Bayesian Learning

Mark Schmidt

UBC Machine Learning Reading Group

January 2016

Current Hot Topics in Machine Learning

Bayesian learning includes:

- Gaussian processes.
- Approximate inference.
- Bayesian nonparametrics.

- Standard L2-regularized logistic regression steup:
 - Given finite dataset containing IID samples.
 - E.g., samples (x_i, y_i) with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$.

- Standard L2-regularized logistic regression steup:
 - Given finite dataset containing IID samples.
 - E.g., samples (x_i, y_i) with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$.
 - Predict label \hat{y} of <u>new</u> example \hat{x} using weights \hat{w} ,

$$\hat{y} = \operatorname{sgn}(\hat{w}^T \hat{x}).$$

- Standard L2-regularized logistic regression steup:
 - Given finite dataset containing IID samples.
 - E.g., samples (x_i, y_i) with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$.
 - Predict label \hat{y} of <u>new</u> example \hat{x} using weights \hat{w} ,

$$\hat{y} = \operatorname{sgn}(\hat{w}^T \hat{x}).$$

• Find 'best' \hat{w} by minimizing loss function,

$$\hat{w} = \operatorname*{argmin}_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i))$$

- Standard L2-regularized logistic regression steup:
 - Given finite dataset containing IID samples.
 - E.g., samples (x_i, y_i) with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$.
 - Predict label \hat{y} of <u>new</u> example \hat{x} using weights \hat{w} ,

$$\hat{y} = \operatorname{sgn}(\hat{w}^T \hat{x}).$$

• Find 'best' \hat{w} by minimizing loss function,

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)).$$

Usually add regularization because it "prevents overfitting",

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) + \frac{\lambda}{2} ||w||^2.$$

- Standard L2-regularized logistic regression steup:
 - Given finite dataset containing IID samples.
 - E.g., samples (x_i, y_i) with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$.
 - Predict label \hat{y} of <u>new</u> example \hat{x} using weights \hat{w} ,

$$\hat{y} = \operatorname{sgn}(\hat{w}^T \hat{x}).$$

• Find 'best' \hat{w} by minimizing loss function,

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)).$$

• Usually add regularization because it "prevents overfitting",

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) + \frac{\lambda}{2} ||w||^2.$$

- Data was random, so weights \hat{w} are random variables.
 - Finds \hat{w} maximizing $p(\hat{w}|X, y)$, but predictions are sub-optimal.
 - Does not consider that $p(\hat{w}|X, y)$ may be tiny.

- Standard L2-regularized logistic regression steup:
 - Given finite dataset containing IID samples.
 - E.g., samples (x_i, y_i) with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$.
 - Predict label \hat{y} of <u>new</u> example \hat{x} using weights \hat{w} ,

$$\hat{y} = \operatorname{sgn}(\hat{w}^T \hat{x}).$$

• Find 'best' \hat{w} by minimizing loss function,

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)).$$

• Usually add regularization because it "prevents overfitting",

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) + \frac{\lambda}{2} ||w||^2.$$

- Data was random, so weights \hat{w} are random variables.
 - Finds \hat{w} maximizing $p(\hat{w}|X, y)$, but predictions are sub-optimal.
 - Does not consider that $p(\hat{w}|X, y)$ may be tiny.
 - Bayesian approach: predictions based on rules of probability.

Optimization approach only considers h_2 so you should take plane.

Bayesian approach averages models: says you shouldn't take plane.

Bayesian decision theory: take into account cost of different errors.

- Motivation for studying Bayesian learning:
 - Optimal decisions using rules of probability and error costs.

- Motivation for studying Bayesian learning:

Optimal decisions using rules of probability and error costs.

- Q Gives estimates of variability/confidence.
 - E.g., this gene has a 70% chance of being relevant.

- Motivation for studying Bayesian learning:

Optimal decisions using rules of probability and error costs. Q Gives estimates of variability/confidence.

