
Structured Prediction and

Probabilistic Graphical Models

Mark Schmidt

University of British Columbia

August, 2015



Classic Machine Learning vs. Structured Prediction

Classical supervised learning: Output is one a single label.

Structured prediction: Output can be a general object.



Classic Machine Learning vs. Structured Prediction

Classical supervised learning: Output is one a single label.

Structured prediction: Output can be a general object.



Examples of Structured Prediction



Examples of Structured Prediction



Examples of Structured Prediction



Examples of Structured Prediction



“Classic” ML for Structured Prediction

Two obvious ways to solve this using “classic” machine learning:

1 Treat each word as a different class label.

Problem: there are too many possible words.

2 Predict each letter individually:

Works if you are really good at predicting individual letters.
Some tasks don’t have a natural decomposition.
Ignores dependencies between letters.



“Classic” ML for Structured Prediction

Two obvious ways to solve this using “classic” machine learning:
1 Treat each word as a different class label.

Problem: there are too many possible words.

2 Predict each letter individually:

Works if you are really good at predicting individual letters.
Some tasks don’t have a natural decomposition.
Ignores dependencies between letters.



“Classic” ML for Structured Prediction

Two obvious ways to solve this using “classic” machine learning:
1 Treat each word as a different class label.

Problem: there are too many possible words.

2 Predict each letter individually:

Works if you are really good at predicting individual letters.
Some tasks don’t have a natural decomposition.
Ignores dependencies between letters.



Motivation: Structured Prediction

What letter is this?

What are these letters?

Predict each letter using “classic” ML and neighbouring images?

Shoehorn this into a standard deep learning problem?

Good or bad depending on loss function:

Good if you want to predict individual letters.
Bad if goal is to predict entire word.



Motivation: Structured Prediction

What letter is this?

What are these letters?

Predict each letter using “classic” ML and neighbouring images?

Shoehorn this into a standard deep learning problem?

Good or bad depending on loss function:

Good if you want to predict individual letters.
Bad if goal is to predict entire word.



Motivation: Structured Prediction

What letter is this?

What are these letters?

Predict each letter using “classic” ML and neighbouring images?

Shoehorn this into a standard deep learning problem?

Good or bad depending on loss function:

Good if you want to predict individual letters.
Bad if goal is to predict entire word.



Motivation: Structured Prediction

What letter is this?

What are these letters?

Predict each letter using “classic” ML and neighbouring images?

Shoehorn this into a standard deep learning problem?

Good or bad depending on loss function:

Good if you want to predict individual letters.
Bad if goal is to predict entire word.



Does the brain do structured prediction?

Gestalt effect: “whole is other than the sum of the parts”.



Dealing with the Huge Number of Lables

Structured prediction basic ideas:
1 Define an energy function E(Y |X):

Energy of output object Y given input object X.
(Low energy is better)

But the number of Y is huge: want to share information across Y .
2 Make the energy function depends on features F (Y,X):

F (Yj , Xj): features for classifier of individual letter.
F (Yj−1, Yj): dependency between adjacent letters (‘q-u’).
F (Yj−1, Yj , Xj−1, Xj): adjacent letters and image dependency.
F (Yj−1, Yj , j): position-based dependency (French: ‘e-r’ ending).
F (Yj−2, Yj−1, Yj , j): third-order and position (English: ‘i-n-g’ end).
F (Y ∈ D): is y in dictionary D?

3 Learn the parameters of the energy function from data:
Learn parameters so that “correct” labels get low energy.
Features let us transfer knowledge to completely new labels.

(E.g., predict a word you’ve never seen before.)



Dealing with the Huge Number of Lables

Structured prediction basic ideas:
1 Define an energy function E(Y |X):

Energy of output object Y given input object X.
(Low energy is better)

But the number of Y is huge: want to share information across Y .

2 Make the energy function depends on features F (Y,X):
F (Yj , Xj): features for classifier of individual letter.
F (Yj−1, Yj): dependency between adjacent letters (‘q-u’).
F (Yj−1, Yj , Xj−1, Xj): adjacent letters and image dependency.
F (Yj−1, Yj , j): position-based dependency (French: ‘e-r’ ending).
F (Yj−2, Yj−1, Yj , j): third-order and position (English: ‘i-n-g’ end).
F (Y ∈ D): is y in dictionary D?

