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Classical supervised learning: Output is one a single label.

Input: @

Output: "P"

Structured prediction: Output can be a general object.

meut: (P J(a(r J0i (s

Output: "Paris"




Examples of Structured Prediction

Translate

English Spanish French Detectlanguage ~
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| moved to Canada in 2013, as indicated on my 2013
declaration of revenue. | received ho income from

French sources in 2014. How can | owe 12 thousand
Eures?
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Je déménagé au Canada en 2013, comme indiqué sur
ma déclaration de revenus 2013. Je recevais aucun

revenu de source frangaise en 2014. Comment puis-je
dois 12 mille euros?

# Wrong?

NP VP
/\ /\
Det N
|e | \ NP
The  teacher | N
praised Det N

the  student



Examples of Structured Prediction
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Examples of Structured Prediction

Sequence Structure

In [T, applied the general theory of relativity to model the large-scale structure of the
universe. He was visiting the ([iTe] EBLGE when came to power in [IEEE] and did not go
back to [EFIREM, where he had been a professor at the [0y SRR, o SaO0eE. He settled in
the [, becoming an American citizen in [[EE10. On the eve of World War II, he endorsed a letter to
President alerting him to the potential development of "extremely powerful
bombs of a new type" and recommending that the begin similar research. This eventually led to
what would become the [JENEREGNFroject. Einstein supported defending the Allied forces, but largely
denounced using the new discovery of nuclear fission as a weapon. Later, with the British
philosopher EEEN] S, signed the [T o0 METEIEReE, which highlighted the
danger of nuclear weapons. Einstein was affiliated with the [0 Gf [llerincetonl
[T TR, until his death in [IEEE.
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“Classic” ML for Structured Prediction

neut: (P ) o )(r J(i J(s]

Output: "Paris"

Two obvious ways to solve this using “classic” machine learning:
@ Treat each word as a different class label.
e Problem: there are too many possible words.
@ Predict each letter individually:

e Works if you are really good at predicting individual letters.
@ Some tasks don’t have a natural decomposition.
e Ignores dependencies between letters.
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Motivation: Structured Prediction

Via)n]eJeJu)x]e]v]

@ What letter is this?

@ What are these letters?

@ Predict each letter using “classic” ML and neighbouring images?
@ Shoehorn this into a standard deep learning problem?
@ Good or bad depending on loss function:

e Good if you want to predict individual letters.
e Bad if goal is to predict entire word.



Does the brain do structured prediction?

Gestalt effect: “whole is other than the sum of the parts”.

o 3
What do you see?
By shifting perspective you might see an
old woman or a young woman,
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Dealing with the Huge Number of Lables

@ Structured prediction basic ideas:
@ Define an energy function E(Y|X):
@ Energy of output object Y given input object X.
(Low energy is better)
@ But the number of Y is huge: want to share information across Y.
© Make the energy function depends on features F (Y, X):
e F(Y;,X;): features for classifier of individual letter.
F(Y;_1,Y5): dependency between adjacent letters (‘g-u’).
F(Y;_1,Y;,X;_1,X;): adjacent letters and image dependency.
F(Y;-1,Y5,5): posmon -based dependency (French: ‘e-r’ ending).
F(Y;_2,Y;_1,Yj,7): third-order and position (English: ‘i-n-g’ end).
@ F(Y eD):isyin dlctlonary D?
© Learn the parameters of the energy function from data:

@ Learn parameters so that “correct” labels get low energy.
@ Features let us transfer knowledge to completely new labels.
(E.g., predict a word you’ve never seen before.)
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Inference in structured prediction

@ Week 2 will discuss learning the energy function.
@ Week 1 focuses on inference.
e E.g., the decoding problem:

myaxE(Y|X).

e Trivial in “classic” machine learning, now it can be hard.
(don’t want to measure energy of every possible word)
o We will also do inferences with the Gibbs/Boltzmann distribution:

_ exp(=E(Y]X))
p(Y|X) = =z ;
where

Z = Zexp E(Y'|X)).

e Z is called the normahzmg constant or partition function
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Undirected Graphical Models

@ We'll focus on pairwise undirected graphical models (UGMs).

e But basic ideas apply to other graphical models.

@ This means our energy functions have the form

BE(Y|X) = Zfz Y;, X) +Zf” (V;, Y, X),

and our Gibbs distribution has the form

exp(— >, fiYs, X) = 32, ;5 fi,;(Yi, Y}, X))
Z

o<Hexp —1i (Y, X)) Hexp (—fi,; (Y3, Y;, X).

