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Current Hot Topics in Machine Learning

Bayesian learning includes:
@ Gaussian processes.
@ Approximate inference.
@ Bayesian nonparametrics.
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e Usually add regularization because it “prevents overfitting”,
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v = argmin 1 1 —Yi T i — .
= argr ; og(1 + exp(~yiw’ z:)) + 7 [lw]
@ Data was random, so weights @ are random variables.
e Finds w maximizing p(w|X, y), but predictions are sub-optimal.
@ Does not consider that p(w| X, y) may be tiny.

e Bayesian approach: predictions based on rules of probability.
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Bayesian approach averages models: says you shouldn’t take plane.

Bayesian decision theory: take into account cost of different errors.
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Why Bayesian Learning in the MLRG?

@ Motivation for studying Bayesian learning:
@ Optimal decisions using rules of probability and error costs.
@ Gives estimates of variability/confidence.
@ E.g., this gene has a 70% chance of being relevant.
© Elegant approaches for model selection and model averaging.
@ E.g., optimize A or optimize grouping of w elements.
© Easy to relax |ID assumption.
@ E.g., hierarchical Bayesian models for data from different sources.
© Bayesian optimization: fastest rates for some non-convex problems.
Q@ Allows models with unknowny/infinite number of parameters.

@ E.g., number of clusters or number of states in hidden Markov model.
@ Why isn’t everyone using this?
e Philosophical: Some people don't like “subjective” prior.
e Computational: Typically leads to nasty integration problems.
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@ Maximum likelihood (least squares):

h = argmax p(D|h) (train)
heH
D = argmax p(D|h) (predict)
D

Could choose a very unlikely h that fits data well.
@ Maximum a posteriori (MAP) (regularized least squares):

h = argmax p(h|D)

heH
p(D[h)p(h) ,

=argmax —————= Bayes’ rule

D) (Bayes”rule)

= argmax p(D|h)p(h) (train)
heH

D = argmax p(D|h) (predict)

D

Prior p(h) penalizes unlikely hypotheses.
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Digression: MAP vs. Regularized Optimization

@ So MAP estimate can be written in the form

rgmm—Zlogp Yil i, w) — log p(w),
weERC i=1

and by same argument maximum likelihood can be written

= argmin — Zlogp (yilzi, w),
weRd 4
@ We obtain our standard models as special cases:
e Least squares: y; ~ N (w”z;,02).
e L2-regularized least squares: y; ~ N(w” z;,0%), w; ~ N(0,
@ L2-regularized logistic regression:

%)

yi ~ Sigm(wTz;), w; ~ N(0, %)
e L1-regularized logistic regression:
yi ~ Sigm(w”z;), w; ~ L£(0, 3).
e And so on...
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MAP vs. Bayes

@ Maximum a posteriori (MAP) (regularized optimization):

h = argmax p(h|D)

heH
= argmax p(D|h)p(h) (train)
heH
D = argmax p(D|h) (predict)
D

@ Bayesian approach (Bayesian linear regression):
e Predict by integrating over “hidden” parameters:

p(D|D) = / p(D, h|D)dh (marginalization rule)
H

= / p(D|h, D)p(h|D)dh (product rule)
H

= / p(D|h)p(h|D)dh (assume D | D | h)
H

o Integrate over posterior distribution rather than optimize over it.
o Note that p(D|h) dominates p(h|D) as datasize grows.
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Coin Flipping Example: Model

3 ingredients for Bayesian analysis of coin flipping:

@ Use a Bernoulli likelihood for coin X landing ‘heads’,
p(X =H'|9)=0, p(X="T'6) =1-9,

@ Our prior reflects our prior beliefs about ¢, we’ll assume:

e The coin has a 50% chance of being fair (§ = 0.5).
e The coin has a 50% chance of being rigged (6 = 1).

© Our data consists of three consecutive heads: ‘HHH'.



Coin Flipping Example: Estimators

What is the probability that the next coin lands heads?