3 Learn the parameters of the energy function from data:
Learn parameters so that “correct” labels get low energy.
Features let us transfer knowledge to completely new labels.

(E.g., predict a word you’ve never seen before.)



Dealing with the Huge Number of Lables

Structured prediction basic ideas:
1 Define an energy function E(Y |X):

Energy of output object Y given input object X.
(Low energy is better)

But the number of Y is huge: want to share information across Y .
2 Make the energy function depends on features F (Y,X):

F (Yj , Xj): features for classifier of individual letter.

F (Yj−1, Yj): dependency between adjacent letters (‘q-u’).
F (Yj−1, Yj , Xj−1, Xj): adjacent letters and image dependency.
F (Yj−1, Yj , j): position-based dependency (French: ‘e-r’ ending).
F (Yj−2, Yj−1, Yj , j): third-order and position (English: ‘i-n-g’ end).
F (Y ∈ D): is y in dictionary D?

3 Learn the parameters of the energy function from data:
Learn parameters so that “correct” labels get low energy.
Features let us transfer knowledge to completely new labels.

(E.g., predict a word you’ve never seen before.)



Dealing with the Huge Number of Lables

Structured prediction basic ideas:
1 Define an energy function E(Y |X):

Energy of output object Y given input object X.
(Low energy is better)

But the number of Y is huge: want to share information across Y .
2 Make the energy function depends on features F (Y,X):

F (Yj , Xj): features for classifier of individual letter.
F (Yj−1, Yj): dependency between adjacent letters (‘q-u’).

F (Yj−1, Yj , Xj−1, Xj): adjacent letters and image dependency.
F (Yj−1, Yj , j): position-based dependency (French: ‘e-r’ ending).
F (Yj−2, Yj−1, Yj , j): third-order and position (English: ‘i-n-g’ end).
F (Y ∈ D): is y in dictionary D?

3 Learn the parameters of the energy function from data:
Learn parameters so that “correct” labels get low energy.
Features let us transfer knowledge to completely new labels.

(E.g., predict a word you’ve never seen before.)



Dealing with the Huge Number of Lables

Structured prediction basic ideas:
1 Define an energy function E(Y |X):

Energy of output object Y given input object X.
(Low energy is better)

But the number of Y is huge: want to share information across Y .
2 Make the energy function depends on features F (Y,X):

F (Yj , Xj): features for classifier of individual letter.
F (Yj−1, Yj): dependency between adjacent letters (‘q-u’).
F (Yj−1, Yj , Xj−1, Xj): adjacent letters and image dependency.

F (Yj−1, Yj , j): position-based dependency (French: ‘e-r’ ending).
F (Yj−2, Yj−1, Yj , j): third-order and position (English: ‘i-n-g’ end).
F (Y ∈ D): is y in dictionary D?

3 Learn the parameters of the energy function from data:
Learn parameters so that “correct” labels get low energy.
Features let us transfer knowledge to completely new labels.

(E.g., predict a word you’ve never seen before.)



Dealing with the Huge Number of Lables

Structured prediction basic ideas:
1 Define an energy function E(Y |X):

Energy of output object Y given input object X.
(Low energy is better)

But the number of Y is huge: want to share information across Y .
2 Make the energy function depends on features F (Y,X):

F (Yj , Xj): features for classifier of individual letter.
F (Yj−1, Yj): dependency between adjacent letters (‘q-u’).
F (Yj−1, Yj , Xj−1, Xj): adjacent letters and image dependency.
F (Yj−1, Yj , j): position-based dependency (French: ‘e-r’ ending).

F (Yj−2, Yj−1, Yj , j): third-order and position (English: ‘i-n-g’ end).
F (Y ∈ D): is y in dictionary D?

3 Learn the parameters of the energy function from data:
Learn parameters so that “correct” labels get low energy.
Features let us transfer knowledge to completely new labels.

