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Notation from Last Time

We’re focusing on pairwise UGMs with discrete states,

P (X) =

∏N
i=1 φi(xi)

∏
(i,j)∈E φij(xi, xj)

Z
,

where we’ve decomposed object X into ‘parts’ xi ∈ {1, 2, . . . , S}.

Week 1 considers exact methods for 3 tasks:
1 Decoding: Compute the optimal configuration,

max
X

P (X).

2 Inference: Compute partition function and marginals,

Z =
∑
X′

P (X ′), P (Xi = s) =
∑

X′|Xi=s

p(X ′).

3 Sampling: Generate X ′ according to Gibbs distribution:

X ′ ∼ P (X).
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Computer Science Graduate Markov Model

Computer Science Graduate Careers Markov chain:
Variable x1 can be in one of three states:

Variable xt only depends on xt−1:

So the probability of a sequence is

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x2, x1) . . . p(xn|xn−1, xn−2, . . . , x1)

= p(x1)p(x2|x1)p(x3|x2) . . . p(xn|xn−1).

Markov property: p(xj |xj−1, xj−2, . . . , x1) = p(xj |xj−1).
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Markov Chain Models

This is a special case of a UGM

p(x1, x2, . . . , xn) ∝ φ1(x1)

n∏
i=2

φ(xi, xi−1),

with a chain-structured dependency:

X1 X2 X3 X4 X5 X6 X7

Homogeneous chain: edge potentials are constant across time.

Markov chains are ubiquitous in sequence/time-series models:



General Chain-Structured UGM

The general class of chain-structured UGMs is

p(x1, x2, . . . , xn) ∝
n∏

i=1

φi(xi)

n∏
i=2

φi,i−1(xi, xi−1),

(xt could depend on future things that might happen)
In this case we only have local Markov property,

xi ⊥ x1, . . . , xi−2, xi+2, . . . , xn|xi−1, xi+1,

Local Markov property in general UGMs:
given neighbours, conditional independence of other nodes.

(Marginal independence corresponds to reachability.)

Includes hidden Markov models (HMMs) and Kalman filters:

X1 X2 X3 X4 X5 X6 X7

O1 O2 O3 O4 O5 O6 O7
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Applications of HMMs and Kalman Filters

Also includes conditional random fields.



Cost of Decoding

Last time and in homework, exact inference by table:



Decoding in Chain-Structured Models

Table is too expensive for Markov chain models:

We can’t enumerate sn possible configurations.

To avoid this use Markov property and dynamic programming:

Assume you know optimal value at time t.
By Markov property, captures everything about the past.
Use this to compute optimal value at time t+ 1.
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Decoding in Chain-Structured Models

Viterbi decoding algorithm:

Forward phase:

V1,s = φ1(s), Vi,s = max
s′
{φi(s)φi,i−1(s, s

′)Vi−1,s′},

Backward phase: backtrack through argmax values.
Solves the decoding problem in O(ns2) instead of O(sn).

For the CS grad student Markov model with n = 60:

Optimal decoding is ‘industry’ for each year.
Optimal decoding might not look like ‘typical’ state.
Optimal decoding would be different with inhomogeneous chain.
Optimal decoding would be different if we changed n.
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Inference in Chain-Structured Models

Chapman-Kolmogorov equations for inference in Markov chains:
Dynamic programming to sum up all paths to state s at time t,

V1,s = p(s), Vi,s =
∑
s′

p(s|s′)Vi−1,s′ , Z =
∑
s

Vn,s,

and get marginal p(xi = s) by normalizing Vi,s across s.

Needs marginals/conditionals: can’t apply to general
chain-structured UGMs.

Forward-backward algorithm for general case:
Forward phase (sums up paths from the beginning):

V1,s = φ1(s), Vi,s =
∑
s′

φi(s)φi,i−1(s, s
′)Vi−1,s′ , Z =

∑
s

Vn,s.

Backward phase: (sums up paths to the end):

Bn,s = 1, Bi,s =
∑
s′

φi+1(s
′)φi+1,i(s

′, s)Bi+1,s′ .

Marginals are given by p(xi = s) ∝ Vi,sBi,s.
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Marginals in CS Grad Markov Chain



Sampling in Chain-Structured Models

Sampling is easy in Markov chains:

Sample time 1 based on p(x1).
Sample time t based on time t− 1 using p(xt|xt−1).
Simulates the process forward from the beginning.

Forward-filter backward-sample algorithm for general case:

Forward phase (same as before):

V1,s = φ1(s), Vi,s =
∑
s′

φi(s)φi,i−1(s, s
′)Vi−1,s′ .

Backward phase: sample xn now that we have p(xn), then sample
time (t− 1) based on Vt−1,s and xt.
Simulates the process backwards from the end.
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Samples in CS Grad Markov Chain

Samples are more informative about what the model looks like:

Could use samples to guide refining model.



Tree-Structured UGMs

Decoding/inference/sampling in chains is O(ns2).

We can get the same runtime for trees (graph with no loops)

Forward phase idea: start from the leaves and work your way in.

Call belief propagation, special case of message passing.
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Belief Propagation

For decoding (“max-product”), message from j to i has the form

mji(xi) = max
xj

φj(xj)φi,j(xi, xj) ∏
k∈N(j)\i

mkj(xj)

 .

For inference (“sum-product”), message from j to i has the form

mji(xi) =
∑
xj

φj(xj)φi,j(xi, xj) ∏
k∈N(j)\i

mkj(xj)

 .

Once one node has all information, backtrack out to the leaves.



Homework: Third and Fourth UGM demos

For tomorrow, read/run the third and fourth demos:

Reviews/expands on material from today, introduces conditioning.



Discussion

Exact decoding/inference/sampling is intractable in general.

But it’s very efficient for graphs without loops.

Tomorrow: ‘simple’ loops and conditional UGMs.