- E.g., this gene has a 70% chance of being relevant.
- Elegant approaches for model selection and model averaging.
 - E.g., optimize λ or optimize grouping of w elements.

- Motivation for studying Bayesian learning:

Optimal decisions using rules of probability and error costs. Q Gives estimates of variability/confidence.

- E.g., this gene has a 70% chance of being relevant.
- Elegant approaches for model selection and model averaging.
 - E.g., optimize λ or optimize grouping of w elements.
- Easy to relax IID assumption.
 - E.g., hierarchical Bayesian models for data from different sources.

- Motivation for studying Bayesian learning:

Optimal decisions using rules of probability and error costs. Q Gives estimates of variability/confidence.

- E.g., this gene has a 70% chance of being relevant.
- Elegant approaches for model selection and model averaging.
 - E.g., optimize λ or optimize grouping of w elements.
- Easy to relax IID assumption.
 - E.g., hierarchical Bayesian models for data from different sources.
- Bayesian optimization: fastest rates for some non-convex problems.

- Motivation for studying Bayesian learning:

Optimal decisions using rules of probability and error costs. Q Gives estimates of variability/confidence.

- E.g., this gene has a 70% chance of being relevant.
- Elegant approaches for model selection and model averaging.
 - E.g., optimize λ or optimize grouping of w elements.
- Easy to relax IID assumption.
 - E.g., hierarchical Bayesian models for data from different sources.

Bayesian optimization: fastest rates for some non-convex problems. 6 Allows models with unknown/infinite number of parameters.

E.g., number of clusters or number of states in hidden Markov model.

- Motivation for studying Bayesian learning:

 - Optimal decisions using rules of probability and error costs. Q Gives estimates of variability/confidence.
 - E.g., this gene has a 70% chance of being relevant.
 - Elegant approaches for model selection and model averaging.
 - E.g., optimize λ or optimize grouping of w elements.
 - Easy to relax IID assumption.
 - E.g., hierarchical Bayesian models for data from different sources.

- Bayesian optimization: fastest rates for some non-convex problems. 6 Allows models with unknown/infinite number of parameters.
 - E.g., number of clusters or number of states in hidden Markov model.
- Why isn't everyone using this?
 - Philosophical: Some people don't like "subjective" prior.
 - Computational: Typically leads to nasty integration problems.

Maximum Likelihood vs. Maximum a Posteriori (MAP)

• Maximum likelihood (least squares):

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmax}} p(D|h) \qquad (\text{train})$$

$$\hat{D} = \underset{D}{\operatorname{argmax}} p(D|\hat{h}) \qquad (\text{predict})$$

Could choose a very unlikely h that fits data well.

Maximum Likelihood vs. Maximum a Posteriori (MAP)

• Maximum likelihood (least squares):

$$\begin{split} \hat{h} &= \operatorname*{argmax}_{h \in \mathcal{H}} p(D|h) \qquad (\text{train}) \\ \hat{D} &= \operatorname*{argmax}_{D} p(D|\hat{h}) \qquad (\text{predict}) \end{split}$$

Could choose a very unlikely h that fits data well.

• Maximum a posteriori (MAP) (regularized least squares):

$$\begin{split} \hat{h} &= \operatorname*{argmax}_{h \in \mathcal{H}} p(h|D) \\ &= \operatorname*{argmax}_{h \in \mathcal{H}} \frac{p(D|h)p(h)}{p(D)} & \text{(Bayes' rule)} \\ &= \operatorname*{argmax}_{h \in \mathcal{H}} p(D|h)p(h) & \text{(train)} \\ \hat{D} &= \operatorname*{argmax}_{D} p(D|\hat{h}) & \text{(predict)} \end{split}$$

Prior p(h) penalizes unlikely hypotheses.

- Consider MAP estimate conditioned on X for linear regression:
 - Data D is a set of $n \text{ IID } (x_i, y_i)$ samples stored in X and y.
 - Hypothesis *h* represented by a parameter vector *w*.
 - Hypothesis space \mathcal{H} is \mathbb{R}^d .

