UBC MLRG (Summer2017): Online, Active, and Causal Learning

Machine Learning Reading Group (MLRG)

- Machine learning reading group (MLRG) format:
 - Each semester we pick a general topic.
 - Each week someone leads us through a tutorial-style lecture/discussion.
 - So it's organized a bit more like a "topics course" than reading group.
- We use this format because ML has become a huge field.

Machine Learning Reading Group (MLRG)

- I've tried to pack as much as possible into the two ML courses:
 - CPSC 340 covers most of the most-useful methods.
 - CPSC 540 covers most of the background needed to read research papers.
- This reading group covers topics that aren't yet in these course.
 - Aimed at people who have taken CPSC 340, and are comfortable with 540-level material.

Recent MLRG History

- Topics covered in recent tutorial-style MLRG sessions:
 - Summer 2015: Probabilistic graphical models.
 - Fall 2015: Convex optimization.
 - Winter 2016: Bayesian statistics.
 - Summer 2016: Miscellaneous.
 - Fall 2016: Deep learning.
 - Winter 2017: Reinforcement learning.
 - Summer 2017: Online, Active, and Causal Learning ("Time and Actions").

Topic 1: Online Learning

- Usual supervised learning setup:
 - Training phase:
 - Build a model 'w' based on IID training examples (x_t, y_t) .
 - Testing phase:
 - Use the model to make predictions \hat{y}_t on new IID testing examples \hat{x}_t .
 - Our "score" is the total difference between predictions \hat{y}_t and true test labels y_t .
- In online learning there is no separate training/testing phase:
 - We receive a sequence of features x_t .
 - You make prediction \hat{y}_t on each example x_t as it arrives.
 - You only get to see y_t after you've made prediction \hat{y}_t .
 - Our "score" is the total difference between predictions \hat{y}_t and true labels y_t .
 - We need to predict well as we go (not just at the end).
 - You pay a penalty for having a bad model as you are learning.

Topic 1: Online Learning

- In online learning, we typically don't assume data is IID.
 - Often analyze a weaker notion of performance called "regret".
- Main applications: online ads and spam filtering.
- A common variation is with **bandit feedback**:
 - There may be multiple possible y_t , we only observe loss for action we choose.
 - You only observe whether they clicked on your ad, not which ads they would have clicked on.
 - Here we have an exploration vs. exploitation trade-off:
 - Should we explore by picking a y_t we don't know much about?
 - Should we exploit by picking a y_t that is likely to be clicked?

Topic 2: Active Learning

- Supervised learning trains on labeled examples (X,y).
 - The doctor has labeled thousands of images for you.
- Semi-supervised learning trains on (X,y) and unlabeled examples \tilde{X} .
 - The doctor has labeled 20 images for you.
 - You have a database of thousands of images.
- Active learning trains only on unlabeled examples \tilde{X} .
 - But you can ask the doctor to label 20 images for you.

Topic 2: Active Learning

• Which x^t should we label to learn the most?

• Closely-related to optimal experimental design in statistics.

Topic 3: Causal Learning

- The difference between observational and interventional data:
 - If I see that my watch says 10:55, class is almost over (observational).
 - If I set my watch to say 10:55, it doesn't help (interventional).
- In 340 and 540, we only considered observational data.
 - If our model performs actions, we need to learn effects of actions.
 - Otherwise, it may make stupid predictions.
- We may want to discover direction of causality.
 - "Watch" only predicts of "time" in observational setting (so it's not causal).
 - We can design experiments or make assumptions that find directions.
 - Randomized controledl trials used in medicine.

Topic 3: Causal Learning

- Levels of causal inference:
 - Observational prediction:
 - Do people who take Cold-FX have shorter colds?
 - Causal prediction:
 - Does taking Cold-FX cause you to have shorter colds?
 - Counter-factual prediction:
 - You didn't take Cold-FX and had long cold, would taking it have made it shorter?
- Counter-factuals condition on imaginary pasts.

(pause)

Online Classification with Perceptron

- Perceptron for online linear binary classification [Rosenblatt, 1952]
 - Start with $w_0 = 0$.
 - At time time 't' we receive features x_t .
 - We predict $\hat{y}_t = \text{sign}(w_t^T x_t)$.
 - If $\hat{y}_t \neq y_t$, then set $w_{t+1} = w_t + y_t x_t$.
 - Otherwise, set w_{t+1} = w_t.
- Perceptron mistake bound [Novikoff, 1962]:
 - Assume data is linearly-separable with a "margin":
 - There exists w* with $||w^*||=1$ such that sign $(x_t^T w^*) = sign(y_t)$ for all 't' and $|x^T w^*| \ge \gamma$.
 - Then the number of total mistakes is bounded.
 - No requirement that data is IID.

Perceptron Mistake Bound

• Let's normalize each x_t so that $||x_t|| = 1$.

Length doesn't change label.

