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Introduction

Prediction from expert advise

M \
Groundhog Day 2018: Mixed signals and anear
escape

N.S.'s Sam, Quebec's Fred predict early spring; Ont.'s Wiarton Willie, Pennsylvania's
Punxsutawney Phil don't

CBC News - Posted: Feb 02, 2018 7:00 AM ET | Last Updated: February 2, 2018

Figure 1: https://www.cbc.ca/news/canada/windsor/groundhog-day-2018-1.4516220
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Problem Setup

e We are given the task of making a binary prediction on a sequence
of events.

e Rainy tomorrow? TSLA | or |7?
e But we have no knowledge about it.

e We have access to n experts

e Each will predict 0 or 1 at a given time.
e Each expert has weight W,(t), representing its “credibility”.

e At each timestep t, we somehow make a prediction based on the
experts' predictions.

e The weights will be updated based on the correctness.

e Since we make no assumptions about the experts, we cannot
guarantee an absolute level of quality of our predictions.

e Goal: do as well as the best expert in hindsight.



Weighted majority

Weighted majority algorithm [2, 1]

e Set W,-(l) =1 for all
e Fort=1,2,.... T

e Experts make their decisions {xi, ..., xn}

e Wechoose 1if >, w w'? > D o w'? and 0 otherwise
e Reveal the answer and incur a cost
e Update weights

e Incorrect experts: W(tJr1 =(l= e)w(t)

(t41) N0 !

o Correct experts: w; ;



Weighted majority

Theorem 1 ([2, 1])

After T steps, let m,(.T) be the number of mistakes of expert i and M(T)
be the number of mistakes the weighted majority algorithm has made.
Assuming € € (0, %] then we have the following bound:

2Inn

MDD <220 Lo+ emm i
€

In particular, this holds for i = the best expert, i.e. having the least mT.
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Weighted majority

Proof.
It is clear that for all expert i, we have
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Weighted majority

Proof.
It is clear that for all expert i, we have

w0 — (1 gm” (1)

Let () = o W,-(t) be the potential function, then (1) = p.
Each time we make a mistake, at least half of the weights decreases by
(1—¢). This implies ®(+) < (0 (% +ia- e)) = ®()(1 — ¢/2), which
gives us

o(T+1) < n(1— 6/2)M(T) (2)



Weighted majority

Since ®(t) > Wl-(t) for all i and t, combining the above and applying
o 1
—In(1—x)<x+x" and In(x)<x-1 foer(O,E]

gives us the desired bound

2Inn

M) < +2(1+em” Vi
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Weighted majority

Remarks:

e We made no assumptions on the sequence of events nor the quality

of the experts.

e However, when m,(T) > 2'% then from Theorem 1, the number of

mistakes made by our algorithm will be upper bounded by
approximately twice the number of mistakes made by the best
expert.

e Tight for any deterministic algorithm.

e Can remove the factor of 2 by a randomized version.
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Randomized weighted majority

e Instead of deterministically following the majority, we randomly
select an expert to follow with probability proportional to its weight.

e At the beginning, we select experts uniformly at random.
e As the events unfold, we lower the weights of the poorly performing
ones, so they are less likely to be followed.
e If the events are chosen by an adversary, randomizing the selection
of experts will improve our performance.



Randomized weighted majority

Randomized weighted majority algorithm[2, 1]

e Set w) =1 forall i

e Fort=1,2,.... T

o Experts make their decisions {xi,...,xn}

wl

e We choose x; with probability p{*) := i = =

=P 0
j J

e Reveal the answer and incur a cost
e Update weights
e Incorrect experts: wl.(H'l) =(1- e)wi(t)

e Correct experts: WI.(H—I) = w,.(t)

10



Randomized weighted majority

Theorem 2 ([2, 1])

After T steps, let m,(-T) be the number of mistakes made by expert i.
Assuming € € (0, %] then the expected number of mistakes M(T) made
by the randomized weighted majority algorithm satisfies

Inn (T)

M) < — 4 (14 €)m; Vi
€

Again, this holds for i = the best expert.

