized weighted majority

By recursion, the potential after T steps is then

Φ(T +1) ≤ Φ(1)
T∏

t=1
exp(−ε〈c(t),p(t)〉)

= Φ(1) exp(−ε
T∑

t=1
〈c(t),p(t)〉)

= Φ(1) exp(−εM(T )) By equation 3
= n exp(−εM(T ))

(4)

For each expert, its final weight is again given by

w (T +1)
i = (1− ε)m(T )

i ≤ Φ(T +1) (5)

Combining equations 4 and 5 and applying ln(1− ε) ≤ ε(1 + ε) gives us
the desired bound

M(T ) ≤ ln n
ε

+ (1 + ε)m(T )
i ∀i .
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Randomized weighted majority

M(T ) ≤ ln n
ε

+ (1 + ε)m(T )
i ∀i .

• Tradeoff: by adjusting ε, we can make the “competitive ratio” of
the algorithm as close to 1 as desired, at the expense of an increase
in the additive constant.

• Denote m = m(T )
i . RHS is convex in ε for ε ∈ (0, 1

2 ], take the
derivative and set to 0, we get m = ε2 ln n

• Set ε =
√

(ln n)/m(T )
i

• Gives us the bound M(T ) ≤ m + 2
√

m ln n
• But we don’t know m

• Guess and double trick: start with m = 4 ln n and ε = 1
2 . Once every

expert has made at least m mistakes, double m and update ε =
√

2
2 .
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Randomized weighted majority

Remarks:

• We now achieve a better bound with randomization.

• Only binary predictions/costs so far.
• Generalize to

• A set of outcomes that are not necessarily binary.
• Real-valued costs (within some range).
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Multiplicative weights update

Multiplicative weights update algorithm [1]

• Set w (1)
i = 1 for all i

• For t = 1, 2, . . . ,T
• Experts make their decisions {x1, . . . , xn}

• We choose xi with probability p(t)
i := w (t)

i∑
j

w (t)
j

= w (t)
i

Φ(t)

• Reveal the answer, incur costs c(t)

• Update weights for each expert i

w (t+1)
i = w (t)

i (1− εc(t)
i )
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Multiplicative weights update

Theorem 3 ([1])
Assume that all costs c(t)

i ∈ [−1, 1] and ε ∈ (0, 1
2 ]. After T steps, let

m(T )
i be the total cost of expert i , then the total expected cost M(T )

made by the multiplicative weights algorithm satisfies

M(T ) ≤
T∑

t=1
c(t)

i + ε

T∑
t=1
|c(t)

i |+
ln n
ε

∀i

Again, this holds for i = the best expert.
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Multiplicative weights update

Proof.
Same as before, after T steps, the total expected cost of our algorithm is

M(T ) =
T∑

t=1
〈c(t),p(t)〉.

The change in potential is bounded the same way,

Φ(t+1) =
∑

i
w (t+1)

i ≤ Φ(t) exp(−ε〈c(t),p(t)〉)

which gives us

Φ(T +1) ≤ Φ1 exp(−ε
T∑

t=1
〈c(t),p(t)〉) = n exp(−εM(T )) (6)

19



Multiplicative weights update

Proof.
Same as before, after T steps, the total expected cost of our algorithm is

M(T ) =
T∑

t=1
〈c(t),p(t)〉.

The change in potential is bounded the same way,

Φ(t+1) =
∑

i
w (t+1)

i ≤ Φ(t) exp(−ε〈c(t),p(t)〉)

which gives us

Φ(T +1) ≤ Φ1 exp(−ε
T∑

t=1
〈c(t),p(t)〉) = n exp(−εM(T )) (6)

19



Multiplicative weights update

Proof.
Same as before, after T steps, the total expected cost of our algorithm is

M(T ) =
T∑

t=1
〈c(t),p(t)〉.