(E.g., predict a word you’ve never seen before.)



Dealing with the Huge Number of Lables

Structured prediction basic ideas:
1 Define an energy function E(Y |X):

Energy of output object Y given input object X.
(Low energy is better)

But the number of Y is huge: want to share information across Y .
2 Make the energy function depends on features F (Y,X):

F (Yj , Xj): features for classifier of individual letter.
F (Yj−1, Yj): dependency between adjacent letters (‘q-u’).
F (Yj−1, Yj , Xj−1, Xj): adjacent letters and image dependency.
F (Yj−1, Yj , j): position-based dependency (French: ‘e-r’ ending).
F (Yj−2, Yj−1, Yj , j): third-order and position (English: ‘i-n-g’ end).

F (Y ∈ D): is y in dictionary D?
3 Learn the parameters of the energy function from data:

Learn parameters so that “correct” labels get low energy.
Features let us transfer knowledge to completely new labels.

(E.g., predict a word you’ve never seen before.)



Dealing with the Huge Number of Lables

Structured prediction basic ideas:
1 Define an energy function E(Y |X):

Energy of output object Y given input object X.
(Low energy is better)

But the number of Y is huge: want to share information across Y .
2 Make the energy function depends on features F (Y,X):

F (Yj , Xj): features for classifier of individual letter.
F (Yj−1, Yj): dependency between adjacent letters (‘q-u’).
F (Yj−1, Yj , Xj−1, Xj): adjacent letters and image dependency.
F (Yj−1, Yj , j): position-based dependency (French: ‘e-r’ ending).
F (Yj−2, Yj−1, Yj , j): third-order and position (English: ‘i-n-g’ end).
F (Y ∈ D): is y in dictionary D?

3 Learn the parameters of the energy function from data:
Learn parameters so that “correct” labels get low energy.
Features let us transfer knowledge to completely new labels.

(E.g., predict a word you’ve never seen before.)



Dealing with the Huge Number of Lables

Structured prediction basic ideas:
1 Define an energy function E(Y |X):

Energy of output object Y given input object X.
(Low energy is better)

But the number of Y is huge: want to share information across Y .
2 Make the energy function depends on features F (Y,X):

F (Yj , Xj): features for classifier of individual letter.
F (Yj−1, Yj): dependency between adjacent letters (‘q-u’).
F (Yj−1, Yj , Xj−1, Xj): adjacent letters and image dependency.
F (Yj−1, Yj , j): position-based dependency (French: ‘e-r’ ending).
F (Yj−2, Yj−1, Yj , j): third-order and position (English: ‘i-n-g’ end).
F (Y ∈ D): is y in dictionary D?

3 Learn the parameters of the energy function from data:
Learn parameters so that “correct” labels get low energy.
Features let us transfer knowledge to completely new labels.

(E.g., predict a word you’ve never seen before.)



Inference in structured prediction

Week 2 will discuss learning the energy function.

Week 1 focuses on inference.

E.g., the decoding problem:

max
Y

E(Y |X).

Trivial in “classic” machine learning, now it can be hard.
(don’t want to measure energy of every possible word)

We will also do inferences with the Gibbs/Boltzmann distribution:

p(Y |X) =
exp(−E(Y |X))

Z
,

where
Z =

∑
Y ′

exp(−E(Y ′|X)).

Z is called the normalizing constant or partition function



Inference in structured prediction

Week 2 will discuss learning the energy function.

Week 1 focuses on inference.

E.g., the decoding problem:

max
Y

E(Y |X).

Trivial in “classic” machine learning, now it can be hard.
(don’t want to measure energy of every possible word)

We will also do inferences with the Gibbs/Boltzmann distribution:

p(Y |X) =
exp(−E(Y |X))

Z
,

where
Z =

∑
Y ′

exp(−E(Y ′|X)).

Z is called the normalizing constant or partition function



Inference in structured prediction

Week 2 will discuss learning the energy function.

Week 1 focuses on inference.

E.g., the decoding problem:

max
Y

E(Y |X).