11



Randomized weighted majority

Proof.
Let c,-(t) € {0,1} be the cost incurred by expert i at time t.

12



Randomized weighted majority

Proof.

Let c,-(t) € {0,1} be the cost incurred by expert i at time t.

Then the expected cost of our algorithm at a particular timestep t is
> ci(t)pft) = (c(®),p(®)). After T steps, we have

T

= (c®,p (3)

t=1
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Randomized weighted majority

For the change in potential,

¢(t+1) _ Z W'(H*].)

i
i
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For the change in potential,

¢(t+1) _ Z W'(H*].)

i
i

=Y w1 —ecV)
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Randomized weighted majority

For the change in potential,

¢(t+1) _ Z W'(H*].)

i
i

=Y w1 —ecV)
_ o) _ (t) (1) (1) (t)
) EZ o pi By defn of p;

= o1 — e(c®, pM®))
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Randomized weighted majority

For the change in potential,

ot+l) — Z I(t“)
= Z w; 1 = ec
EZ ot Ci pft) By defn of pft)

= o1 — e(c®, pM®))
< & exp(—e(c®, p®))

where the last inequality comes from 1 4+ x < exp(x) for all x.

13



Randomized weighted majority

By recursion, the potential after T steps is then

.
o7+ < o [Texp(—e(c, p))

t=1
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By recursion, the potential after T steps is then
T
o7+ < o [Texp(—e(c, p))
t=1
-
= &M exp(—e Z<c(t)7 p®))

t=1
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Randomized weighted majority

By recursion, the potential after T steps is then

-
o7+ < o [Texp(—e(c, p))
t=1
-
exp Z p(t
— o exp(_g/\/]( ) By equation 3

nexp(—eM(T)) (4)
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Randomized weighted majority

By recursion, the potential after T steps is then

-
o7+ < o [Texp(—e(c, p))
t=1
-
Y exp(— Z 9, p®)y)
= o )exp(—e/\/l( )) By equation 3
= nexp(—eM(T)) (4)

For each expert, its final weight is again given by

W;(T+1) =(1- E)m§” < o(T+D) (5)
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Randomized weighted majority

By recursion, the potential after T steps is then
T
o7+ < o [Texp(—e(c, p))

t=1

-

Y exp(— Z ), p®))

= o )exp(—e/\/l( )) By equation 3
= nexp(—eM(T)) (4)

For each expert, its final weight is again given by
W;(T+1) —(1- E)ml(.T) < $(TH+D) (5)

Combining equations 4 and 5 and applying In(1 — €) < €(1 + ¢€) gives us
the desired bound

14



Randomized weighted majority

e Tradeoff: by adjusting ¢, we can make the “competitive ratio” of
the algorithm as close to 1 as desired, at the expense of an increase
in the additive constant.
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Randomized weighted majority

e Tradeoff: by adjusting ¢, we can make the “competitive ratio” of
the algorithm as close to 1 as desired, at the expense of an increase
in the additive constant.

e Denote m = me). RHS is convex in € for € € (0, 1], take the
derivative and set to 0, we get m = elnn
e Sete=1/(In n)/mET)

o Gives us the bound M(") <m+2vmlnn
e But we don't know m

e Guess and double trick: start with m =41Inn and € = % Once every
expert has made at least m mistakes, double m and update € = %

15



Randomized weighted majority

Remarks:

e We now achieve a better bound with randomization.
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Randomized weighted majority

Remarks:

e We now achieve a better bound with randomization.

e Only binary predictions/costs so far.
e Generalize to

e A set of outcomes that are not necessarily binary.
e Real-valued costs (within some range).

16



Multiplicative weights update

Multiplicative weights update algorithm [1]

o Set W,-(l) =1 forall i
e Fort=1,2,...,T
o Experts make their decisions {xi,...,xn}

t) ) w w

e \We choose x; with probability pf

e Reveal the answer, incur costs c(?)

