
UBC MLRG (Winter 2018): 
Parallel and Distributed Machine Learning



Machine Learning Reading Group (MLRG)

• Machine learning reading group (MLRG) format:

– Each semester we pick a general topic.

– Each week someone leads us through a tutorial-style lecture/discussion. 

– So it’s organized a bit more like a “topics course” than reading group.

• We use this format because ML has become a huge field.



Machine Learning Reading Group (MLRG)

• I’ve tried to pack as much as possible into the two ML courses:

– CPSC 340 covers most of the most-useful methods.

– CPSC 540 covers most of the background needed to read research papers.

• This reading group covers topics that aren’t yet in these course.

– Aimed at people who have taken CPSC 340, 
and are comfortable with 540-level material.

• This may change now that we have 4 ML faculty.



Recent MLRG History

• Topics covered in recent tutorial-style MLRG sessions:

– Summer 2015: Probabilistic graphical models.

– Fall 2015: Convex optimization.

– Winter 2016: Bayesian statistics.

– Summer 2016: Miscellaneous. 

– Fall 2016: Deep learning.

– Winter 2016: Reinforcement learning.

– Summer 2017: Online, active, and causal learning.

– Fall 2017: Deep learning meets graphical models.

– Winter 2018: Parallel and distributed machine learning.



Motivation for Parallel and Distributed Systems

• Clock speeds aren’t increasing anymore:

– Though new tricks like 64-bit vs. 32-bit.

• But datasets keep getting bigger.

– MNIST: 60k, ImageNet: 1.4M.

• We need to use parallel computation.

– Use more than 1 CPU to reduce time.

– Lets you keep pace with growth of data.

https://csgillespie.wordpress.com/2011/01/25/cpu-and-gpu-trends-over-time/



Motivation for Parallel and Distributed Systems

• Data might get so big it doesn’t fit on one machine.

• We need to consider distributed data and distributed computation.

– How can we solve ML problems efficiently in this setting?

https://en.wikipedia.org/wiki/Hard_disk_drive



3 Approaches to Machine Learning

• There are roughly three computational approaches to ML:

– Counting (sufficient statistics, decision trees, naïve Bayes, KNN).

– Optimization (least squares, logistic regression, PCA, deep learning).

– Integration (random forests, graphical models, Bayesian methods).

• Today:

– Issues arising in these settings when you parallelize/distributed.



Counting-Based Learning

• Consider finding the mean of a data matrix ‘X’:

• Usual cost with a processor is O(nd).

– For each of the ‘d’ values of ‘j’, add up the ‘n’ values of ‘xij’.

• Now suppose we have ‘p’ processors with shared memory:

– Make each processor each up the number for O(n/d) examples.

– So each processor takes O(nd/p) operations, and total time is O(nd/p).



Linear Speedup

• This is called a “linear speedup”:

– We’re ‘p’-times faster with ‘p’ processors.

• Can we do better?

– No!

– Superlinear speedups aren’t possible (in standard models of computation).

• In practice, issues like caching levels might give superlinear in some situations.

• So a linear speedup is the best case scenario.

– Our job is to design methods where speedup isn’t too sublinear.



Embarrassingly Parallel

• We say that computing the mean is “embarrassingly parallel”.

– We can divide most of work into ‘p’ independent sub-problems.

• You’ll rarely see papers about embarrassingly-parallel methods.

– It’s not really that interesting.

• But, embarrassingly parallel problems are very common.

– You should always look for embarrassingly parallel approaches first.



Issues: Lock and Synchronization

• This algorithm may not achieve linear speedup in practice.

• One reason is locking:
– They can’t all write to the same µj values at once.

• Another is synchronization
– One processor could take much longer than the others.

• Even with homogeneous hardware, another issue is load balancing:
– Data could be sparse with most non-zeroes assigned to the same processor.

• For this problem, simple modifications could alleviate these issues.
– For more complicated problems, we need to think about these issues.



Distributed Computation

• Suppose data was distributed (evenly) on ‘p’ different machines.

• Since they don’t have shared memory, we need to communicate.

