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Summary of Week 1 and Framing Week 2

We used structured prediction to motivate studying UGMs:

We talked about defining an energy function E(Y |X):

Want low eneryg for correct labels.
Energy will depend on features F (Y,X).
Parts Y that occur in same feature define the graph.

But last week we got side-tracked by inference problems:

We considered decoding, inference, and sampling.
We considered exact methods to do these tasks.

This week:

Learning parameters of E(Y |X).
Approximate inference methods.
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Learning in Unconditional Models

We will first consider the unconditional case:
(AKA Markov random field)

Input is a sequence of samples Xi = (x1, x2, x3, . . . , xd).
Assume we have a parameterization of our potentials.
Assume we are given the graph structure (until Friday).
Output is the ‘best’ parameters (e.g., maximum likelihood).

Typically leads to better model than hand-tuned parameters.

Usually, decoding/inference/sampling is a sub-routine in learning.
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Example: Vancouver Rain Data

Vancouver Rain dataset:

Binary Xi is whether it rained or not on first 28 days of month i.
Dataset contains 1059 months from 1896-2004.

First 100 months (red means red):

Sadly, p(xi = r) = 0.41.
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Example: Vancouver Rain Data

Real data vs. sampling day indepenedently with probability 0.41:

Independent model misses correlations between days.

We can do better with a UGM:

But we’re not going to make up potentials.
Use the data to find the best potentials!
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Maximum Likelihood Formulation

Let’s fit the parameters using maximum likelihood of data:
(assuming the Xi are independent)

w = argmax
w

n∏
i=1

p(Xi|w),

or equivalently minimize negative log-likelihood (NLL),

w = argmin
w
− 1

n

n∑
i=1

log(p(Xi|w)),

and you could/should also use a regularizer,

w = argmin
w
− 1

n

n∑
i=1

log(p(Xi|w)) +
λ

2
‖w‖2.
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Log-Linear Parameterization of MRFs

We’ll use a log-linear parameterization:

φi(xi) = exp(wm(i,xi)), φij(xi, xj) = exp(wm(i,j,xi,xj)).

where m maps exponentiated ‘parameters’ to potentials.
(m called ‘nodeMap’ and ‘edgeMap’ in UGM code)

Parameter tieing can be done with choice of m:

If m(i, xi) = xi for all i, each day has same potentials.
(parameters are tied)

If m(i, xi) = xi(n− 1) + i for all i, each day has different potentials.
We could have groups: E.g., weekdays vs. weekends, or boundary.
We’ll use the convention that m(i, xi) = 0 means that φi(xi) = 1.
Similar logic holds for edge potentials.
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Example: Ising Model of Rain Data

E.g., we could parameterize our node potentials using

log(φi(xi)) =

w1 rain

0 no rain
,

and one parameter is enough since scale of φi is arbitrary.
(though might want two parameters if using regularization)

Use chain-structure, Ising parameterization of edge potentials,

log(φij(xi, xj)) =

w2 xi = xj

0 xi 6= xj
.

The maximum likelihood solution is

w =

[
0.16

0.85

]
, φi =

[
exp(w1)

exp(0)

]
=

[
1.17

1

]
, φij =

[
2.34 1

1 2.34

]
,

preference towards no rain, and adjacent days being the same.

Average NLL of 16.8 vs. 19.0 for independent model.
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Full Model of Rain Data

We could alternately use fully expressive edge potentials

log(φij(xi, xj)) =

[
w2 w3

w4 0

]
,

but these don’t improve the likelihood much.

We could also have special potentials for the boundaries.

Samples from model and conditional samples if rain on first day:
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Log-Linear Parameterization of MRFs

We’ll use a log-linear parameterization:

φi(xi) = exp(wm(i,xi)), φij(xi, xj) = exp(wm(i,j,xi,xj)),

We’ve excluded φi = 0, but otherwise this is not restrictive.