Trivial in “classic” machine learning, now it can be hard.
(don’t want to measure energy of every possible word)

We will also do inferences with the Gibbs/Boltzmann distribution:

p(Y |X) =
exp(−E(Y |X))

Z
,

where
Z =

∑
Y ′

exp(−E(Y ′|X)).

Z is called the normalizing constant or partition function



Undirected Graphical Models

We’ll focus on pairwise undirected graphical models (UGMs).

But basic ideas apply to other graphical models.

This means our energy functions have the form

E(Y |X) =
∑
i

fi(Yi, X) +
∑
i,j

fi,j(Yi, Yj , X),

and our Gibbs distribution has the form

P (Y |X) =
exp(−

∑
i fi(Yi, X)−

∑
i,j fi,j(Yi, Yj , X))

Z

∝
∏
i

exp(−fi(Yi, X))
∏
i,j

exp(−fi,j(Yi, Yj , X).

=
∏
i

φi(Yi, X)
∏
i

φi,j(Yi, Yj , X),

where the φ functions are called the potentials.



Undirected Graphical Models

We’ll focus on pairwise undirected graphical models (UGMs).

But basic ideas apply to other graphical models.

This means our energy functions have the form

E(Y |X) =
∑
i

fi(Yi, X) +
∑
i,j

fi,j(Yi, Yj , X),

and our Gibbs distribution has the form

P (Y |X) =
exp(−

∑
i fi(Yi, X)−

∑
i,j fi,j(Yi, Yj , X))

Z

∝
∏
i

exp(−fi(Yi, X))
∏
i,j

exp(−fi,j(Yi, Yj , X).

=
∏
i

φi(Yi, X)
∏
i

φi,j(Yi, Yj , X),

where the φ functions are called the potentials.



Undirected Graphical Models

We’ll focus on pairwise undirected graphical models (UGMs).

But basic ideas apply to other graphical models.

This means our energy functions have the form

E(Y |X) =
∑
i

fi(Yi, X) +
∑
i,j

fi,j(Yi, Yj , X),

and our Gibbs distribution has the form

P (Y |X) =
exp(−

∑
i fi(Yi, X)−

∑
i,j fi,j(Yi, Yj , X))

Z

∝
∏
i

exp(−fi(Yi, X))
∏
i,j

exp(−fi,j(Yi, Yj , X).

=
∏
i

φi(Yi, X)
∏
i

φi,j(Yi, Yj , X),

where the φ functions are called the potentials.



Undirected Graphical Models

For pairwise UGMs our energy has the form

E(Y |X) =
∑
i

fi(Yi, X) +
∑
i,j

fi,j(Yi, Yj , X).

We may not want a function fi,j between every pair i and j.
E.g., for sequences we may only want fj−1,j .
We can draw a graph based on this:

Each node corresponds to a variable.
We have an edge between i and j if we have an fi,j .
E.g., tomorrow, we will consider this tree-structured graph:



Undirected Graphical Models

For pairwise UGMs our energy has the form

E(Y |X) =
∑
i

fi(Yi, X) +
∑
i,j

fi,j(Yi, Yj , X).

We may not want a function fi,j between every pair i and j.
E.g., for sequences we may only want fj−1,j .

We can draw a graph based on this:
Each node corresponds to a variable.
We have an edge between i and j if we have an fi,j .
E.g., tomorrow, we will consider this tree-structured graph:



Undirected Graphical Models

For pairwise UGMs our energy has the form

E(Y |X) =
∑
i

fi(Yi, X) +
∑
i,j

fi,j(Yi, Yj , X).

We may not want a function fi,j between every pair i and j.
E.g., for sequences we may only want fj−1,j .
We can draw a graph based on this:

Each node corresponds to a variable.
We have an edge between i and j if we have an fi,j .

E.g., tomorrow, we will consider this tree-structured graph:



Undirected Graphical Models

For pairwise UGMs our energy has the form

E(Y |X) =
∑
i

fi(Yi, X) +
∑
i,j

fi,j(Yi, Yj , X).