Update weights for each expert i

wttD) — W(t)(l — EC(t))

i i i

17



Multiplicative weights update

Theorem 3 ([1])
Assume that all costs c,(t) €[-1,1] and € € (0, 3]. After T steps, let

m,(T) be the total cost of expert i, then the total expected cost M(T)
made by the multiplicative weights algorithm satisfies

€

T T
|
M) < Zci(t) +€Z |Ci(t)‘ i nn Vi
t=1 t=1

Again, this holds for i = the best expert.

18



Multiplicative weights update

Proof.
Same as before, after T steps, the total expected cost of our algorithm is

T

M) = 37 (), plo),
t=1
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Multiplicative weights update

Proof.
Same as before, after T steps, the total expected cost of our algorithm is

T

M) = 37 (), plo),
t=1

The change in potential is bounded the same way,

oD = %~ WD < o) exp(—e(c®, p®)))

i
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Multiplicative weights update

Proof.
Same as before, after T steps, the total expected cost of our algorithm is

T

M) = 37 (), plo),
t=1

The change in potential is bounded the same way,
o) = 37w < 00 exp(—e(c®, p(1)))
which gives us

.
(T < ol exp(~¢ (e, p9)) = nexp(~eMT)  (6)
t=1

19



Multiplicative weights update

The following facts follow from the convexity of the exponential function:
(1—ex)>(1—¢€)* ifxe]0,1]
(1—ex)>(1+e)~™ ifxe[-1,0]

(t

By our assumption c; ) € [—1,1], we have for every expert i,

.
w T =T - e

t=1
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Multiplicative weights update

The following facts follow from the convexity of the exponential function:

(1—ex)>(1—¢€)* ifxe]0,1]
(I-ex)>(14¢)7™ ifxe[-1,0]
(t

By our assumption c; ) € [—1,1], we have for every expert i,

.
w T =T - e

t=1
(t) (t)

> (1=l . (146 D<o (7)

where the subscripts refer to t : c® >0and t: M < 0, respectively.

i i

20



Multiplicative weights update

Again, since w,.(TH) < &(T+1) e can combine equation 6 and 7,

0) ¢
(1- e)zzo°" (1+€)” Y < nexp(—eM(T))

21



Multiplicative weights update

Again, since w,.(TH) < &(T+1) e can combine equation 6 and 7,

® 0
(1 —6)2206’ . (1+6)_Z<06f < nexp(—eM(T))
Taking logs, negating, and rearranging,

eMT) < Inn— Z c,.(t) In(1—¢)+ Z c,(t) In(1+¢)
>0 <0
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Again, since w,.(TH) < &(T+1) e can combine equation 6 and 7,

® 0
(1 —6)2206’ . (1+6)_Z<06f < nexp(—eM(T))
Taking logs, negating, and rearranging,

eMT) < Inn— Z c,.(t) In(1—¢)+ Z c,(t) In(1+¢)
>0 <0

Apply —In(1 — x) < x + x? and In(1 + x) > x + x? for x < %

eMT) <Inn+ Z c,-(t)(e + €?) + Z c,-(t)(e —é?)
>0 <0
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Multiplicative weights update

Again, since w,.(TH) < &(T+1) e can combine equation 6 and 7,

(t) (t

(1- 6)2206" (1+e€) I

)
< nexp(—eM(T))
Taking logs, negating, and rearranging,

eMT) < Inn— Z c,.(t) In(1—¢)+ Z c,(t) In(1+¢)
>0 <0

Apply —In(1 — x) < x + x? and In(1 + x) > x + x? for x < %

eMT) <Inn+ Z c,-(t)(e + €?) + Z c,-(t)(e —é?)
>0 <0

T T
eMT) <Inn+ eZcim +é Z |c,.(t)|

t=1 t=1
Dividing € on both sides gives us the desired bound. O

21



Comparison

2|
WM : MO < 2(1 4+ )mT + 207

€

|
RWM : M®) < (14 e)m(T" + 21

+
T T
MWU : M(®) Z Z
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Comparison

2|
WM : MO < 2(1 4+ )mT + 207

€

|
RWM : M®) < (14 e)m(T" + 21

+
T T
w0 < 3 f z
Can further generalize to the Matrix Multiplicative Weights algorithm:

e Cost vectors — cost matrices
e Probability vectors — density matrices

e Mainly applied in solving SDPs.
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Application




e Adaptive Boosting, Freund and Schapire 1996 [3].
e Classification problems: x; € R, y; € {-1,1},i=1,...,n

e Goal: combine a set of T weak classifiers into a strong one.