Energy function E(Xi) will be linear,

E(X) = log

∏
i

φi(xi)
∏

(i,j)∈E

φij(xi, xj)


= log

exp

∑
i

wm(i,xi) +
∑

(i,j)∈E

wm(i,j,xi,xj)


=
∑
i

wm(i,xi) +
∑

(i,j)∈E

wm(i,j,xi,xj).

To make notation simpler, consider this identity

wm(i,xi) =
∑
f

wfI[m(i, xi) = f ],
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Feature Vector Representation

Use this identity to write any log-linear energy in a simple form

E(X) =
∑
i

wm(i,xi) +
∑

(i,j)∈E

wm(i,j,xi,xj)

=
∑
i

∑
f

wfI[m(i, xi) = f ] +
∑

(i,j)∈E

∑
f

wfI[m(i, j, xi, xj) = f ]

=
∑
f

wf

∑
i

I[m(i, xi) = f ] +
∑

(i,j)∈E

I[m(i, j, xi, xj) = f ]


= wTF (X),

where Ff (X) ,
∑

i I[m(i, xi) = f ] +
∑

(i,j)∈E I[m(i, j, xi, xj) = f ]

are sufficient statistics of the example.

E.g., in Ising model F1(X) is number of times it rained in X and
F2(X) is number adjacent days that have the same value.
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MRF Training Objective Function

With log-linear parameterization, NLL takes the form

f(w) = − 1

n

n∑
i=1

log p(Xi|w) = −
1

n

n∑
i=1

log

(
exp(wTF (Xi))

Z(w)

)

= − 1

n

n∑
i=1

wTF (Xi) +
1

n

n∑
i=1

logZ(w)

= −wTF (D) + logZ(w).

where F (D) = 1
n

∑
i F (Xi) is sufficient statistics of data.

Given sufficient statistics F (D), can throw out data Xi.
(only go through data once)

Function f(w) is convex.

With ‖w‖2 regularizer, unique solution is guaranteed to exist.
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Optimization with MRFs

With log-linear parameterization, NLL takes the form

f(w) = −wTF (D) + logZ(w).

Gradient with respect to parameter f is given by

−∇ff(w) = Ff (D)−
∑
X

exp(wTF (X))

Z(w)
Ff (X)

= Ff (D)−
∑
X

p(X)Ff (X)

= Ff (D)− EX [Ff (X)].

Derivative of log(Z) is marginal of feature.
(inference required for learning)

∇ff(w) = 0 means sufficient statistics match in model and data.

ML is maximum entropy distribution with these statistics.

Typical solvers: L-BFGS, IPF (coordinate descent), closed form
(decomposable), proximal Newton (constraints/non-smooth).
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Learning for Structured Prediction

3 types of classifiers discussed in CPSC 540:

Setting Generative Discriminative Discriminant
Model Model Function

“Classic ML” Naive Bayes, GDA Logistic Regression SVM

Struct. Pred. MRF CRF SSVM

We’ll discuss MRFs and CRFs today, SSVMs in week 3.
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Review of Generative Models for Classification

First let’s consider generative models for classification:

To model p(y|X), generative models use Bayes rule:

p(y|X) ∝ p(y,X)

= p(X|y)p(y).

Estimating p(y) is easy: count the number of times yi = y.

Estimating p(X|y) not easy: features might be really complicated.

Typical solutions:

Naive Bayes: p(X|y) ≈
∏n

i=1 p(xi|y).
Gaussian discriminant analysis: p(X|y) ∼ N (µy,Σy).

More exotic:

Bayesian network classifiers.
Mixture models.
Kernel density estimation.
Fit an MRF.
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20 Newsgroups Example
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files, mac, pc computer
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files, pc, win computer

To find p(computer | files, pc, win), compute

p(computer),

p(files, pc, win | computer).
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Generative Models for Structured Prediction

Now let’s consider generative models for structured prediction:

To model p(Y |X), generative models use Bayes rule:

p(Y |X) ∝ p(Y,X)

= p(X|Y )p(Y ).

