Multiplicative Weights Update

Si Yi (Cathy) Meng
June 26, 2019

UBC MLRG

Introduction

Introduction

Prediction from expert advise

https://www.cbc.ca/news/canada/windsor/groundhog-day-2018-1.4516220

Introduction

Prediction from expert advise

https://www.cbc.ca/news/canada/windsor/groundhog-day-2018-1.4516220

Introduction

Prediction from expert advise

M \
Groundhog Day 2018: Mixed signals and anear
escape

N.S.'s Sam, Quebec's Fred predict early spring; Ont.'s Wiarton Willie, Pennsylvania's
Punxsutawney Phil don't

CBC News - Posted: Feb 02, 2018 7:00 AM ET | Last Updated: February 2, 2018

Figure 1: https://www.cbc.ca/news/canada/windsor/groundhog-day-2018-1.4516220

https://www.cbc.ca/news/canada/windsor/groundhog-day-2018-1.4516220

e Theory

e Weighted majority

e Randomized weighted majority

e General framework — Multiplicative weights update
e Applications

e AdaBoost
e Chernoff bounds
e Online convex optimization

Theory

Problem Setup

e We are given the task of making a binary prediction on a sequence
of events.

e Rainy tomorrow? TSLA | or |7?

Problem Setup

e We are given the task of making a binary prediction on a sequence
of events.
e Rainy tomorrow? TSLA | or |7?
e But we have no knowledge about it.

Problem Setup

e We are given the task of making a binary prediction on a sequence
of events.

e Rainy tomorrow? TSLA | or |7?
e But we have no knowledge about it.

e We have access to n experts

e Each will predict 0 or 1 at a given time.
e Each expert has weight W,(t), representing its “credibility”.

Problem Setup

e We are given the task of making a binary prediction on a sequence
of events.

e Rainy tomorrow? TSLA | or |7?
e But we have no knowledge about it.

e We have access to n experts
e Each will predict 0 or 1 at a given time.

e Each expert has weight W,(t), representing its “credibility”.

e At each timestep t, we somehow make a prediction based on the
experts' predictions.

Problem Setup

e We are given the task of making a binary prediction on a sequence
of events.

e Rainy tomorrow? TSLA | or |7?
e But we have no knowledge about it.

e We have access to n experts
e Each will predict 0 or 1 at a given time.
e Each expert has weight W,(t), representing its “credibility”.
e At each timestep t, we somehow make a prediction based on the

experts' predictions.

e The weights will be updated based on the correctness.

Problem Setup

e We are given the task of making a binary prediction on a sequence
of events.

e Rainy tomorrow? TSLA | or |7?
e But we have no knowledge about it.

e We have access to n experts

e Each will predict 0 or 1 at a given time.
e Each expert has weight W,(t), representing its “credibility”.

e At each timestep t, we somehow make a prediction based on the
experts' predictions.

e The weights will be updated based on the correctness.

e Since we make no assumptions about the experts, we cannot
guarantee an absolute level of quality of our predictions.

e Goal: do as well as the best expert in hindsight.

Weighted majority

Weighted majority algorithm [2, 1]

e Set W,-(l) =1 for all
e Fort=1,2,.... T

e Experts make their decisions {xi, ..., xn}

e Wechoose 1if >, w w'? > D o w'? and 0 otherwise
e Reveal the answer and incur a cost
e Update weights

e Incorrect experts: W(tJr1 =(l= e)w(t)

(t41) N0 !

o Correct experts: w; ;

Weighted majority

Theorem 1 ([2, 1])

After T steps, let m,(.T) be the number of mistakes of expert i and M(T)
be the number of mistakes the weighted majority algorithm has made.
Assuming € € (0, %] then we have the following bound:

2Inn

MDD <220 Lo+ emm i
€

In particular, this holds for i = the best expert, i.e. having the least mT.

i

Weighted majority

Proof.
It is clear that for all expert i, we have

7)

Wi = (1- ¢ (1)

Weighted majority

Proof.
It is clear that for all expert i, we have

7)

Wi = (1- ¢ (1)

Let () = 3. W,-(t) be the potential function, then (1) = p.

