Learning with Hidden Variables and RBMs

Ankur Gupta

University of British Columbia

August, 2015

1/1

Learning with Hidden Variables

On Monday we looked at learning parameters of a UGM,
@ Vancouver rain example, x: rain/no-rain for each month
@ Modeled the energy using a log-linear model: E(x) = w’ F(x)
o NLL: f(w) = — % 3, log(p(x|w)) = ~w" F(D) + log(Z(w))

@ The objective function is convex

Learning with Hidden Variables

On Monday we looked at learning parameters of a UGM,
@ Vancouver rain example, x: rain/no-rain for each month
@ Modeled the energy using a log-linear model: E(x) = w’ F(x)
o NLL: f(w) = — % 3, log(p(x|w)) = ~w" F(D) + log(Z(w))

@ The objective function is convex

Today we focus on learning parameters to model p(x, h)
@ where only x is observed and
@ h is not observed (or hidden) in the training examples

@ e.g,, if the rain entry for a few days each month is missing, how
to still use the data for learning

Learning with Hidden Variables

We can obtain p(x) by summing over all values of h

Learning with Hidden Variables

We can obtain p(x) by summing over all values of h
p(x) = p(x,h)
h

_ v exp(—E(x,h))

= ; ~

 Sexp(—E(x.h) Zu(x)
vah exp(—FE(x,h)) Z

Learning with Hidden Variables

We can obtain p(x) by summing over all values of h
p(x) = p(x,h)
h

_ v exp(—E(x,h))

= ; ~

 Sexp(—E(x.h) Zu(x)
vah exp(—FE(x,h)) Z

Learning with Hidden Variables

We can obtain p(x) by summing over all values of h

= Zp(x, h)
h
B exp(—F(x,h))

_ Saexp(—E(xh)) Zu(x)
vah exp(—E(x,h)) Z

NLL:
) = =y D 1oslplxfw) = S~ loa(Z(x) + log(2)

t

Learning with Hidden Variables

We can obtain p(x) by summing over all values of h

=2 _p(xh)
h
B exp(—F(x,h))

_ ZheXp(_E(Xﬂ h)) — Zn(x)
Zx,h EXP(_E(Xv h)) Z
NLL:
_%Zlog(x()w)) Z —log(Zu(x1))) +1log(2)

@ Note that the second term is the same as fully observed case
@ Now, even for a log-linear model the NLL is no longer convex

@ We can use exact or approximate inference (as applicable) to
evaluate both the terms

Restricted Boltzmann Machines

UGM with the following structure:

@ No lateral connections

@ x and h are both binary

https://www.youtube.com/watch?v=p4Vh_zMw-HQ

Restricted Boltzmann Machines

UGM with the following structure:

@ No lateral connections
@ x and h are both binary

The figures/slides are from videos by Hugo Larochelle, available at
https://www.youtube.com/watch?v=p4Vh_zMw-HQ

https://www.youtube.com/watch?v=p4Vh_zMw-HQ

Restricted Boltzmann Machines

A compact description:

OCLOOOO) b st
W e

Energy:
E(x,h) = —x"Wh - bTh — c’x
= — ijkhj:vk — ijhj — chxk
ik J k
Distribution:

]
O
c
D
0
=
=
(a8
o

~ [Iptx/)

)

p(x/h

RBM: Inference

p(‘T’k = 1|h) - 1+ exp(—(Ck + hTWk?))

= sigm(c;c + hTWJc)

RBM: Inference

p(‘T’k = 1|h) - 1+ exp(—(Ck + hTWk?))

= sigm(c;c + hTWJc)

RBM: Inference

CO0000 b

Due to conditional independence:
Qo000 x e conditional distribution p(x|h) factorizes

@ we can calculate it in closed form

00000 h @ decoding, inference and sampling is easy if x
or his given

QOO0 x

RBM: Learning

@ Given a set of examples {x(1), x(? .. x(")}
@ Learn the parameters W, b, and ¢

@ Example: a set of binary images from MNIST dataset

[3[8]6[q]6[4]s3[8[4[5[]3[8]4]€]
[A[S[0[S]9[9]4]V[o[3]0[k[2]a]q]4]
IIB q[0[3[9[3]>[1]
8]d4[4]1|@la[<]1[1]0[C]e[<]O/]1]
=II-IEIEIEIIMI

RBM: Learning

@ Given a set of examples {x(1), x(? .. x(")}
@ Learn the parameters W, b, and ¢

@ Example: a set of binary images from MNIST dataset

[3[8]6[q]6[4]s3[8[4[5[]3[8]4]€]
[A[S[0[S]9[9]4]V[o[3]0[k[2]a]q]4]
IIB q[0[3[9[3]>[1]
8]d4[4]1|@la[<]1[1]0[C]e[<]O/]1]
=II-IEIEIEIIMI

Motivation
@ Unsupervised feature discovery
@ Compression/non-linear dimensionality reduction

@ A generative model of the image

RBM: Learning

To minimize the NLL:

1
n—Y — ®)
arg min —— E log(p(x'*))

W,b,c i

Dy _ >y exp(—E(x), h)
— log(p(x())) = <Z}; xexp((X h)))

—log Z exp(—) + log Z exp(—

RBM: Learning

To minimize the NLL:

1
in — E _ (t)
arg min N log(p(x))

W,b,c P

—log(p(x)) =

<Zhexp(E(x (t),h)))
thexp((X h))

—log ZeXp —‘r log Zexp
Let’s consider,
0(—logp(x aE (x®),) E(x,h)
_ (h (t)
3ij Zp a Zp 6W]k

RBM: Learning

To minimize the NLL:

1
in—3N ®)
arg min —— E log(p(x'"))

W,b,c i

—log(p(x")) =

<Zhexp(((t),h)))
thexp(E(x,h))

—log Z exp(— + log Z exp(—)

Let’s consider,

a(*logp(x()) Zp h‘ (t))aE(X ®) h) Zp(x7h)aE(X7h>

W Wy 2 W
B OE(x® h) B 0E(x,h)
= Feix { Wik] Foc [oW

So far we have not assumed an RBM. This can work for any hidden
variable model.