We may not want a function fi,j between every pair i and j.
E.g., for sequences we may only want fj−1,j .
We can draw a graph based on this:

Each node corresponds to a variable.
We have an edge between i and j if we have an fi,j .
E.g., tomorrow, we will consider this tree-structured graph:



3 Tasks in UGMs for Week 1

Week 1: ignore conditioning and consider generic E(X) and P (X).

1 Decoding: Compute the optimal configuration,

min
X

E(X).

2 Inference: Compute partition function and marginals,

Z =
∑
X′

P (X ′), P (Xi = j) =
∑

X′|Xi=j

p(X ′).

3 Sampling: Generate X ′ according to Gibbs distribution:

X ′ ∼ P (X).

In UGMs, efficiency of these tasks is related to graph structure.



3 Tasks in UGMs for Week 1

Week 1: ignore conditioning and consider generic E(X) and P (X).

1 Decoding: Compute the optimal configuration,

min
X

E(X).

2 Inference: Compute partition function and marginals,

Z =
∑
X′

P (X ′), P (Xi = j) =
∑

X′|Xi=j

p(X ′).

3 Sampling: Generate X ′ according to Gibbs distribution:

X ′ ∼ P (X).

In UGMs, efficiency of these tasks is related to graph structure.



3 Tasks in UGMs for Week 1

Week 1: ignore conditioning and consider generic E(X) and P (X).

1 Decoding: Compute the optimal configuration,

min
X

E(X).

2 Inference: Compute partition function and marginals,

Z =
∑
X′

P (X ′), P (Xi = j) =
∑

X′|Xi=j

p(X ′).

3 Sampling: Generate X ′ according to Gibbs distribution:

X ′ ∼ P (X).

In UGMs, efficiency of these tasks is related to graph structure.



3 Tasks in UGMs for Week 1

Week 1: ignore conditioning and consider generic E(X) and P (X).

1 Decoding: Compute the optimal configuration,

min
X

E(X).

2 Inference: Compute partition function and marginals,

Z =
∑
X′

P (X ′), P (Xi = j) =
∑

X′|Xi=j

p(X ′).

3 Sampling: Generate X ′ according to Gibbs distribution:

X ′ ∼ P (X).

In UGMs, efficiency of these tasks is related to graph structure.



3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

E(x1, x2) = −f1(x1)− f2(x2)− f1,2(x1, x2),

where

f1(x1) =

1 x1 = 0

2 x1 = 1
, f2(x2) =

1 x1 = 0

3 x2 = 1
, f1,2(x1, x2) =

2 x1 = x2

1 x1 6= x2
.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/energies in a big table:

x1 x2 f1 f2 f1,2 −E(x1, x2)

0 0 1 1 2 4

0 1 1 3 1 5

1 0 2 1 1 4

1 1 2 3 2 7



3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

E(x1, x2) = −f1(x1)− f2(x2)− f1,2(x1, x2),

where

f1(x1) =

1 x1 = 0

2 x1 = 1
, f2(x2) =

1 x1 = 0

3 x2 = 1
, f1,2(x1, x2) =

2 x1 = x2

1 x1 6= x2
.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/energies in a big table:

x1 x2 f1 f2 f1,2 −E(x1, x2)

0 0 1 1 2 4

0 1 1 3 1 5

1 0 2 1 1 4

1 1 2 3 2 7



3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

E(x1, x2) = −f1(x1)− f2(x2)− f1,2(x1, x2),

where

f1(x1) =

1 x1 = 0

2 x1 = 1
, f2(x2) =

1 x1 = 0

3 x2 = 1
, f1,2(x1, x2) =

2 x1 = x2

1 x1 6= x2
.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/energies in a big table:

x1 x2 f1 f2 f1,2 −E(x1, x2)

0 0 1 1 2 4

0 1 1 3 1 5

1 0 2 1 1 4

1 1 2 3 2 7



3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

E(x1, x2) = −f1(x1)− f2(x2)− f1,2(x1, x2),

where

f1(x1) =

1 x1 = 0

2 x1 = 1
, f2(x2) =

1 x1 = 0

3 x2 = 1
, f1,2(x1, x2) =

2 x1 = x2

1 x1 6= x2
.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/energies in a big table:

x1 x2 f1 f2 f1,2 −E(x1, x2)