@ Maximum likelihood estimate is 6 = 1 since
1= p(HHH|§ = 1) > p(HHH|0 = 0.5) = 1/8,
@ MAP estimate is = 1 since
0.5 = p(HHH|) = 1)p(6 = 1) > p(HHH|0 = 0.5)p(6 = 0.5) = 1/16,

@ ML and MAP both the say probability is 1.

@ But we believed that there was a 50% chance the coin is fair.



Coin Flipping Example: Posterior

What is the probability that the next coin lands heads?
@ The posterior probability that 6 = 1 is
p(HHH|) = 1)p(0 = 1)
p(HHH)
_ p(HHH|§ =1)p(6 =1)
- p(HHH|9 =0.5)p(0 = 0.5) + p(HHH|0 = 1)p(§ = 1)
(1)(0.5)
(1/8)(0.5) + (1)(0.5)
and similarly we have p(¢ = 0.5|HHH) = 5.

p(0=1|HHH) =

)

_8
9



Coin Flipping Example: Posterior

What is the probability that the next coin lands heads?
@ The posterior probability that 6 = 1 is
p(HHH|0 =1)p(0 =1)
p(HHH)
_ p(HHH|§ =1)p(6 =1)
p(HHH|0 =0.5)p(0 =0.5) + p(HHH|0 = 1)p(0 = 1)
(1)(0.5)
(1/8)(0.5) + (1)(0.5)
and similarly we have p(¢ = 0.5|HHH) = 5.
@ Posterior predictive distribution is

p(0=1|HHH) =

_8
9

)

p(HHHH) = p(H,0 = 1|HHH) + p(H,0 = 0.5|H HH)

=p(H|§ =1, HHH)p(0 = 1|HHH) + p(H|6 = 0.5, HHH)p(0 = 0.5|H 1
= p(H|0 = 1)p(0 = 1|{HHH) + p(H|0 = 0.5)p(6 = 0.5|HHH)

= (1)(8/9) + (0.5)(1/9) = 0.94.
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Coin Flipping Example: Discussion

Comments on coin flipping example:
@ Bayesian prediction uses that HHH could come from fair coin.
@ As we see more heads, posterior converges to 1.
e ML/MLE/Bayes usually agree as data size increases.
@ If we ever see a tail, posterior of # = 1 becomes 0.
@ [f the prior is correct, then Bayesian estimate is optimal:
e Bayesian decision theory gives optimal action incorporating costs.
@ If the prior is incorrect, Bayesian estimate may be worse.
e This is where people get uncomfortable about “subjective” priors.

@ But ML/MAP are also based on “subjective” assumptions.
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@ Summary of topics discussed this week:
e Regularized optimization is usually equivalent to MAP estimation.

@ But MAP estimation is sub-optimal.
e Bayesian methods give optimal estimators:
@ Integrate over posterior rather than maximize over the posterior.

e But Bayesian methods require prior beliefs.
@ Topics for next week:

@ When can we compute the posterior predictive?
o Are there “non-informative” priors?



Schedule

Jan 6 Baysics Mark
Jan 13 Conjugate Priors, Non-Informative Priors Nasim
Jan 20 | Hierarchical Modeling and Bayesian Model Selection | Geoff
Jan 27 | Gaussian Processes and Empirical Bayes Issam
Feb 3 Basic Monte Carlo Methods Ricky
Feb 10 | MCMC Jason
Feb 24 | Bayesian Optimization Hamed
Mar 2 Variational Bayes Sharan
Mar 9 Stochastic Variational Inference Reza
Mar 16 Non-Parametric Bayes 1 Mark
Mary 23 | Non-Parametric Bayes 2 Reza
Mar 30 | Expectation Propagation Behrooz
Apr 6 Sequential Monte Carlo and Population MCMC Julieta
Apr 13 Reversible-Jump MCMC Rudy
Apr20 | Approximate Bayesian Computation Alireza




