Semi-Markov/Graph Cuts

Alireza Shafaei

University of British Columbia

August, 2015

1/30



A Quick Review

@ For a general chain-structured UGM we have:

p(xl»x%"'? OCHQSl xz HQSzz 1 (EZ,(EZ 1)

DO Oa0

@ In this case we only have local Markov property,

€Z; 1 Tiyee oy Ti—2,Li42y- - 7x’n|xi717$i+17



A Quick Review

@ For a general chain-structured UGM we have:
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DO Oa0

@ In this case we only have local Markov property,
T Ly, 0, Tiga, - T X1, i1,

@ Local Markov property in general UGMs:

e given neighbours, conditional independence of other nodes.
(Marginal independence corresponds to reachability.)
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A Quick Review

@ For chain-structured UGMs we learned the Viterbi decoding
algorithm.

e Forward phase:
Vie=¢1(s), Vie=max{gi(s)dii-1(s,s")Vi1,s},

o Backward phase: backtrack through argmax values.
e Solves the decoding problem in O(ns?) instead of O(s™).
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@ For inference in chain-structured UGMs we learned the
forward-backward algorithm.

@ Forward phase (sums up paths from the beginning):

Vls—¢1 %s—z@ ¢1l155)‘/1 1,5’ Z = Zvns

@ Backward phase: (sums up paths to the end):

Bn,s = 17 ’L s = Z¢z+1 ¢1+1 i 5 S)Bi+1,s’-

© Marginals are given by p(z; = s) «x Vi sBi.s.
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A Quick Review

@ For chain-structured UGMs we learned the forward-backward
and Viterbi algorithm.

@ The same idea was generalized for tree-structured UGMs.

@ For graphs with small cutset we learned the Cutset Conditioning
method.

@ For graphs with small tree-width we learned the Junction Tree
method.

@ Two more group of problems that we can deal with exactly in
polynomial time.

@ Semi-Markov chain-structured UGMs.
e Binary and attractive state UGMs.
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Semi-Markov chain-structured UGMs

@ Local Markov property in general chain-structured UGMs:

e Given neighbours, we have conditional independence of other
nodes.
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Semi-Markov chain-structured UGMs

@ Local Markov property in general chain-structured UGMs:

e Given neighbours, we have conditional independence of other
nodes.

@ In Semi-Markov chain-structured models:

e Given neighbours and their lengths, we have conditional
independence of other nodes.

@ A subsequence of nodes can have the same state.

e You can encourage smoothness.

@ Useful when you wish to keep track of how long you have been
staying on the same state.
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Semi-Markov chain-structured UGMs

@ Previously, the potential of each edge was a function of
neighboring vertices ¢; ;—1(s,s’).
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Semi-Markov chain-structured UGMs

@ Previously, the potential of each edge was a function of
neighboring vertices ¢; ;—1(s,s’).
@ In Semi-Markov chain-structured models we define the potential
as ¢;i—1(s,5,1)
@ The potential of making a transition from s’ to s after I steps.

@ You can encourage staying in certain states for a period of time.
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Decoding the Semi-Markov chain-structured UGMs

@ Let us look at the Viterbi decoding again:
Vis=01(s), Vis=i(s)- mj\X{@,iA(S, s') - Vicis}s

@ How can we update the formula to solve Semi-Markov chain
structures?

Vis = 01(s), Vis = ¢i(s) 'ri},a;({@,iq(& s 0) - Vicie}

@ Depending on the application we can bound the maximum
possible value of [ to be L.

@ For the unbounded case, L is simply n, the total length of chain.

@ Note that it is different from having an order-L Markov chain
(why?).
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Inference in the Semi-Markov chain-structured UGMs

@ Forward-backward algorithm for the Semi-Markov models:

e Forward phase (sums up paths from the beginning):
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Inference in the Semi-Markov chain-structured UGMs

@ Forward-backward algorithm for the Semi-Markov models:

e Forward phase (sums up paths from the beginning):

Vis = ¢1(s), Vis= Z% (5,8, OVisrer, Z= ZVM

e Backward phase: (sums up paths to the end):

Bn,s = , 1 s = Z¢z+1 ¢z+l i 5 S l) i+1,8" -

e Marginals are given by p(z; = s) oc Vi sB; s

@ Questions?



Solving with graph cuts

@ Restricting the structure of graph is just one way to simplify our
tasks.
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Solving with graph cuts

@ Restricting the structure of graph is just one way to simplify our
tasks.
@ We can also restrict the potentials.

@ Here we look at a group of pairwise UGMs with the following
restrictions:

@ Binary variables.
@ Pairwise potential makes a submodular problem.

@ Can be decoded by reformulation as a Max-Flow problem.

@ Can be generalized to non-binary cases.

@ Can be 2-approximated when not submodular (under a different
constraint).

@ In the general case it is known to be NP-Hard.

