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Learning with Hidden Variables

On Monday we looked at learning parameters of a UGM,
@ Vancouver rain example, x: rain/no-rain for each month
@ Modeled the energy using a log-linear model: E(x) = w’ F(x)
o NLL: f(w) = — % 3, log(p(x|w)) = ~w" F(D) + log(Z(w))

@ The objective function is convex
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Today we focus on learning parameters to model p(x, h)
@ where only x is observed and
@ h is not observed (or hidden) in the training examples

@ e.g,, if the rain entry for a few days each month is missing, how
to still use the data for learning



Learning with Hidden Variables

We can obtain p(x) by summing over all values of h
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We can obtain p(x) by summing over all values of h
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Learning with Hidden Variables

We can obtain p(x) by summing over all values of h

=2 _p(xh)
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@ Note that the second term is the same as fully observed case
@ Now, even for a log-linear model the NLL is no longer convex

@ We can use exact or approximate inference (as applicable) to
evaluate both the terms



Restricted Boltzmann Machines

UGM with the following structure:

@ No lateral connections

@ x and h are both binary


https://www.youtube.com/watch?v=p4Vh_zMw-HQ

Restricted Boltzmann Machines

UGM with the following structure:

@ No lateral connections
@ x and h are both binary

The figures/slides are from videos by Hugo Larochelle, available at
https://www.youtube.com/watch?v=p4Vh_zMw-HQ


https://www.youtube.com/watch?v=p4Vh_zMw-HQ

Restricted Boltzmann Machines

A compact description:
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RBM: Inference

p(‘T’k = 1|h) - 1+ exp(—(Ck + hTWk?))

= sigm(c;c + hTWJc)
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RBM: Inference

CO0000 b

Due to conditional independence:
Qo000 x e conditional distribution p(x|h) factorizes

@ we can calculate it in closed form

00000 h @ decoding, inference and sampling is easy if x
or his given

QOO0 x



RBM: Learning

@ Given a set of examples {x(1), x(? .. x(")}
@ Learn the parameters W, b, and ¢

@ Example: a set of binary images from MNIST dataset
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Motivation
@ Unsupervised feature discovery
@ Compression/non-linear dimensionality reduction

@ A generative model of the image



RBM: Learning

To minimize the NLL:

1
n—Y — ®)
arg min —— E log(p(x'*))
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RBM: Learning

To minimize the NLL:

1
in — E _ (t)
arg min N log(p(x ))

W,b,c P

—log(p(x)) =
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RBM: Learning

To minimize the NLL:

1
in—3N ®)
arg min —— E log(p(x'"))

W,b,c i

—log(p(x")) =

<Zhexp( ((t),h)))
thexp( E(x,h))

—log Z exp(— + log Z exp(— )

Let’s consider,

a(*logp(x( )) Zp h‘ (t))aE(X ®) h) Zp(x7h)aE(X7h>

W Wy 2 W
B OE(x® h) B 0E(x,h)
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So far we have not assumed an RBM. This can work for any hidden
variable model.
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Derivative:
OE(x,h)
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Contrastive Divergence

Recall from previous slides:

- Z ijhjxk — Z bjhj — Z CLTk
ik j k

Derivative:
OE(x,h)

Wi 3%k

Plugging in values:
d(—logp(xt)) B 6E(x(t),h)} B [8E(x7 h)}
8ij — Thlx 8ij xh 8ij
= —Enjx [152}] + Excn [hy21]
~ —Enpe [hye}’] + Enpe [hy1]
= —p(h; = 1x)z + p(h; = 11%)Z



Contrastive Divergence

Update rule:
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@ We can obtain similar expressions for b; and c;,



Contrastive Divergence

Update rule:
Wik Wy +a (pazj — 1x®)al) — p(h; = 1|>~<>5:k)
@ We can obtain similar expressions for b; and c;,

Sampling x : use block Gibb’s sampling
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Contrastive Divergence

Putting everything together: CD-k algorithm

@ For each training example x®)
o Initialize a Gibb’s chain with x*)
@ Run £ rounds to obtain x
e Update W, b, and ¢

@ Go back to the first step until a stopping criteria

QO0000 e OO O

~ p(h|x ~ p(x|h

CO000 OO0 OO0

x(® Xt x* = %

\ negative sample




Contrastive Divergence

Wik < Wi + a(p(hj = 1x®)2" — p(h,; = 1|5<)gzk>

CD intuition:




Persistent CD or Younes’ Algorithm

Pseudo code

@ For each training example x*)
e Initialize a Gibb’s chain with x*~1)
@ Run & rounds to obtain x
e Update W, b, and ¢

@ Go back to the first step until a stopping criteria

=h%-(000000 A 0O0000

~ p(h|x ~ p(x|h

GOO00 OO0V (OOOOO)
l1 k—
e f X X X

@ negative sample

1:N

Works better in theory as well as in practice.



Learned Features

Weights W in an image form:
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Samples obtained from an RBM trained on MNIST data
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Extensions of RBM

Gaussian-Bernoulli RBM
@ Input x can be real-valued
@ Modified energy function

1
E(x,h) = —x"Wh-bTh—c’x+ §XTX

@ p(x|h) turns out to be a Gaussian
distribution



Extensions of RBM

Gaussian-Bernoulli RBM
@ Input x can be real-valued

@ Modified energy function
E(x,h) = —XTWh—bTh—CTX—‘r%XTX
@ p(x|h) turns out to be a Gaussian
distribution

Deep Belief Networks

@ Can be trained greedily one layer at
a time (same as RBM training)

QOOO000) hs

REM

@OOPOO@ h;

@@%KD@M
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Image: deeplearning.net




@ All the variables may not be observed in the training data. We
can still learn the parameters of a UGM.

@ Restricted Boltzmann Machines (RBM) are binary UGMs with
hidden variables (no lateral connection)

@ RBMs are useful for unsupervised feature discovery, non-linear
dimensionality reduction etc.

@ RBMs can be trained efficiently using Persistent-CD



