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A Quick Review

For a general chain-structured UGM we have:

p(x1, x2, . . . , xn) ∝
n∏

i=1

φi(xi)

n∏
i=2

φi,i−1(xi, xi−1),

X1 X2 X3 X4 X5 X6 X7

In this case we only have local Markov property,

xi ⊥ x1, . . . , xi−2, xi+2, . . . , xn|xi−1, xi+1,

Local Markov property in general UGMs:

given neighbours, conditional independence of other nodes.
(Marginal independence corresponds to reachability.)
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A Quick Review

For chain-structured UGMs we learned the Viterbi decoding
algorithm.

Forward phase:

V1,s = φ1(s), Vi,s = max
s′
{φi(s)φi,i−1(s, s

′)Vi−1,s′},

Backward phase: backtrack through argmax values.
Solves the decoding problem in O(ns2) instead of O(sn).
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A Quick Review

For inference in chain-structured UGMs we learned the
forward-backward algorithm.

1 Forward phase (sums up paths from the beginning):

V1,s = φ1(s), Vi,s =
∑
s′

φi(s)φi,i−1(s, s
′)Vi−1,s′ , Z =

∑
s

Vn,s.

2 Backward phase: (sums up paths to the end):

Bn,s = 1, Bi,s =
∑
s′

φi+1(s
′)φi+1,i(s

′, s)Bi+1,s′ .

3 Marginals are given by p(xi = s) ∝ Vi,sBi,s.
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A Quick Review

For chain-structured UGMs we learned the forward-backward
and Viterbi algorithm.

The same idea was generalized for tree-structured UGMs.

For graphs with small cutset we learned the Cutset Conditioning
method.

For graphs with small tree-width we learned the Junction Tree
method.

Two more group of problems that we can deal with exactly in
polynomial time.

Semi-Markov chain-structured UGMs.
Binary and attractive state UGMs.
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Semi-Markov chain-structured UGMs

Local Markov property in general chain-structured UGMs:

Given neighbours, we have conditional independence of other
nodes.

In Semi-Markov chain-structured models:

Given neighbours and their lengths, we have conditional
independence of other nodes.

A subsequence of nodes can have the same state.

You can encourage smoothness.

Useful when you wish to keep track of how long you have been
staying on the same state.
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Semi-Markov chain-structured UGMs

Previously, the potential of each edge was a function of
neighboring vertices φi,i−1(s, s′).

In Semi-Markov chain-structured models we define the potential
as φi,i−1(s, s′, l)

The potential of making a transition from s′ to s after l steps.

You can encourage staying in certain states for a period of time.
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Decoding the Semi-Markov chain-structured UGMs

Let us look at the Viterbi decoding again:

V1,s = φ1(s), Vi,s = φi(s) ·max
s′
{φi,i−1(s, s′) · Vi−1,s′},

How can we update the formula to solve Semi-Markov chain
structures?

V1,s = φ1(s), Vi,s = φi(s) ·max
s′,l
{φi,i−1(s, s′, l) · Vi−l,s′},

Depending on the application we can bound the maximum
possible value of l to be L.

For the unbounded case, L is simply n, the total length of chain.

Note that it is different from having an order-L Markov chain
(why?).
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Inference in the Semi-Markov chain-structured UGMs

Forward-backward algorithm for the Semi-Markov models:

Forward phase (sums up paths from the beginning):

V1,s = φ1(s), Vi,s = φi(s)·
∑
s′,l

φi,i−1(s, s
′, l)Vi−l,s′ , Z =

∑
s

Vn,s.

Backward phase: (sums up paths to the end):

Bn,s = 1, Bi,s =
∑
s′,l

φi+1(s
′)φi+1,i(s

′, s, l)Bi+l,s′ .

Marginals are given by p(xi = s) ∝ Vi,sBi,s.

Questions?
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Solving with graph cuts

Restricting the structure of graph is just one way to simplify our
tasks.

We can also restrict the potentials.

Here we look at a group of pairwise UGMs with the following
restrictions:

1 Binary variables.
2 Pairwise potential makes a submodular problem.

Can be decoded by reformulation as a Max-Flow problem.

Can be generalized to non-binary cases.

Can be 2-approximated when not submodular (under a different
constraint).

In the general case it is known to be NP-Hard.

The following material is borrowed from Simon Prince’s (@UCL)
slides. Available at computervisionmodels.com
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The Max-Flow problem

The goal is to push as much ’flow’ as possible through the
directed graph from the source to the sink.
Cannot exceed the (non-negative) capacities Cij associated with
each edge.
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Saturation

When we push the maximum flow from source to sink:

There must be at least one saturated edge on any path from
source to sink, otherwise you can push more flow.

The set of saturated edges hence separate the source and sink.
This set is simultaneously the min-cut and the max-flow.
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An example

Two numbers are: current flow/ total capacity
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An example

Chose any path from source to sink with spare capacity and
push as much flow as possible.
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An example

No further ‘augmenting path’ exists.

19 / 30



An example

The saturated edges partition the graph into two subgraphs.
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The binary MRFs

In the simplest form, let us constrain the pairwise potentials for
adjacent nodes m,n to be:

φm,n(0, 0) = φm,n(1, 1) = 0.
φm,n(1, 0) = θ10.
φm,n(0, 1) = θ01.

Will make a graph such that each cut corresponds to a
configuration.
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The binary MRFs

In the general case:

Constraint θ10 + θ01 > θ11 + θ00 (attraction).

If met, the problem is called “submodular” and we can solve it in
polynomial time.
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Other cases
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Other cases

Another type of constraint allows approximate solutions.

if the pairwise potential is a metric

Alpha Expansion Algorithm (next week) uses the max-flow idea
as a subroutine to do coordinate descent in the label space.
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Conclusion

Decoding and inference is still efficient with Semi-Markov
models.

Useful if need to control the length of each state over a sequence.

Graph cuts help with decoding on models with pairwise
potentials.

Exact solution in binary case if submodular.
Exact solution in multi-label case if submodular.
Approximate solution in multi-label case if a metric.
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Thank you!

Questions?
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