Weighted majority

Proof.
It is clear that for all expert i, we have

w0 — (1 gm” (1)

Let () = o W,-(t) be the potential function, then (1) = p.
Each time we make a mistake, at least half of the weights decreases by
(1—¢). This implies ®(+) < (0 (% +ia- e)) = ®()(1 — ¢/2), which
gives us

o(T+1) < n(1— 6/2)M(T) (2)

Weighted majority

Since ®(t) > Wl-(t) for all i and t, combining the above and applying
o 1
—In(1—x)<x+x" and In(x)<x-1 foer(O,E]

gives us the desired bound

2Inn

M) < +2(1+em” Vi

€

Weighted majority

Remarks:

e We made no assumptions on the sequence of events nor the quality
of the experts.

Weighted majority

Remarks:

e We made no assumptions on the sequence of events nor the quality

of the experts.

e However, when m,(T) > 2'% then from Theorem 1, the number of

mistakes made by our algorithm will be upper bounded by
approximately twice the number of mistakes made by the best
expert.

Weighted majority

Remarks:

e We made no assumptions on the sequence of events nor the quality

of the experts.

e However, when m,(T) > 2'% then from Theorem 1, the number of

mistakes made by our algorithm will be upper bounded by
approximately twice the number of mistakes made by the best
expert.

e Tight for any deterministic algorithm.

e Can remove the factor of 2 by a randomized version.

Randomized weighted majority

e Instead of deterministically following the majority, we randomly
select an expert to follow with probability proportional to its weight.

Randomized weighted majority

e Instead of deterministically following the majority, we randomly
select an expert to follow with probability proportional to its weight.

e At the beginning, we select experts uniformly at random.

Randomized weighted majority

e Instead of deterministically following the majority, we randomly
select an expert to follow with probability proportional to its weight.
e At the beginning, we select experts uniformly at random.
e As the events unfold, we lower the weights of the poorly performing
ones, so they are less likely to be followed.

Randomized weighted majority

e Instead of deterministically following the majority, we randomly
select an expert to follow with probability proportional to its weight.

e At the beginning, we select experts uniformly at random.
e As the events unfold, we lower the weights of the poorly performing
ones, so they are less likely to be followed.
e If the events are chosen by an adversary, randomizing the selection
of experts will improve our performance.

Randomized weighted majority

Randomized weighted majority algorithm[2, 1]

e Set w) =1 forall i

e Fort=1,2,.... T

o Experts make their decisions {xi,...,xn}

wl

e We choose x; with probability p{*) := i = =

=P 0
j J

e Reveal the answer and incur a cost
e Update weights
e Incorrect experts: wl.(H'l) =(1- e)wi(t)

e Correct experts: WI.(H—I) = w,.(t)

10

Randomized weighted majority

Theorem 2 ([2, 1])

After T steps, let m,(-T) be the number of mistakes made by expert i.
Assuming € € (0, %] then the expected number of mistakes M(T) made
by the randomized weighted majority algorithm satisfies

Inn (T)

M) < — 4 (14 €)m; Vi
€

Again, this holds for i = the best expert.

11

Randomized weighted majority

Proof.
Let c,-(t) € {0,1} be the cost incurred by expert i at time t.

12

Randomized weighted majority

Proof.

Let c,-(t) € {0,1} be the cost incurred by expert i at time t.

Then the expected cost of our algorithm at a particular timestep t is
> ci(t)pft) = (c(®),p(®)). After T steps, we have

T

= (c®,p (3)

t=1

12

Randomized weighted majority

For the change in potential,

¢(t+1) _ Z W'(H*].)

i
i

13

Randomized weighted majority

For the change in potential,

¢(t+1) _ Z W'(H*].)

=Y w1 —ecV)

i

13

Randomized weighted majority

For the change in potential,

¢(t+1) _ Z W'(H*].)

i
i

=Y w1 —ecV)

= o) _ EZ ¢'(t)ci(t)pft) By defn of pft)

13

Randomized weighted majority

For the change in potential,

¢(t+1) _ Z W'(H*].)

i
i

=Y w1 —ecV)
_ o) _ (t) (1) (1) (t)
) EZ o pi By defn of p;

= o1 — e(c®, pM®))

13

Randomized weighted majority

For the change in potential,

ot+l) — Z I(t“)
= Z w; 1 = ec
EZ ot Ci pft) By defn of pft)

= o1 — e(c®, pM®))
< & exp(—e(c®, p®))

where the last inequality comes from 1 4+ x < exp(x) for all x.

