UBC MLRG (Summer 2016): Miscellaneous

Some images from this lecture are taken from Google Image Search.

Recent MLRG History

- Topics covered in recent MLRG terms:
 - Fall 2014: Deep learning and Bayesian optimization.
 - Winter 2015: Causality, bandits, reinforcement learning.
 - Summer 2015: Probabilistic graphical models.
 - Fall 2015: Convex optimization.
 - Winter 2016: Bayesian statistics.
- Summer 2016 proposal: miscellaneous!
 - Major topics not previously covered in CPSC 540 or recently in the MLRG.
 - But that we don't want to dedicate a semester to.
 - Plan is to spend 2 weeks on each topic.
- Today:
 - Overview of these topics, and getting people to choose topics/weeks.

Independent Component Analysis (ICA)

- 540 covers probabilistic PCA and factor analysis:
 - Latent factors follow an independent Gaussian distribution.
- Independent component analysis:
 - Latent factors follow and independent non-Gaussian distribution.
- Key advantage:
 - Latent factors become identifiable (up to label switching).
- Key applications:
 - Source separation.
 - Causality.

Changepoint Detection

- 540 covers hidden Markov models:
 - Finds latent "modes" and latent dynamics in time-series.
- Changepoint detection:
 - Task of finding breakpoints where time series distribution changes.
- Key advantage:
 - May be easier than fitting generative HMM.
- Key applications:
 - Bioinformatics.
 - Econometrics.

Sub-Modularity

- 540 covers convexity:
 - Class of continuous functions that is easy to minimize.
- Sub-modularity:
 - Class of discrete functions that is easy to minimize.
 - Algorithms also exist for approximate maximization.
- Key advantage:
 - Expands class of efficiently-solvable problems.
- Applications:
 - Computer vision.
 - Sensor networks.
- Related: QUBO.

Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the *designated source* image objective over the people we wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).

Relational Models

- 540 covers Bayesian networks:
 - Describes relationships between variables.
- Probabilistic relational models and Markov logic networks:
 - We have "types" of variables and probabilities on logical statements.
- Key advantage:
 - More expressive language.
- Applications:
 - Adding probabilities to databases.
- Related: sum-product networks.

Probabilistic Relational Models (PRM) ..

Continuous Graphical Models

- 540 covers discrete and Gaussian graphical models:
 - Convenient due to conjugacy.
- Nonparanormal and Gaussian-copulas models:
 - More flexible continuous distributions.
- Key advantage:
 - Gaussians are very restricted class.
- Applications:
 - Stock market crash of 2008.

Grammars

- 540 covers Markov models:
 - Useful for modeling sequence data with Markov assumption.
 - Can be generalized to Bayesian networks.
- Probabilistic context-free grammars:
 - Different generalization using "recursive" Markov assumption.
- Key advantage:
 - Dependencies at different scales.
- Applications:
 - Natural language processing.
 - RNA secondary structure.
- Related: And-Or trees, image grammars.

Fig. 1.1 Illustrating the task of image parsing. The parse graph includes a tree structured decomposition in vertical arrows and a number of spatial and functional relations in horizontal arrows. From [72].

Topic Models

- 540 covers density estimation.
- Topic models:
 - Hierarchical density estimation.
- Key advantage:
 - Structure at different scales (document vs. word).
- Applications:
 - Document modeling/clustering/analysis.
- Related: more non-parametric Bayes.

Spectral Methods

- 540 covers expectation maximization:
 - Only finds global optimum.
- Spectral methods:
 - Consistent estimators.
- Key advantage:
 - No local minima if you have enough data.
- Applications:
 - All the usual HMM applications.

Large-Scale Kernels Methods

- 540 covers kernel methods:
 - Flexible universal approximators.
 But O(n²) or worse cost/storage.
- Large-scale methods:
 - Tricks to get O(n log n) (
- Big literature:
 - Nystrom.
 - Fast multipole.
 - Kronecker products.
 - Circulant matrics.

Topics/Schedule

- June 1: No meeting (UAI camera-ready deadline)
- June 8, 15: Spectral Methods (Sharan and Geoff)
- June 22: Relational Models (Chris)
- June 29: Submodularity (Saif)
- July 6: Grammars (Nasim)
- July 13, 20: Continuous graphical models (Eviatar, Steven, Kevin)
- July 27, August 3: Large-scale kernels methods (Issam, Julieta)
- August 10, 17: Chamgepoint detection (Mohamed, Alireza)
- August 24, 31: Independent component analysis (Julie, Ricky)