• Whenever we make a mistake, we have sign(y_t) \neq sign($w_t^T x_t$) and

$$||w_{t+1}||^{2} = ||w_{t} + yx_{t}||^{2}$$

= $||w_{t}||^{2} + 2 \underbrace{y_{t}w_{t}^{T}x_{t}}_{<0} + 1$
 $\leq ||w_{t}||^{2} + 1$
 $\leq ||w_{t-1}||^{2} + 2$
 $\leq ||w_{t-2}||^{2} + 3.$

• So after 'k' errors we have $||w_t||^2 \le k$.

Perceptron Mistake Bound

- Let's consider a solution w^* , so sign $(y_t) = sign(x_t^T w^*)$.
- Whenever we make a mistake, we have:

 $||w_{t+1}|| = ||w_{t+1}|| ||w_*||$ $\geq w_{t+1}^T w_*$ $= (w_t + y_t x_t)^T w_*$ $= w_t^T w_* + y_t x_t^T w_*$ $= w_t^T w_* + |x_t^T w_*|$ $\geq w_t^T w_* + \gamma.$

• So after 'k' mistakes we have $||w_t|| \ge \gamma k$.

Perceptron Mistake Bound

- So our two bounds are $||w_t|| \leq sqrt(k)$ and $||w_t|| \geq \gamma k$.
- This gives $\gamma k \leq sqrt(k)$, or a maximum of $1/\gamma^2$ mistakes.
- Note that γ is upper-bounded by one due to $||x|| \le 1$.

Beyond Separable Problems: Follow the Leader

- Perceptron can find perfect classifier for separable data.
- What should we do for non-separable data?
 - And assuming we're not using kernels...
- An obvious strategy is called follow the leader (FTL):
 - At time 't', find the best model from the previous (t-1) examples.
 - Use this model to predict y_t .
- Problems:
 - It might be expensive to find the best model.
 - NP-hard to find best linear classifier for non-separable.
 - It can perform very poorly.

Follow the Leader Counter-Example

- Consider this online convex optimization scenario:
 - At iteration 't', we make a prediction w_t .
 - We then receive a convex function f_t and pay the penalty $f_t(w_t)$.
 - f_t could be the logistic loss on example 't'.
- In this setting, follow the leader (FTL) would choose: $w_t \in \operatorname{argmin}_{w} \sum_{i=1}^{t-1} f_i(w).$
- The problem is convex but the performance can be arbitrarily bad...

Follow the Leader Counter Example

- Assume $x \in [-1,1]$ and: FTL objective:
 - $f_1(x_1) = (1/2)x^2.$
 - $f_2(x_2) = -x.$
 - $f_3(x_3) = x.$
 - $f_4(x_4) = -x.$
 - $f_5(x_5) = x.$
 - $f_6(x_6) = -x.$
 - $f_7(x_7) = x.$

— ...

- $F_1(x_1) = (1/2)x^2.$
 - $-F_2(x_2) = -(1/2)x^2.$
- $-F_3(x_3) = (1/2)x^2.$
- $F_4(x_4) = -(1/2)x^2.$
- $-F_5(x_5) = (1/2)x^2.$
- $F_6(x_6) = -(1/2)x^2.$
- $-F_7(x_7) = (1/2)x^2.$

— ...

- FTL predictions:
 - $x_1 = (initial guess)$
 - $-x_{2}=0$

— ...

- $-x_3 = 1$ (worst possible)
- $x_4 = -1$ (worst possible)
- $x_5 = 1$ (worst possible)
- $-x_6 = -1$ (worst possible)
- $-x_7 = 1$ (worst possible)

Regularized FTL and Regret

- Worst possible sequence:
 - {+1,-1,+1,-1,+1,-1,+1,-1,...}
- FTL produces the sequence:
 - {x0,0,+1,-1,+1,-1,+1,-1,...}, which is close to the worst possible.
- Best possible sequence:
 - {0,+1,-1,+1,-1,+1,-,1,+1,...}
- Best sequence with a fixed prediction:
 - $\ \{0,0,0,0,0,0,0,0,...\}$
- We have no way to bound error compared to best sequence: could have adversary.
- We instead consider a weaker notion of "success" called regret:
 - How much worse is our total error than optimal fixed prediction at time 't'.
 - Note that fixed prediction might change with 't'.
- Next week we'll see algorithms with optimal regret.

Schedule

Date	Торіс	Presenter
Jun 6	Motivation/overview, perceptron, follow the leader.	Mark
Jun 13	Online convex optimization, mirror descent	Julie
Jun 20	Multi-armed bandits, contextual bandits	Alireza
Jun 27	Heavy hitters	Michael
Jul 4	Regularized FTL, AdaGrad, Adam, online-to-batch	Raunak
Jul 11	Best-arm identification, dueling bandits	Glen
Jul 18	Uncertainty sampling, variance/error reduction, QBC	Nasim
Jul 25	A/B testing, Optimal experimental design	Mohamed
Aug 1	Randomized controlled trials, do-calculus	Sanna
Aug 8	Granger causality, independent component analysis	Issam
Aug 15	Counterfactuals	Eric
Aug 22	MPI causality	Julieta
Aug 29	Instrumental variables	Jimmy