13

Randomized weighted majority

By recursion, the potential after T steps is then

.
o7+ < o [Texp(—e(c, p))

t=1

14

Randomized weighted majority

By recursion, the potential after T steps is then
T
o7+ < o [Texp(—e(c, p))
t=1
-
= &M exp(—e Z<c(t)7 p®))

t=1

14

Randomized weighted majority

By recursion, the potential after T steps is then

-
o7+ < o [Texp(—e(c, p))
t=1
-
exp Z p(t
— o exp(_g/\/]() By equation 3

nexp(—eM(T)) (4)

14

Randomized weighted majority

By recursion, the potential after T steps is then

-
o7+ < o [Texp(—e(c, p))
t=1
-
Y exp(— Z 9, p®)y)
= o)exp(—e/\/l()) By equation 3
= nexp(—eM(T)) (4)

For each expert, its final weight is again given by

W;(T+1) =(1- E)m§” < o(T+D) (5)

14

Randomized weighted majority

By recursion, the potential after T steps is then
T
o7+ < o [Texp(—e(c, p))

t=1

-

Y exp(— Z), p®))

= o)exp(—e/\/l()) By equation 3
= nexp(—eM(T)) (4)

For each expert, its final weight is again given by
W;(T+1) —(1- E)ml(.T) < $(TH+D) (5)

Combining equations 4 and 5 and applying In(1 — €) < €(1 + ¢€) gives us
the desired bound

14

Randomized weighted majority

e Tradeoff: by adjusting ¢, we can make the “competitive ratio” of
the algorithm as close to 1 as desired, at the expense of an increase
in the additive constant.

15

Randomized weighted majority

e Tradeoff: by adjusting ¢, we can make the “competitive ratio” of
the algorithm as close to 1 as desired, at the expense of an increase
in the additive constant.

e Denote m = me). RHS is convex in € for € € (0, 1], take the
derivative and set to 0, we get m = elnn

e Sete=1/(In n)/mET)
o Gives us the bound M(") <m+2vmlnn

15

Randomized weighted majority

e Tradeoff: by adjusting ¢, we can make the “competitive ratio” of
the algorithm as close to 1 as desired, at the expense of an increase
in the additive constant.

e Denote m = me). RHS is convex in € for € € (0, 1], take the
derivative and set to 0, we get m = elnn

e Sete=1/(In n)/mET)
e Gives us the bound M(T) <m+ 2vmlnn
e But we don't know m

15

Randomized weighted majority

e Tradeoff: by adjusting ¢, we can make the “competitive ratio” of
the algorithm as close to 1 as desired, at the expense of an increase
in the additive constant.

e Denote m = me). RHS is convex in € for € € (0, 1], take the
derivative and set to 0, we get m = elnn
e Sete=1/(In n)/mET)

o Gives us the bound M(") <m+2vmlnn
e But we don't know m

e Guess and double trick: start with m =41Inn and € = % Once every
expert has made at least m mistakes, double m and update € = %

15

Randomized weighted majority

Remarks:

e We now achieve a better bound with randomization.

16

Randomized weighted majority

Remarks:

e We now achieve a better bound with randomization.

e Only binary predictions/costs so far.
e Generalize to

e A set of outcomes that are not necessarily binary.
e Real-valued costs (within some range).

16

Multiplicative weights update

Multiplicative weights update algorithm [1]

o Set W,-(l) =1 forall i
e Fort=1,2,...,T
o Experts make their decisions {xi,...,xn}

t)) w w

e \We choose x; with probability pf

e Reveal the answer, incur costs c(?)

Update weights for each expert i

wttD) — W(t)(l — EC(t))

i i i

17

Multiplicative weights update

Theorem 3 ([1])
Assume that all costs c,(t) €[-1,1] and € € (0, 3]. After T steps, let

m,(T) be the total cost of expert i, then the total expected cost M(T)
made by the multiplicative weights algorithm satisfies

€

T T
|
M) < Zci(t) +€Z |Ci(t)‘ i nn Vi
t=1 t=1

Again, this holds for i = the best expert.