• Consider MAP estimate conditioned on X for linear regression:

- Data D is a set of $n \text{ IID } (x_i, y_i)$ samples stored in X and y.
- Hypothesis *h* represented by a parameter vector *w*.
- Hypothesis space \mathcal{H} is \mathbb{R}^d .

$$\begin{split} \hat{w} &= \operatorname*{argmax}_{w \in \mathbb{R}^d} p(w|X, y) & (MAP \operatorname{def'n}) \\ &= \operatorname*{argmax}_{w \in \mathbb{R}^d} p(y|X, w) p(w) & (Bayes', w \perp X) \end{split}$$

$$= \underset{w \in \mathbb{R}^d}{\operatorname{argmax}} \prod_{i=1}^{n} [p(y_i | x_i, w)] p(w)$$
(IID assump)

$$= \underset{w \in \mathbb{R}^d}{\operatorname{argmax}} \log \left(\prod_{i=1} [p(y_i | x_i, w)] p(w) \right)$$
 (log is monotonic)

$$= \underset{w \in \mathbb{R}^d}{\operatorname{argmax}} \sum_{i=1} \log p(y_i | x_i, w) + \log p(w) \qquad (\log(ab) = \log(a) + \log(b))$$

 $= \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} - \sum_{i=1} \log p(y_i | x_i, w) - \log p(w) \qquad (\max = \min\{\operatorname{neg}\})$

So MAP estimate can be written in the form

$$\hat{w} = \operatorname*{argmin}_{w \in \mathbb{R}^d} - \sum_{i=1}^n \log p(y_i | x_i, w) - \log p(w),$$

and by same argument maximum likelihood can be written

$$\hat{w} = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} - \sum_{i=1}^n \log p(y_i | x_i, w),$$

So MAP estimate can be written in the form

$$\hat{w} = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} - \sum_{i=1}^n \log p(y_i | x_i, w) - \log p(w),$$

and by same argument maximum likelihood can be written

$$\hat{w} = \operatorname*{argmin}_{w \in \mathbb{R}^d} - \sum_{i=1}^n \log p(y_i | x_i, w),$$

- We obtain our standard models as special cases:
 - Least squares: $y_i \sim \mathcal{N}(w^T x_i, \sigma^2)$.
 - L2-regularized least squares: y_i ~ N(w^Tx_i, σ²), w_j ~ N(0, ¹/_{√λ}).
 - L2-regularized logistic regression:

 $y_i \sim \operatorname{Sigm}(w^T x_i), \quad w_j \sim \mathcal{N}(0, \frac{1}{\sqrt{\lambda}}).$

L1-regularized logistic regression:

$$y_i \sim \operatorname{Sigm}(w^T x_i), \quad w_j \sim \mathcal{L}(0, \frac{1}{\lambda}).$$

And so on...

MAP vs. Bayes

• Maximum a posteriori (MAP) (regularized optimization):

$$\begin{split} \hat{h} &= \operatorname*{argmax}_{h \in \mathcal{H}} p(h|D) \\ &= \operatorname*{argmax}_{h \in \mathcal{H}} p(D|h) p(h) \qquad (\text{train}) \\ \hat{D} &= \operatorname*{argmax}_{D} p(D|\hat{h}) \qquad (\text{predict}) \end{split}$$

MAP vs. Bayes

• Maximum a posteriori (MAP) (regularized optimization):

$$\begin{split} \hat{h} &= \operatorname*{argmax}_{h \in \mathcal{H}} p(h|D) \\ &= \operatorname*{argmax}_{h \in \mathcal{H}} p(D|h) p(h) \qquad (\text{train}) \\ \hat{D} &= \operatorname*{argmax}_{D} p(D|\hat{h}) \qquad (\text{predict}) \end{split}$$