0 0

1 1 2 4

0 1 1 3 1 5

1 0 2 1 1 4

1 1 2 3 2 7



3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

E(x1, x2) = −f1(x1)− f2(x2)− f1,2(x1, x2),

where

f1(x1) =

1 x1 = 0

2 x1 = 1
, f2(x2) =

1 x1 = 0

3 x2 = 1
, f1,2(x1, x2) =

2 x1 = x2

1 x1 6= x2
.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/energies in a big table:

x1 x2 f1 f2 f1,2 −E(x1, x2)

0 0 1 1 2

4

0 1 1 3 1 5

1 0 2 1 1 4

1 1 2 3 2 7



3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

E(x1, x2) = −f1(x1)− f2(x2)− f1,2(x1, x2),

where

f1(x1) =

1 x1 = 0

2 x1 = 1
, f2(x2) =

1 x1 = 0

3 x2 = 1
, f1,2(x1, x2) =

2 x1 = x2

1 x1 6= x2
.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/energies in a big table:

x1 x2 f1 f2 f1,2 −E(x1, x2)

0 0 1 1 2 4

0 1 1 3 1 5

1 0 2 1 1 4

1 1 2 3 2 7



3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

E(x1, x2) = −f1(x1)− f2(x2)− f1,2(x1, x2),

where

f1(x1) =

1 x1 = 0

2 x1 = 1
, f2(x2) =

1 x1 = 0

3 x2 = 1
, f1,2(x1, x2) =

2 x1 = x2

1 x1 6= x2
.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/energies in a big table:

x1 x2 f1 f2 f1,2 −E(x1, x2)

0 0 1 1 2 4

0 1

1 3 1 5

1 0 2 1 1 4

1 1 2 3 2 7



3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

E(x1, x2) = −f1(x1)− f2(x2)− f1,2(x1, x2),

where

f1(x1) =

1 x1 = 0

2 x1 = 1
, f2(x2) =

1 x1 = 0

3 x2 = 1
, f1,2(x1, x2) =

2 x1 = x2

1 x1 6= x2
.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/energies in a big table:

x1 x2 f1 f2 f1,2 −E(x1, x2)

0 0 1 1 2 4

0 1 1 3 1 5

1 0 2 1 1 4

1 1 2 3 2 7



3 Tasks by Hand on a Simple Example

To illustrate the tasks, let’s take a simple 2-variable example,

E(x1, x2) = −f1(x1)− f2(x2)− f1,2(x1, x2),

where

f1(x1) =

1 x1 = 0

2 x1 = 1
, f2(x2) =

1 x1 = 0

3 x2 = 1
, f1,2(x1, x2) =

2 x1 = x2

1 x1 6= x2
.

x1 wants to be 1, x2 really wants to be 1, both want to be same.

We can think of the possible states/energies in a big table:

x1 x2 f1 f2 f1,2 −E(x1, x2)

0 0 1 1 2 4

0 1 1 3 1 5

1 0 2 1 1 4

1 1 2 3 2 7



Decoding on Simple Example

x1 x2 f1 f2 f1,2 −E(x1, x2)
0 0 1 1 2 4
0 1 1 3 1 5
1 0 2 1 1 4
1 1 2 3 2 7

Decoding is finding the minimizer of E(x1, x2):

In this case it is x1 = 1 and x2 = 1.



Decoding on Simple Example

x1 x2 f1 f2 f1,2 −E(x1, x2)
0 0 1 1 2 4
0 1 1 3 1 5
1 0 2 1 1 4
1 1 2 3 2 7

Decoding is finding the minimizer of E(x1, x2):

In this case it is x1 = 1 and x2 = 1.



Inference on Simple Example

x1 x2 f1 f2 f1,2 −E(x1, x2)
0 0 1 1 2 4
0 1 1 3 1 5
1 0 2 1 1 4
1 1 2 3 2 7

One inference task is finding Z:

In this case Z = exp(4) + exp(5) + exp(4) + exp(7) ≈ 1354.