18

Multiplicative weights update

Proof.
Same as before, after T steps, the total expected cost of our algorithm is

T

M) = 37 (), plo),
t=1

19

Multiplicative weights update

Proof.
Same as before, after T steps, the total expected cost of our algorithm is

T

M) = 37 (), plo),
t=1

The change in potential is bounded the same way,

oD = %~ WD < o) exp(—e(c®, p®)))

i

19

Multiplicative weights update

Proof.
Same as before, after T steps, the total expected cost of our algorithm is

T

M) = 37 (), plo),
t=1

The change in potential is bounded the same way,
o) = 37w < 00 exp(—e(c®, p(1)))
which gives us

.
(T < ol exp(~¢ (e, p9)) = nexp(~eMT) (6)
t=1

19

Multiplicative weights update

The following facts follow from the convexity of the exponential function:
(1—ex)>(1—¢€)* ifxe]0,1]
(1—ex)>(1+e)~™ ifxe[-1,0]

(t

By our assumption c;) € [—1,1], we have for every expert i,

.
w T =T - e

t=1

20

Multiplicative weights update

The following facts follow from the convexity of the exponential function:

(1—ex)>(1—¢€)* ifxe]0,1]
(I-ex)>(14¢)7™ ifxe[-1,0]
(t

By our assumption c;) € [—1,1], we have for every expert i,

.
w T =T - e

t=1
(t) (t)

> (1=l . (146 D<o (7)

where the subscripts refer to t : c® >0and t: M < 0, respectively.

i i

20

Multiplicative weights update

Again, since w,.(TH) < &(T+1) e can combine equation 6 and 7,

0) ¢
(1- e)zzo°" (1+€)” Y < nexp(—eM(T))

21

Multiplicative weights update

Again, since w,.(TH) < &(T+1) e can combine equation 6 and 7,

® 0
(1 —6)2206’ . (1+6)_Z<06f < nexp(—eM(T))
Taking logs, negating, and rearranging,

eMT) < Inn— Z c,.(t) In(1—¢)+ Z c,(t) In(1+¢)
>0 <0

21

Multiplicative weights update

Again, since w,.(TH) < &(T+1) e can combine equation 6 and 7,

® 0
(1 —6)2206’ . (1+6)_Z<06f < nexp(—eM(T))
Taking logs, negating, and rearranging,

eMT) < Inn— Z c,.(t) In(1—¢)+ Z c,(t) In(1+¢)
>0 <0

Apply —In(1 — x) < x + x? and In(1 + x) > x + x? for x < %

eMT) <Inn+ Z c,-(t)(e + €?) + Z c,-(t)(e —é?)
>0 <0

21

Multiplicative weights update

Again, since w,.(TH) < &(T+1) e can combine equation 6 and 7,

(t) (t

(1- 6)2206" (1+e€) I

)
< nexp(—eM(T))
Taking logs, negating, and rearranging,

eMT) < Inn— Z c,.(t) In(1—¢)+ Z c,(t) In(1+¢)
>0 <0

Apply —In(1 — x) < x + x? and In(1 + x) > x + x? for x < %

eMT) <Inn+ Z c,-(t)(e + €?) + Z c,-(t)(e —é?)
>0 <0

T T
eMT) <Inn+ eZcim +é Z |c,.(t)|

t=1 t=1
Dividing € on both sides gives us the desired bound. O

21

Comparison

2|
WM : MO < 2(1 4+)mT + 207

€

|
RWM : M®) < (14 e)m(T" + 21

+
T T
MWU : M(®) Z Z

22

Comparison

2|
WM : MO < 2(1 4+)mT + 207

€

|
RWM : M®) < (14 e)m(T" + 21

+
T T
w0 < 3 f z
Can further generalize to the Matrix Multiplicative Weights algorithm:

e Cost vectors — cost matrices
e Probability vectors — density matrices

e Mainly applied in solving SDPs.

22

Application

e Adaptive Boosting, Freund and Schapire 1996 [3].
e Classification problems: x; € R, y; € {-1,1},i=1,...,n

e Goal: combine a set of T weak classifiers into a strong one.

23

AdaBoost

Algorithm AdaBoost
Input: sequence of N labeled examples {(x;, ¥1), ., (Xy, ¥a))
distribution D over the N examples
weak learning algorithm WeakLearn
integer T specifying number of iterations
Initialize the weight vector: w} = D(i) for i=1, ..., N.
Dofort=1,2,...T

1. Set

W

S Eaw

'

P

2. Call WeakLearn, providing it with the distribution p’; get back a
hypothesis #,: X > [0,1].

3. Calculate the error of h,:e,=3" | p! |h(x;)— y;|-
4. Setf,=¢,/(1—¢,).
5. Set the new weights vector to be

R e
Output the hypothesis

(o) = {1 it B (log 1/8) hix) > 3 X1, log 1/6,

0 otherwise.