Estimating p(Y ) is harder: fit an MRF.

Estimating p(X|Y ) is much harder:

Need a model of features for each possible output object.

Typical solution:
Doubly-naive Bayes: p(X|Y ) ≈

∏n
i=1 p(xi|Y ) ≈

∏n
i=1 p(xi|yi).

maybe with assumption on p(xi|yi) (naive Bayes, Gaussian, etc.).

Assume features xi generated independently from part yi.

Alternatives:

directly model p(Y,X) as an MRF.
treat p(X|Y ) as a structured prediction problem.
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Image Segmentation Example

Naive Bayes across space:

Given labels, features generated independently across space.
(possible naive Bayes assumption about features at same location)

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD


Review of Discriminative Models for Classification

Conditional models for classification directly model p(y|X).

No need to model features X given each y.

Canonical example is logistic regression:

p(y = +1|X) =
1

1 + exp(−ywTX)
=

φ(+1)

φ(+1) + φ(−1)
.

p(y = −1|X) = 1− p(y = +1|X) = 1− 1

1 + exp(−ywTX)

=
exp(−ywTX)

1 + exp(−ywTX)
=

φ(−1)
φ(+1) + φ(−1)

.

This is a conditional UGM with:

m(1, Xij , yi = +1) = 0, m(1, Xij , yi = −1) = j.

Generalization of this is conditional random fields (CRFs).
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Log-Linear CRF Parameterization

The log-linear generalization for CRFs is given by

φi(yi) = exp

∑
f

wm(i,yi,f)xi,f

 ,

and similarly for edges (E(Y |X) is linear, NLL is convex).

How this works in UGM software:
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Conditional Random Fields (CRFs)

CRFs directly model p(Y |X) for structured prediction

p(Y |X) =
exp(wTF (Y,X))

Z(w,X)
.

Much simpler than generative approach:

No need to model features x for each possible object y.
> 8000 citations since 2001.

For pairwise UGMs, features have form F (yi, X) or F (yi, yj , X).

NLL and its gradient have similar form to MRF

f(w) = − 1

n

n∑
i=1

−wTF (Yi, Xi) + log(Z(w,Xi)),

∇ff(w) = −
1

n

n∑
i=1

F (Yi, Xi) + EY |X [Ff (Yi, Xi)],

but partition function and marginals for each example i.

Maintains maximum entropy interpretation.
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Fitting CRFs

Solvers for fitting parameters of CRFs:

L-BFGS as in MRFs.

Stochastic gradient (only 1 partition function per iteration).

Non-uniform SAG: same cost as stochastic gradient, faster
convergence rate, but requires storing marginals.

Non-uniform SVRG? (similar to SAG, but without the memory)



Rain Demo with Month Data

Let’s add a month variable to rain data:

Fit a CRF of p(rain | month).
Use 12 binary indicator features giving month.
NLL goes from 16.8 to 16.2.

Samples of rain data conditioned on December and July:
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Approximate Learning

Inference is a sub-routine of learning:

We can only learn when inference is tractable.

Strategies when inference is not tractable:
Change the objective function:

Pseudo-likelihood (fast, convex, and crude):

log p(Y |X) ≈
∑
i

log p(yi|y−i, X),

transforms learning into logistic regression on each part.
SSVMs have decoding as a sub-routine (week 3).

Use approximate inference (weeks 2-3):
Local search.
Variational methods.
Monte Carlo methods.
Convex relaxations.
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Homework: TrainMRF, TrainCRF, and ICM

Homework: TrainCRF, ICM, and Block ICM part of the Block.



Review of Topics

Can use maximum likelihood to fit potentials given data.

Log-linear parameterization has nice properties (e.g., convexity).

Parameter tieing allows sharing of statistical strength.

Fitting MRFs requires sufficient statistics and inference.

Generalization of logistic regression is CRFs, which are more
expensive but allow conditioning on arbitrary features.