@ The following material is borrowed from Simon Prince’s (@UCL)
slides. Available at computervisionmodels.com
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The Max-Flow problem
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The Max-Flow problem

@ The goal is to push as much ‘flow’ as possible through the
directed graph from the source to the sink.
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The Max-Flow problem

@ The goal is to push as much ‘flow’ as possible through the
directed graph from the source to the sink.

@ Cannot exceed the (non-negative) capacities C;; associated with
each edge.
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@ When we push the maximum flow from source to sink:

e There must be at least one saturated edge on any path from
source to sink, otherwise you can push more flow.
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@ When we push the maximum flow from source to sink:
e There must be at least one saturated edge on any path from
source to sink, otherwise you can push more flow.
@ The set of saturated edges hence separate the source and sink.
e This set is simultaneously the min-cut and the max-flow.
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An example

Source . . Sink

@ Two numbers are: current flow/ total capacity
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An example

@ Chose any path from source to sink with spare capacity and
push as much flow as possible.
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An example

0.0/6.4
1
0.0/1.5
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An example

Source Sink

1.3/13
7
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An example

1‘\ /! .
Source /" Sink
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An example

\
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An example

Ry Pt 2 &
N* ~ ~ Q
~ ~
3.8/7.8
)
Source s, -l . !
9 — A -
> °||° o z
N ol |m Q! ™
o ~ -

’ 3 54171 6
@ No further ‘augmenting path’ exists.
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An example

;
I
—i—=>
| /
I
\
\\
)
’
/
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Source \ Sink
\\-- "f-\\

@ The saturated edges partition the graph into two subgraphs.
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The binary MRFs

@ In the simplest form, let us constrain the pairwise potentials for
adjacent nodes m,n to be:
@ $m,n(0,0) = ¢mn(1,1) =0.
@ dm.n(1,0) = 1.
@ ém,n(0,1) = bo1.
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The binary MRFs

@ In the simplest form, let us constrain the pairwise potentials for
adjacent nodes m,n to be:
@ $m,n(0,0) = ¢mn(1,1) =0.
@ dm.n(1,0) = 1.
@ ém,n(0,1) = bo1.
@ Will make a graph such that each cut corresponds to a
configuration.

Sink

Source
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The binary MRFs
Source @

U,(0) U.(0)
Uy (0)

a P.y(1,0) Pbc(lv 0) e
P P
P,y(0,1) Py(0,1)

Up(1)
Ua(1) Ue(1)
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The binary MRFs
Source @

Solution

OO0 (|O

| Cost
Sink @ U, (0) + Up(0) + U.(0)
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The binary MRFs
Source @

—————

:I_'(l: Z Solution
J 1101]o0
g Cost
sin (1) Ua(1) + Up(0) + U.(0)
+Pyc(1,0)
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The binary MRFs

Source @

—————

Y} A
] i
]
i
I
] \
7
Rz

Solution

1 0] 1

Cost
Ua(0) + Up(0) + Uc(0)
+P,5(1,0) + Ppe(0,1)
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The binary MRFs

@ In the general case:

Source @

Ua(0) Up(0) + Py (0,0)
Ua(1) + Pap(1,1) Us(1)

Sink @

Pup(1,0)
Pup(1,1) = Pun(0,0)
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The binary MRFs

@ In the general case:

Source @

Ua(0) Uy (0) + Poy(0,0)
Ua(1) + Pas(1,1) Us(1)

Sink @

@ Constraint 61 + 6p1 > 611 + 6y (attraction).

Pup(1,0)
Pup(1,1) = Pun(0,0)

@ If met, the problem is called “submodular” and we can solve it in
polynomial time.
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Other cases
Source @

a, b,
Ua(2 X | | Up(2
a, b,
Ua(3 e’s x| | Up(3)
a, b,
Ua(4 C o | Uy(4
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Other cases
Source @

a b,
Ua(®) | oo of | T (2
a b,
4 x x| |
a, b,
Ua(4 e | | Up(4

Sink @

Pab(577) + Pab(aaé) - Pa b(ﬁa(s) - Pab(af)/) > 07
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@ Another type of constraint allows approximate solutions.
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@ Another type of constraint allows approximate solutions.
o if the pairwise potential is a metric
Pla,.f)= 0 a=4
P(a, B) P(B,a) >0
P(a, 8) P(a,v) + P(v,8)

IA
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@ Another type of constraint allows approximate solutions.

o if the pairwise potential is a metric
Pla,.f)= 0 a=4
P(a, 3) P(3,a) >0
P(a, B) P(a,v)+ P(v,B)

IA

@ Alpha Expansion Algorithm (next week) uses the max-flow idea
as a subroutine to do coordinate descent in the label space.
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Conclusion

@ Decoding and inference is still efficient with Semi-Markov
models.
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Conclusion

@ Decoding and inference is still efficient with Semi-Markov
models.

e Useful if need to control the length of each state over a sequence.
@ Graph cuts help with decoding on models with pairwise
potentials.

e Exact solution in binary case if submodular.
e Exact solution in multi-label case if submodular.
e Approximate solution in multi-label case if a metric.
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Thank you!

Questions?
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