Figure 2: AdaBoost algorithm [3] o4

AdaBoost

Original data set, D, Update weights, D, Update weights, D,
. + -+
=k b S =i Combined classifier
= + - + - + . =1
- + + - i
b 4
Trained classifier Trained classifier Trained classifier é + i
= _ =) = i o +
- +
D) i + = i i

[T)¥ % = - 4
& + = + -

+ + +

Figure 3: https://bit.1ly/31UrxIo

25

https://bit.ly/31UrxIo

Chernoff Bounds

o Let X = Z,T:l Xi be the sum of n independent random variables
X; € (0,1], and p = EX.
e Chernoff bounds show that X is sharply concentrated about p:

exp(9)) i

B> (1+000) < () B < (-0 < (25

26

Chernoff Bounds

o Let X = Z,T:l Xi be the sum of n independent random variables
X; € (0,1], and p = EX.
e Chernoff bounds show that X is sharply concentrated about p:

exp(d) exp(—9))“

B> (1+000) < () B < (-0 < (25

e By Markov's inequality,
Elex X;
P(X > a) = P(exp(tX) > exp(ta) < Hoseal _ Het),)

exp(ta) exp(ta)

26

Chernoff Bounds

o Let X = Z,T:l Xi be the sum of n independent random variables
X; € (0,1], and p = EX.
e Chernoff bounds show that X is sharply concentrated about p:

exp(9) exp(—9))#

B> (1+000) < () B < (-0 < (25

e By Markov's inequality,
Elex X;
P(X > a) = P(exp(tX) > exp(ta) < Hoseal _ Het),)

exp(ta) exp(ta)
e Young pointed out in 1995[4]: at every step i, we receive X; and

multiplicatively update the “potential” by exp(tX;)

26

Online convex optimization

e Decision set is a convex, compact set L C R”

27

Online convex optimization

e Decision set is a convex, compact set L C R”

e We need to minimize a convex function f(t) at each time t by
choosing a point p(t) € K, and incur cost f()(p(t))

27

Online convex optimization

e Decision set is a convex, compact set L C R”

e We need to minimize a convex function f(t) at each time t by
choosing a point p(t) € K, and incur cost f()(p(t))

e Goal is to minimize regret:
R = 5 L1 FO(p) = minger 5L, F(p)

27

Online convex optimization

e Decision set is a convex, compact set L C R”

e We need to minimize a convex function f(t) at each time t by
choosing a point p(t) € K, and incur cost f()(p(t))

e Goal is to minimize regret:
R =3, FO(p®) — mingex 0, FB)(p)

e To use the MWU method for the special case where K is the
n-dimensional simplex,

e Define p = maxpex max: ||V (p)||oo
e Then run MWU with € = 1/|n n/T and costs ¢ 1= LvF()(p(1),

where p is to make sure c) e [-1,1]
e Can show that R(7) < 2pV/ T Inn after T rounds.

27

Conclusion

Summary:

e General framework of multiplicative weights update method.

e Prediction from expert advice with performance competitive to the
best expert in hindsight.

e Relationship to other areas.

28

References

@ S. Arora, E. Hazan, and S. Kale.
The multiplicative weights update method: a meta-algorithm
and applications.
Theory of Computing, 8(1):121-164, 2012.

[4 A.Blum.
On-line algorithms in machine learning.
In Online algorithms, pages 306—-325. Springer, 1998.

@ Y. Freund and R. E. Schapire.
A decision-theoretic generalization of on-line learning and an
application to boosting.
Journal of computer and system sciences, 55(1):119-139, 1997.

@ N. E. Young.
Randomized rounding without solving the linear program.
1995.

29

Thank you

Only in America...

do we accept weather predictions from
a rodent but deny climate change
evidence from scientists.

https://bit.ly/2N9p1dW

30

https://bit.ly/2N9p1dW

	Introduction
	Theory
	Weighted majority
	Randomized weighted majority
	General framework – Multiplicative weights update

	Application