• Computing mean in this distributed setting:

– Each computer computes mean of its own set of examples.

– Each computer sends its mean to a “master” computer.

– The “master” computer combines them together to get overall mean.



Map and Reduce Operations

• Computing mean on each computer is called a “map” operation.

– Each machine computes a simple “value” on its own data.

• Combining means is called a “reduce” operation.

– The “values” are combined with a simple binary operation.

• Standard distributed frameworks will implement these operations.

– And usually a few others.



Analysis of Map then Reduce Approach

• The “map” step costs O(nd/p) on each machine.

• The “reduce” step involves each machine sending ‘d’ numbers.

• If they all send to “master”, cost of reduce is O(dp).
– So total cost is O(nd/p + dp), so for large ‘p’ we won’t have linear speedup.

• You be more clever and organize communication in a binary tree:
– Cost O(nd/p + d log(p)), so linear speedup if n/p > log(p).

– Obviously, won’t be linear with more machines than examples.

• Maybe you want to distribute features rather than examples?
– Only need to communicate O(d) numbers if each has O(d/p) features.



Issues: Communication Costs

• Communicating among machines adds extra costs.
– We need to think about if this is worth it.

• Communication is usually expensive compared to computation.
– Sometimes, some machines can communicate more cheaply than others.

• Also, how did you get data onto ‘p’ machines in the first place?
– This cost is often ignored in papers, but it matters where the data “starts”.

– You don’t want to send data to machines just to compute mean!

• If you have huge ‘p’, probability of failure becomes non-trivial.
– How do you deal with computation or communication failure?



Optimization-Based Learning

• Optimization-based methods minimize average of continuous fi:

• Standard approach is gradient descent (and faster variations):

• This is often embarrassingly parallel:
– Dominant cost is computing gradient on each of ‘n’ examples.

– Each processor can compute gradients for O(n/p) examples.

• Papers look at fancier methods, but if you can do this you should.



Fancier Optimization Methods

• Stochastic gradient methods:

– Not so easy to parallelize, each iteration only uses 1 gradient.

– You could have each processor compute 1 gradient and use ‘batch’ update.

• Does not give a linear speedup: just reduces variance of gradient estimate.

– Asynchronous approach: each processor read/updates “master” vector.

• Works if you make the step-size smaller.

• Coordinate optimization methods:

– Each machine updates one coordinate.

– Doesn’t work unless you make the step-size small enough.



Fancier Optimization Methods

• Decentralized gradient: 

– Each machine takes a gradient descent step on its own data.

– Parameters are averaged across neighbours in communication graph.

• Newton’s method:

– Newton has memory requirements and iteration cost.

• But it takes very few iterations.

– Cloud computing allows enormous memory/parallelism.

– Maybe Newton makes sense again in this setting?



Integration-Based Learning

• Integration-based learning methods need to solve integrals:

• Typical approach is Monte Carlo methods:

• Embarrassingly-parallel if you can generate IID samples from p(x):
– Have each processor generate its own independent samples.

• Typical cases like MCMC are more complicated:
– Running independent MCMC chains is embarrassingly-parallel.

– But speedup could be very sublinear if all chains are in “burn in” phase.



Schedule
Date Topic Presenter

Jan 30 Motivation/Overview Mark

Feb 6 Distributed file systems (MAPREDUCE, HADOOP, Spark, etc.) Yasha

Feb 13 Asynchronous stochastic gradient (HOGWILD!, YellowFin, etc.) Michael

Feb 27 Synchronous stochastic gradient ("fit then average", Sync-Opt) Sharan

Mar 6 Parallel coordinate optimization Julie

Mar 13 Decentralized gradient (EXTRA) Devon

Mar 20 Decomposition methods (Elastic-Averaging, ADMM, etc.) Wu

Mar 27 Asynchronous/distributed SAG/SDCA/SVRG Reza

Apr 3 Randomized Newton and least squares on the cloud Vaden

Apr 10 Parallel tempering and distributed particle filtering Nasim

Apr 17 Distributed deep networks (DDNNs, Downpour) Alireza

Apr 24 Blockchain-based distributed learning Raunak*