With Z you can find the probability of configurations:

E.g., p(x1 = 0, x2 = 0) = exp(4)/Z = 0.04.

Inference also includes finding marginals like p(x1 = 1):

E.g, p(x1 = 1) =
∑

x2
p(x1 = 1, x2) = 0.04 + 0.81 = 0.85.



Inference on Simple Example

x1 x2 f1 f2 f1,2 −E(x1, x2)
0 0 1 1 2 4
0 1 1 3 1 5
1 0 2 1 1 4
1 1 2 3 2 7

One inference task is finding Z:

In this case Z = exp(4) + exp(5) + exp(4) + exp(7) ≈ 1354.

With Z you can find the probability of configurations:

E.g., p(x1 = 0, x2 = 0) = exp(4)/Z = 0.04.

Inference also includes finding marginals like p(x1 = 1):

E.g, p(x1 = 1) =
∑

x2
p(x1 = 1, x2) = 0.04 + 0.81 = 0.85.



Inference on Simple Example

x1 x2 f1 f2 f1,2 −E(x1, x2) p(x1, x2)
0 0 1 1 2 4 0.04
0 1 1 3 1 5 0.11
1 0 2 1 1 4 0.04
1 1 2 3 2 7 0.81

One inference task is finding Z:

In this case Z = exp(4) + exp(5) + exp(4) + exp(7) ≈ 1354.

With Z you can find the probability of configurations:

E.g., p(x1 = 0, x2 = 0) = exp(4)/Z = 0.04.

Inference also includes finding marginals like p(x1 = 1):

E.g, p(x1 = 1) =
∑

x2
p(x1 = 1, x2) = 0.04 + 0.81 = 0.85.



Inference on Simple Example

x1 x2 f1 f2 f1,2 −E(x1, x2) p(x1, x2)
0 0 1 1 2 4 0.04
0 1 1 3 1 5 0.11
1 0 2 1 1 4 0.04
1 1 2 3 2 7 0.81

One inference task is finding Z:

In this case Z = exp(4) + exp(5) + exp(4) + exp(7) ≈ 1354.

With Z you can find the probability of configurations:

E.g., p(x1 = 0, x2 = 0) = exp(4)/Z = 0.04.

Inference also includes finding marginals like p(x1 = 1):

E.g, p(x1 = 1) =
∑

x2
p(x1 = 1, x2) = 0.04 + 0.81 = 0.85.



Sampling on Simple Example

x1 x2 f1 f2 f1,2 −E(x1, x2) p(x1, x2) cumsum
0 0 1 1 2 4 0.04 0.04
0 1 1 3 1 5 0.11 0.15
1 0 2 1 1 4 0.04 0.19
1 1 2 3 2 7 0.81 1.00

Sampling is generating configurations according to p(x1, x2):

E.g., 81% of the time we should return x1 = 1 and x2 = 1.

To implement this:
1 Generate a random number u ∈ [0, 1].
2 Find the smallest cumsum of the probabilities greater than u.

If u = 0.59 return x1 = 1 and x2 = 1

If u = 0.12 return x1 = 0 and x2 = 1.



Sampling on Simple Example

x1 x2 f1 f2 f1,2 −E(x1, x2) p(x1, x2) cumsum
0 0 1 1 2 4 0.04 0.04
0 1 1 3 1 5 0.11 0.15
1 0 2 1 1 4 0.04 0.19
1 1 2 3 2 7 0.81 1.00

Sampling is generating configurations according to p(x1, x2):

E.g., 81% of the time we should return x1 = 1 and x2 = 1.

To implement this:
1 Generate a random number u ∈ [0, 1].
2 Find the smallest cumsum of the probabilities greater than u.

If u = 0.59 return x1 = 1 and x2 = 1

If u = 0.12 return x1 = 0 and x2 = 1.



Homework: First two UGM demos

For tomorrow, download UGM and read/run the first two demos:

Reviews/expands on material from today, introduces Markov chains.
(should take less 15 minutes)



Schedule