- Bayesian approach (Bayesian linear regression):
 - Predict by integrating over "hidden" parameters:

$$p(\hat{D}|D) = \int_{\mathcal{H}} p(\hat{D}, h|D) dh \qquad (\text{marginalization rule})$$
$$= \int_{\mathcal{H}} p(\hat{D}|h, D) p(h|D) dh \qquad (\text{product rule})$$
$$= \int_{\mathcal{H}} p(\hat{D}|h) p(h|D) dh \qquad (\text{assume } \hat{D} \perp D \mid h)$$

MAP vs. Bayes

• Maximum a posteriori (MAP) (regularized optimization):

$$\begin{split} \hat{h} &= \operatorname*{argmax}_{h \in \mathcal{H}} p(h|D) \\ &= \operatorname*{argmax}_{h \in \mathcal{H}} p(D|h) p(h) \qquad (\text{train}) \\ \hat{D} &= \operatorname*{argmax}_{D} p(D|\hat{h}) \qquad (\text{predict}) \end{split}$$

- Bayesian approach (Bayesian linear regression):
 - Predict by integrating over "hidden" parameters:

$$p(\hat{D}|D) = \int_{\mathcal{H}} p(\hat{D}, h|D) dh \qquad (\text{marginalization rule})$$
$$= \int_{\mathcal{H}} p(\hat{D}|h, D) p(h|D) dh \qquad (\text{product rule})$$
$$= \int_{\mathcal{H}} p(\hat{D}|h) p(h|D) dh \qquad (\text{assume } \hat{D} \perp D \mid h)$$

- Integrate over posterior distribution rather than optimize over it.
- Note that p(D|h) dominates p(h|D) as datasize grows.

3 ingredients for Bayesian analysis of coin flipping:

Use a Bernoulli likelihood for coin X landing 'heads',

$$p(X = H'|\theta) = \theta, \quad p(X = T'|\theta) = 1 - \theta,$$

3 ingredients for Bayesian analysis of coin flipping:

Use a Bernoulli likelihood for coin X landing 'heads',

$$p(X = H'|\theta) = \theta, \quad p(X = T'|\theta) = 1 - \theta,$$

2 Our prior reflects our prior beliefs about θ , we'll assume:

- The coin has a 50% chance of being fair ($\theta = 0.5$).
- The coin has a 50% chance of being rigged ($\theta = 1$).

3 ingredients for Bayesian analysis of coin flipping:

Use a Bernoulli likelihood for coin X landing 'heads',

$$p(X = H'|\theta) = \theta, \quad p(X = T'|\theta) = 1 - \theta,$$

2 Our prior reflects our prior beliefs about θ , we'll assume:

- The coin has a 50% chance of being fair ($\theta = 0.5$).
- The coin has a 50% chance of being rigged ($\theta = 1$).
- Our data consists of three consecutive heads: 'HHH'.

What is the probability that the next coin lands heads?

• Maximum likelihood estimate is $\hat{\theta} = 1$ since

$$1 = p(HHH|\theta = 1) > p(HHH|\theta = 0.5) = 1/8,$$

• MAP estimate is $\hat{\theta} = 1$ since

 $0.5 = p(HHH|\theta = 1)p(\theta = 1) > p(HHH|\theta = 0.5)p(\theta = 0.5) = 1/16,$

- ML and MAP both the say probability is 1.
- But we believed that there was a 50% chance the coin is fair.

Coin Flipping Example: Posterior

What is the probability that the next coin lands heads?

• The posterior probability that $\theta = 1$ is

$$p(\theta = 1|HHH) = \frac{p(HHH|\theta = 1)p(\theta = 1)}{p(HHH)}$$
$$= \frac{p(HHH|\theta = 1)p(\theta = 1)}{p(HHH|\theta = 0.5)p(\theta = 0.5) + p(HHH|\theta = 1)p(\theta = 1)}$$
$$= \frac{(1)(0.5)}{(1/8)(0.5) + (1)(0.5)} = \frac{8}{9},$$

and similarly we have $p(\theta = 0.5|HHH) = \frac{1}{9}$.

Coin Flipping Example: Posterior

What is the probability that the next coin lands heads?