23



AdaBoost

Algorithm AdaBoost
Input: sequence of N labeled examples {(x;, ¥1), ., (Xy, ¥a))
distribution D over the N examples
weak learning algorithm WeakLearn
integer T specifying number of iterations
Initialize the weight vector: w} = D(i) for i=1, ..., N.
Dofort=1,2,...T

1. Set

W

S Eaw

'

P

2. Call WeakLearn, providing it with the distribution p’; get back a
hypothesis #,: X > [0,1].

3. Calculate the error of h,:e,=3" | p! |h(x;)— y;|-
4. Setf,=¢,/(1—¢,).
5. Set the new weights vector to be

R e
Output the hypothesis

(o) = {1 it B (log 1/8) hix) > 3 X1, log 1/6,

0 otherwise.

Figure 2: AdaBoost algorithm [3] o4



AdaBoost

Original data set, D, Update weights, D, Update weights, D,
. + -+
=k b S =i Combined classifier
= + - + - + . =1
- + + - i
b 4
Trained classifier Trained classifier Trained classifier é + i
= _ =) = i o +
- +
D) i + = i i

[T)¥ % = - 4
& + = + -

+ + +

Figure 3: https://bit.1ly/31UrxIo
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Chernoff Bounds

o Let X = Z,T:l Xi be the sum of n independent random variables
X; € (0,1], and p = EX.
e Chernoff bounds show that X is sharply concentrated about p:

exp(9) ) i

B> (1+000) < () B < (-0 < (25
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Chernoff Bounds

o Let X = Z,T:l Xi be the sum of n independent random variables
X; € (0,1], and p = EX.
e Chernoff bounds show that X is sharply concentrated about p:

exp(d) exp(—9) )“

B> (1+000) < () B < (-0 < (25

e By Markov's inequality,
Elex X;
P(X > a) = P(exp(tX) > exp(ta) < Hoseal _ Het ), )

exp(ta) exp(ta)
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Chernoff Bounds

o Let X = Z,T:l Xi be the sum of n independent random variables
X; € (0,1], and p = EX.
e Chernoff bounds show that X is sharply concentrated about p:

exp(9) exp(—9) )#

B> (1+000) < () B < (-0 < (25

e By Markov's inequality,
Elex X;
P(X > a) = P(exp(tX) > exp(ta) < Hoseal _ Het ), )

exp(ta) exp(ta)
e Young pointed out in 1995[4]: at every step i, we receive X; and

multiplicatively update the “potential” by exp(tX;)
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Online convex optimization

e Decision set is a convex, compact set L C R”
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e We need to minimize a convex function f(t) at each time t by
choosing a point p(t) € K, and incur cost f()(p(t))

e Goal is to minimize regret:
R = 5 L1 FO(p) = minger 5L, F(p)
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Online convex optimization

e Decision set is a convex, compact set L C R”

e We need to minimize a convex function f(t) at each time t by
choosing a point p(t) € K, and incur cost f()(p(t))

e Goal is to minimize regret:
R =3, FO(p®) — mingex 0, FB)(p)

e To use the MWU method for the special case where K is the
n-dimensional simplex,

e Define p = maxpex max: ||V (p)||oo
e Then run MWU with € = 1/|n n/T and costs ¢ 1= LvF()(p(1),

where p is to make sure c ) e [-1,1]
e Can show that R(7) < 2pV/ T Inn after T rounds.
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Conclusion

Summary:

e General framework of multiplicative weights update method.

e Prediction from expert advice with performance competitive to the
best expert in hindsight.

e Relationship to other areas.

28
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Thank you

Only in America...

do we accept weather predictions from
a rodent but deny climate change
evidence from scientists.

https://bit.ly/2N9p1dW
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