
UBC MLRG (Winter 2017): 
Reinforcement Learning



Machine Learning Reading Group (MLRG)

• Machine learning reading group (MLRG) format:

– Each semester we pick a general topic.

– Each week someone leads us through a tutorial-style lecture/discussion. 

– So it’s organized a bit more like a “topics course” than reading group.

• We use this format because ML has become a huge field.



Machine Learning Reading Group (MLRG)

• I’ve tried to pack as much as possible into the two ML courses:

– CPSC 340 covers most of the most-useful methods.

– CPSC 540 covers most of the background needed to read research papers.

• This reading group covers topics that aren’t yet in these course.

– Aimed at people who have taken CPSC 340, 
and are comfortable with 540-level material.



Recent MLRG History

• Topics covered in recent tutorial-style MLRG sessions:

– Summer 2015: Probabilistic graphical models.

– Fall 2015: Convex optimization.

– Winter 2016: Bayesian statistics.

– Summer 2016: Miscellaneous. 

– Fall 2016: Deep learning.

– Winter 2016: Reinforcement learning.

– Summer 2017: Bandits, Online/Active Learning, Causality.



Why Reinforcement Learning?

https://www.youtube.com/watch?v=Ih8EfvOzBOY
https://www.youtube.com/watch?v=SH3bADiB7uQ
https://www.youtube.com/watch?v=nUQsRPJ1dYw

https://www.youtube.com/watch?v=Ih8EfvOzBOY
https://www.youtube.com/watch?v=SH3bADiB7uQ
https://www.youtube.com/watch?v=nUQsRPJ1dYw


Building up to Reinforcement Learning

• Reinforcement learning (RL) is very general/difficult:
– It includes many other machine learning problems as special cases.

• Good introductory book:
– “Introduction to Reinforcement Learning” by Sutton & Barto.

• Other names for reinforcement learning:
– Approximate dynamic programming.

– Neurodynamic programming.

• To build up to RL, let’s start with supervised learning:
– Introduce notation, and discuss ways RL is harder.



Supervised Learning

• Supervised learning notation:

– We have input features xt.

– There are possible outputs yt.

– We have a loss function L(xt,yt).

• E.g., loss of 0 if you classify correctly and loss of 1 is you classify incorrectly.

• Reinforcement learning notation:

– The features are referred to as states st.

– The outputs are referred to as actions at.

– The (negative) loss function is called the reward r(st,at).

• E.g., reward of 0 if you classify correctly and reward of -1 if you classify incorrectly.



Supervised Learning

• Supervised learning training phase:
– We have ‘n’ training examples, we can do whatever we want with them.

– The output of training is a classifier: maps from xt to yt.

– This is called a policy in RL: policies map from st to at.

• Goal: classifier minimizes loss  policy maximizes reward

• Some models give score for each label:
– For example, softmax gives probability of each yt given xt.

– This is a Q function: Q(st,at) is “value” of action at in state st.

– Given a policy, we can define the value function V(st) as “value” given 
policy (which may be deterministic or stochastic).



State-Space Models

• In standard setup, the xt are IID samples:

• In state-space models, the xt come from a Markov chain:

– Value of xt depends on the value of xt-1.

– We obtain IID samples in the special case of no dependencies.

– Learning in this full-observed DAG is pretty similar.



Markov Decision Processes

• State-space model in RL notation

• In Markov decision processes (MDPs), st also depends on at-1.
– The action affects the value of the next state.

• Here we need planning:
– Choose actions that will lead to future states with high reward.

– In MDPs we assume we have the “model”:
• Know all rewards r(st,at) and transition probabilities p(st | st-1, at-1).

– Give “model”, we can find optimal values/policy by dynamic programming:
• Value iteration and policy iteration (next week).

https://www.youtube.com/watch?v=N3s1NR9nhZQ


Reinforcement Learning

• Reinforcement learning is MDPs when we don’t know the “model”.

– All we can do is take actions and observe states/rewards that result.

• We need to simultaneously solve three problems:

– We need to solve a supervised learning problem, r(st,at).

– We need to discover dynamics of a state-space model, p(st | st-1, at-1).

– We need to plan an MDP policy maximizing long-term reward, st -> at.

• All while working with simulations.

• Unfortunately, this combination gives a few more challenges…



Active Learning

• Let’s go back to the basic supervised learning setting:

– Features st are just IID samples.

• Active learning considers the following variation:

– The training examples are unlabeled.

– The learner can query the user to label a training example st.

– Goal is to do well with a fixed budget of queries.

• The fixed budget means we can’t visit all features/states.

– Here we need exploration: which states do we visit to learn the most?



Online Learning and Bandit Feedback

• In online learning there is no separate training/testing phase:
– We receive a sequence of features/states st.

– We have to choose prediction/action at on each example as it arrives.

– Our “score” is the average loss/reward over time.

– Here we need to predict well as we go (not at the end).
• You pay a penalty for trying bad actions as you are learning.

• A common variation is with bandit feedback: 
– We only observe the reward function r(st,at) for actions at that we choose. 

– Here we have an exploration vs. exploitation trade-off:
• Should we explore by picking an at we don’t know much about?

• Should we exploit by picking an at that gives high reward?



Causal Learning

• Causal learning:

– Observational prediction:

• Do people who take Cold-FX have shorter colds?

– Causal prediction:

• Does taking Cold-FX cause you to have shorter colds?

– Counter-factual prediction:

• You didn’t take Cold-FX and had long cold, would taking it have made it shorter?

• Here we need to learn effects of actions.

– Including predicting effects of new actions.

• We may not control the actions: off-policy learning. 

– Actions are often randomized, but still want to find best actions.



Reinforcement Learning

• Reinforcement learning is MDPs when we don’t know the “model”.
– All we can do is take actions and observe states/rewards that result.

• We need to consider:
– Modeling how (st,at) combinations affects reward (supervised learning)

– Learning how (st,at) affects st+1 (state-space models, causality).

– Planning for long-term reward (MDPs). 

– Exploring space of states and actions (active learning, bandit feedback).

• Two common frameworks:
– Monte Carlo methods collects a lot of simulations to turn it into an MDP.

– Temporal-difference learning considers online prediction as you go.
• Need to consider exploration vs. exploitation, penalties for trying bad actions.



Related Problems

• Inverse reinforcement learning, apprenticeship learning, etc.:

– Learning from an expert without an explicit reward function.

• Hidden state-space models:

– The actual state is hidden, and xt is just an observation based on the state.

– Hidden Markov models, Kalman filters, LQR control.

• Partially-observed MDPs (POMDPs):

– MDPs and reinforcement with hidden state-space model.

– Hard even when you know the “model”.



Schedule
Date Topic Presenter

Jan 10 Motivation/Overview Mark

Jan 17 MDPs (policy iteration, value iteration) Nasim

Jan 24 Monte Carlo (estimators, on-policy/off-policy learning) Julie

Jan 31 TD learning, eligibility traces (least squares TD) Raunak

Feb 7 Sarsa, Q-learning Jennifer

Feb 14 Functional approximation, TD-Gammon, ATARI Michael

Feb 21 Planning, temporal abstraction Ricky

Feb 28 Policy gradient, Monte-Carlo tree-search, AlphaGo Stephen

Mar 7 Optimal control, flying helicopters Issam

Mar 14 POMDPs part 1 Sharan

Mar 21 POMDPs part 2 Jason

Mar 28 Value-Iteration Networks Julieta

April 4 RL in Practice Glen