The change in potential is bounded the same way,

Φ(t+1) =
∑

i
w (t+1)

i ≤ Φ(t) exp(−ε〈c(t),p(t)〉)

which gives us

Φ(T +1) ≤ Φ1 exp(−ε
T∑

t=1
〈c(t),p(t)〉) = n exp(−εM(T )) (6)

19



Multiplicative weights update

The following facts follow from the convexity of the exponential function:

(1− εx) ≥ (1− ε)x if x ∈ [0, 1]
(1− εx) ≥ (1 + ε)−x if x ∈ [−1, 0]

By our assumption c(t)
i ∈ [−1, 1], we have for every expert i ,

w (T +1)
i =

T∏
t=1

(1− εc(t)
i )

≥ (1− ε)
∑

≥0
c(t)

i · (1 + ε)−
∑

<0
c(t)

i

(7)

where the subscripts refer to t : c(t)
i ≥ 0 and t : c(t)

i < 0, respectively.
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where the subscripts refer to t : c(t)
i ≥ 0 and t : c(t)

i < 0, respectively.
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Multiplicative weights update

Again, since w (T +1)
i ≤ Φ(T +1), we can combine equation 6 and 7,

(1− ε)
∑

≥0
c(t)

i · (1 + ε)−
∑

<0
c(t)

i ≤ n exp(−εM(T ))

Taking logs, negating, and rearranging,

εM(T ) ≤ ln n −
∑
≥0

c(t)
i ln(1− ε) +

∑
<0

c(t)
i ln(1 + ε)

Apply − ln(1− x) ≤ x + x2 and ln(1 + x) ≥ x + x2 for x ≤ 1
2 ,

εM(T ) ≤ ln n +
∑
≥0

c(t)
i (ε+ ε2) +

∑
<0

c(t)
i (ε− ε2)

εM(T ) ≤ ln n + ε

T∑
t=1

c(t)
i + ε2

T∑
t=1
|c(t)

i |

Dividing ε on both sides gives us the desired bound.
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Comparison

WM : M(t) ≤ 2(1 + ε)m(T )
i + 2 ln n

ε

RWM : M(t) ≤ (1 + ε)m(T )
i + ln n

ε

MWU : M(t) ≤
T∑

t=1
c(t)

i + ε

T∑
t=1
|c(t)

i |+
ln n
ε

Can further generalize to the Matrix Multiplicative Weights algorithm:

• Cost vectors → cost matrices
• Probability vectors → density matrices
• Mainly applied in solving SDPs.
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Application



AdaBoost

• Adaptive Boosting, Freund and Schapire 1996 [3].
• Classification problems: xi ∈ Rd , yi ∈ {−1, 1}, i = 1, . . . , n
• Goal: combine a set of T weak classifiers into a strong one.
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AdaBoost

Figure 2: AdaBoost algorithm [3] 24



AdaBoost

Figure 3: https://bit.ly/31UrxIo

25

https://bit.ly/31UrxIo


Chernoff Bounds

• Let X =
∑T

i=1 Xi be the sum of n independent random variables
Xi ∈ (0, 1], and µ = EX .

• Chernoff bounds show that X is sharply concentrated about µ:

P(X ≥ (1 + δ)µ) ≤
( exp(δ)

(1 + δ)1+δ

)µ

and P(X ≤ (1− δ)µ) ≤
( exp(−δ)

(1− δ)1−δ

)µ

• By Markov’s inequality,

P(X ≥ a) = P(exp(tX) ≥ exp(ta)) ≤ E[exp(tX)]
exp(ta) =

E[exp(t
∑

i
Xi )]

exp(ta)
• Young pointed out in 1995[4]: at every step i , we receive Xi and

multiplicatively update the “potential” by exp(tXi )
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Online convex optimization

• Decision set is a convex, compact set K ⊆ Rn

• We need to minimize a convex function f (t) at each time t by
choosing a point p(t) ∈ K, and incur cost f (t)(p(t))

• Goal is to minimize regret:
R(T ) =

∑T
t=1 f (t)(p(t))−minp∈K

∑T
t=1 f (t)(p)

• To use the MWU method for the special case where K is the
n-dimensional simplex,

• Define ρ = maxp∈Kmaxt ‖∇f (t)(p)‖∞
• Then run MWU with ε =

√
ln n/T and costs c(t) := 1

ρ
∇f (t)(p(t)),

where ρ is to make sure c(t)
i ∈ [−1, 1]

• Can show that R(T ) ≤ 2ρ
√

T ln n after T rounds.
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Conclusion

Summary:

• General framework of multiplicative weights update method.
• Prediction from expert advice with performance competitive to the

best expert in hindsight.
• Relationship to other areas.
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Thank you

https://bit.ly/2N9p1dW
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