Contrastive Divergence

Recall from previous slides:

E(Xv h) = - Z ijhjxk - Z bjhj — chl‘k
Jk J k

Contrastive Divergence

Recall from previous slides:

E(Xv h) = - Z ijhjxk - Z bjhj — chl‘k
Jk J k

Derivative:
OE(x,h)

oW

= —hjxk

Contrastive Divergence

Recall from previous slides:

- Z ijhjxk — Z bjhj — Z CLTk
ik j k

Derivative:
OE(x,h)

Wi 3%k

Plugging in values:
d(—logp(xt)) B 6E(x(t),h)} B [8E(x7 h)}
8ij — Thlx 8ij xh 8ij
= —Enjx [152}] + Excn [hy21]
~ —Enpe [hye}’] + Enpe [hy1]
= —p(h; = 1x)z + p(h; = 11%)Z

Contrastive Divergence

Update rule:

Wi <= Wik + a(ﬁ(hj = 1[x®)zl —p(h; = 1|5<)"~3k>

Contrastive Divergence

Update rule:
Wik < Wik, + a(ﬁ(hj = 1jx®)af” — p(h; = 1|5<)53k>

@ We can obtain similar expressions for b; and c;,

Contrastive Divergence

Update rule:
Wik Wy +a (pazj — 1x®)al) — p(h; = 1|>~<>5:k)
@ We can obtain similar expressions for b; and c;,

Sampling x : use block Gibb’s sampling

000000 "
~p(hlx)” ~ p(x|h
CO000 @O00D (COO00
x(® X! x* = %

\ negative sample

Contrastive Divergence

Putting everything together: CD-k algorithm

@ For each training example x®)
o Initialize a Gibb’s chain with x*)
@ Run £ rounds to obtain x
e Update W, b, and ¢

@ Go back to the first step until a stopping criteria

QO0000 e OO O

~ p(h|x ~ p(x|h

CO000 OO0 OO0

x(® Xt x* = %

\ negative sample

Contrastive Divergence

Wik < Wi + a(p(hj = 1x®)2" — p(h,; = 1|5<)gzk>

CD intuition:

Persistent CD or Younes’ Algorithm

Pseudo code

@ For each training example x*)
e Initialize a Gibb’s chain with x*~1)
@ Run & rounds to obtain x
e Update W, b, and ¢

@ Go back to the first step until a stopping criteria

=h%-(000000 A 0O0000

~ p(h|x ~ p(x|h

GOO00 OO0V (OOOOO)
l1 k—
e f X X X

@ negative sample

1:N

Works better in theory as well as in practice.

Learned Features

Weights W in an image form:

16/1

o
©
o
S
)
=
h—
©
-
)
C
]
(@)
)
e
rr}
o
o
S
9y)
9p)

Samples obtained from an RBM trained on MNIST data

i R N R a N Na NaNa Fa K 1]
DDA ADANNYNDANDND AN
o TFTOCTOTI
DI IV 9IS I I3
0o 0o do do Ho 0o 0o fo (o (o
I I3 IJI IS
bo o (o o (o oca 0o 0o oo po
0o (o 0o Do Ga 0o PO 00 (o 0o
O IHINI I IIIINDS
6e 00 00 Co (o 00 00 (o o (o
0o 00 00 00 B0 00 B0 0o (o (o
AN AAAADAANDANNDND
00 00 (0 0o 0o 0o do Do 0o Do
000000000
0o 0o 0o o (o 0o o (o Co o
0o 0o (0 00 o (0 oo (o 0o (o
DN NANDDAADAAND
3.9.939.9.9.3.9.9.9
IO HH9 999993
[el e s e A A

1

17

Extensions of RBM

Gaussian-Bernoulli RBM
@ Input x can be real-valued
@ Modified energy function

1
E(x,h) = —x"Wh-bTh—c’x+ §XTX

@ p(x|h) turns out to be a Gaussian
distribution

Extensions of RBM

Gaussian-Bernoulli RBM
@ Input x can be real-valued

@ Modified energy function
E(x,h) = —XTWh—bTh—CTX—‘r%XTX
@ p(x|h) turns out to be a Gaussian
distribution

Deep Belief Networks

@ Can be trained greedily one layer at
a time (same as RBM training)

QOOO000) hs

REM

@OOPOO@ h;

@@%KD@M

O©O00000) «

Image: deeplearning.net

@ All the variables may not be observed in the training data. We
can still learn the parameters of a UGM.

@ Restricted Boltzmann Machines (RBM) are binary UGMs with
hidden variables (no lateral connection)

@ RBMs are useful for unsupervised feature discovery, non-linear
dimensionality reduction etc.

@ RBMs can be trained efficiently using Persistent-CD