0,J

—H«ﬁz Y;, X) Hgbw Y:,Y;, X),

P(Y|X) =

where the ¢ functions are called the potentials.
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Undirected Graphical Models

@ For pairwise UGMs our energy has the form

E(Y[X) = Zfz Y;, X) +wa (Yi, ¥, X).

@ We may not want a function f; ; between every pair 7 and j.
@ E.g., for sequences we may only want f;_1 ;.
@ We can draw a graph based on this:

e Each node corresponds to a variable.

e We have an edge between i and j if we have an f; ;.

e E.g., tomorrow, we will consider this tree-structured graph:

@
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3 Tasks in UGMs for Week 1

Week 1: ignore conditioning and consider generic E(X) and P(X).

@ Decoding: Compute the optimal configuration,

n}énE(X).

@ Inference: Compute partition function and marginals,

Z=3 P(X"), P(Xi=j)= Y, 6 pX)
%

X'|X;=j
© Sampling: Generate X’ according to Gibbs distribution:
X' ~ P(X).

In UGMs, efficiency of these tasks is related to graph structure.
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3 Tasks by Hand on a Simple Example

@ To illustrate the tasks, let’s take a simple 2-variable example,

E(z1,22) = = fi(z1) — fa(z2) — f12(21, 22),

where
1 xle 1 xle 2 X1 = T2
Ji(x) = ;o fa(wo) = , o fie(r, ) =
2 Tr1 = 1 3 Ty — 1 1 T 7é )

@ z; wants to be 1, x5 really wants to be 1, both want to be same.
@ We can think of the possible states/energies in a big table:

T X2 f1 f2 f1,2 —E(l“hl"z)
2 4

==
_— O = O
NN = =
W = W

1 )
1 4
2 7



Decoding on Simple Example
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Decoding on Simple Example

vy x2 fi fo fiz —E(x,12)
0 0 1 1 2 4

0 1 1 3 1 5

1 0 2 1 1 4

1 1 2 3 2 7

@ Decoding is finding the minimizer of E(x1,z2):

o Inthiscaseitisz; =1 and x> = 1.
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Inference on Simple Example

r1 T2 f1 fo f1,2 —E(xl,xz)
0 0 1 1 2 4
0 1 1 3 1 5
1 0 2 1 1 4
1 1 2 3 2 7

@ One inference task is finding Z:
@ Inthis case Z = exp(4) + exp(5) + exp(4) + exp(7) ~ 1354.
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Inference on Simple Example

2 —E(r1,12) pla,72)

Ty w2 fi fo 1,

0 0 1 1 2 4 0.04
0 1 1 3 1 5 0.11
1 0 2 1 1 4 0.04
1 1 2 3 2 7 0.81

@ One inference task is finding Z:

@ Inthis case Z = exp(4) + exp(5) + exp(4) + exp(7) ~ 1354.
@ With Z you can find the probability of configurations:

e E.g, p(z1 =0,22 =0) = exp(4)/Z = 0.04.
@ Inference also includes finding marginals like p(z; = 1):

° Eg,p(z1=1)=3, p(z1=1,22) =0.04 + 0.81 = 0.85.



Sampling on Simple Example
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@ Sampling is generating configurations according to p(z1, z2):
e E.g., 81% of the time we should return z; = 1 and 2 = 1.



Sampling on Simple Example

ry 22 fi fo fiz —E(xi,r2) plri,zz) cumsum
0 0 1 1 2 4 0.04 0.04

0 1 1 3 1 5 0.11 0.15

1 0 2 1 1 4 0.04 0.19

1 1 2 3 2 7 0.81 1.00

@ Sampling is generating configurations according to p(z1, z2):
e E.g., 81% of the time we should return z; = 1 and 2 = 1.

@ To implement this:

@ Generate a random number u € [0, 1].
@ Find the smallest cumsum of the probabilities greater than w.

o fu=059returnzy =1landxzs =1
o Ifu=0.12returnz; =0and z2 = 1.



Homework: First two UGM demos

For tomorrow, download UGM and read/run the first two demos:

Small UGM Demo Chain UGM Demo

vy s

Cheating Students Scenario i o 5k many vaos

st sy
Foht O th aior Fans,Catny an Mark ot sy, 50 oy oy i 5 TG oge 25% of 0 Computer Science Graduate Careers

sy

|
[ 0.10 Trey sy psy v

Vi Garmea|

Reviews/expands on material from today, introduces Markov chains.
(should take less 15 minutes)
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