• The posterior probability that $\theta = 1$ is

$$\begin{split} p(\theta = 1|HHH) &= \frac{p(HHH|\theta = 1)p(\theta = 1)}{p(HHH)} \\ &= \frac{p(HHH|\theta = 1)p(\theta = 1)}{p(HHH|\theta = 0.5)p(\theta = 0.5) + p(HHH|\theta = 1)p(\theta = 1)} \\ &= \frac{(1)(0.5)}{(1/8)(0.5) + (1)(0.5)} = \frac{8}{9}, \end{split}$$

and similarly we have $p(\theta = 0.5|HHH) = \frac{1}{9}$.

Posterior predictive distribution is

 $p(H|HHH) = p(H, \theta = 1|HHH) + p(H, \theta = 0.5|HHH)$

 $= p(H|\theta = 1, HHH)p(\theta = 1|HHH) + p(H|\theta = 0.5, HHH)p(\theta = 0.5|HHH)p(\theta = 0.5|HH)p(\theta = 0.5|HH)p($

 $=p(H|\theta=1)p(\theta=1|HHH)+p(H|\theta=0.5)p(\theta=0.5|HHH)$

$$= (1)(8/9) + (0.5)(1/9) = 0.94.$$

• Bayesian prediction uses that HHH could come from fair coin.

- Bayesian prediction uses that HHH could come from fair coin.
- As we see more heads, posterior converges to 1.
 - ML/MLE/Bayes usually agree as data size increases.
- If we ever see a tail, posterior of $\theta = 1$ becomes 0.

- Bayesian prediction uses that HHH could come from fair coin.
- As we see more heads, posterior converges to 1.
 - ML/MLE/Bayes usually agree as data size increases.
- If we ever see a tail, posterior of $\theta = 1$ becomes 0.
- If the prior is correct, then Bayesian estimate is optimal:
 - Bayesian decision theory gives optimal action incorporating costs.

- Bayesian prediction uses that HHH could come from fair coin.
- As we see more heads, posterior converges to 1.
 - ML/MLE/Bayes usually agree as data size increases.
- If we ever see a tail, posterior of $\theta = 1$ becomes 0.
- If the prior is correct, then Bayesian estimate is optimal:
 - Bayesian decision theory gives optimal action incorporating costs.
- If the prior is incorrect, Bayesian estimate may be worse.
 - This is where people get uncomfortable about "subjective" priors.
- But ML/MAP are also based on "subjective" assumptions.

• Summary of topics discussed this week:

- Regularized optimization is usually equivalent to MAP estimation.
- But MAP estimation is sub-optimal.
- Bayesian methods give optimal estimators:
 - Integrate over posterior rather than maximize over the posterior.
- But Bayesian methods require prior beliefs.

• Summary of topics discussed this week:

- Regularized optimization is usually equivalent to MAP estimation.
- But MAP estimation is sub-optimal.
- Bayesian methods give optimal estimators:
 - Integrate over posterior rather than maximize over the posterior.
- But Bayesian methods require prior beliefs.
- Topics for next week:
 - When can we compute the posterior predictive?
 - Are there "non-informative" priors?

Jan 6	Baysics	Mark
Jan 13	Conjugate Priors, Non-Informative Priors	Nasim
Jan 20	Hierarchical Modeling and Bayesian Model Selection	Geoff
Jan 27	Gaussian Processes and Empirical Bayes	Issam
Feb 3	Basic Monte Carlo Methods	Ricky
Feb 10	MCMC	Jason
Feb 24	Bayesian Optimization	Hamed
Mar 2	Variational Bayes	Sharan
Mar 9	Stochastic Variational Inference	Reza
Mar 16	Non-Parametric Bayes 1	Mark
Mary 23	Non-Parametric Bayes 2	Reza
Mar 30	Expectation Propagation	Behrooz
Apr 6	Sequential Monte Carlo and Population MCMC	Julieta
Apr 13	Reversible-Jump MCMC	Rudy
Apr 20	Approximate Bayesian Computation	Alireza