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Current Hot Topics in Machine Learning

Bayesian learning includes:

Gaussian processes.
Approximate inference.
Bayesian nonparametrics.



Why Bayesian Learning in the MLRG?

Standard L2-regularized logistic regression steup:
Given finite dataset containing IID samples.

E.g., samples (xi, yi) with xi ∈ Rd and yi ∈ {−1, 1}.

Predict label ŷ of new example x̂ using weights ŵ,

ŷ = sgn(ŵT x̂).

Find ‘best’ ŵ by minimizing loss function,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)).

Usually add regularization because it “prevents overfitting”,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)) +
λ

2
‖w‖2.

Data was random, so weights ŵ are random variables.
Finds ŵ maximizing p(ŵ|X, y), but predictions are sub-optimal.

Does not consider that p(ŵ|X, y) may be tiny.

Bayesian approach: predictions based on rules of probability.
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ŷ = sgn(ŵT x̂).
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Find ‘best’ ŵ by minimizing loss function,
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Why Bayesian Learning in the MLRG?

Optimization approach only considers h2 so you should take plane.



Why Bayesian Learning in the MLRG?

Bayesian approach averages models: says you shouldn’t take plane.

Bayesian decision theory: take into account cost of different errors.



Why Bayesian Learning in the MLRG?

Motivation for studying Bayesian learning:
1 Optimal decisions using rules of probability and error costs.

2 Gives estimates of variability/confidence.
E.g., this gene has a 70% chance of being relevant.

3 Elegant approaches for model selection and model averaging.
E.g., optimize λ or optimize grouping of w elements.

4 Easy to relax IID assumption.
E.g., hierarchical Bayesian models for data from different sources.

5 Bayesian optimization: fastest rates for some non-convex problems.
6 Allows models with unknown/infinite number of parameters.

E.g., number of clusters or number of states in hidden Markov model.

Why isn’t everyone using this?

Philosophical: Some people don’t like “subjective” prior.
Computational: Typically leads to nasty integration problems.
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Maximum Likelihood vs. Maximum a Posteriori (MAP)

Maximum likelihood (least squares):

ĥ = argmax
h∈H

p(D|h) (train)

D̂ = argmax
D

p(D|ĥ) (predict)

Could choose a very unlikely h that fits data well.

Maximum a posteriori (MAP) (regularized least squares):

ĥ = argmax
h∈H

p(h|D)

= argmax
h∈H

p(D|h)p(h)
p(D)

(Bayes’ rule)

= argmax
h∈H

p(D|h)p(h) (train)

D̂ = argmax
D

p(D|ĥ) (predict)

Prior p(h) penalizes unlikely hypotheses.
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Digression: MAP vs. Regularized Optimization

Consider MAP estimate conditioned on X for linear regression:
Data D is a set of n IID (xi, yi) samples stored in X and y.
Hypothesis h represented by a parameter vector w.
Hypothesis space H is Rd.

ŵ = argmax
w∈Rd

p(w|X, y) (MAP def’n)

= argmax
w∈Rd

p(y|X,w)p(w) (Bayes’, w ⊥ X)

= argmax
w∈Rd

n∏
i=1

[p(yi|xi, w)]p(w) (IID assump)

= argmax
w∈Rd

log

(
n∏

i=1

[p(yi|xi, w)]p(w)

)
(log is monotonic)

= argmax
w∈Rd

n∑
i=1

log p(yi|xi, w) + log p(w) (log(ab) = log(a) + log(b))

= argmin
w∈Rd

−
n∑

i=1

log p(yi|xi, w)− log p(w) (max = min{neg})



Digression: MAP vs. Regularized Optimization

Consider MAP estimate conditioned on X for linear regression:
Data D is a set of n IID (xi, yi) samples stored in X and y.
Hypothesis h represented by a parameter vector w.
Hypothesis space H is Rd.
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Digression: MAP vs. Regularized Optimization

So MAP estimate can be written in the form

ŵ = argmin
w∈Rd

−
n∑

i=1

log p(yi|xi, w)− log p(w),

and by same argument maximum likelihood can be written

ŵ = argmin
w∈Rd

−
n∑

i=1

log p(yi|xi, w),

We obtain our standard models as special cases:

Least squares: yi ∼ N (wTxi, σ
2).

L2-regularized least squares: yi ∼ N (wTxi, σ
2), wj ∼ N (0, 1√

λ
).

L2-regularized logistic regression:
yi ∼ Sigm(wTxi), wj ∼ N (0, 1√

λ
).

L1-regularized logistic regression:
yi ∼ Sigm(wTxi), wj ∼ L(0, 1

λ
).

And so on...
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MAP vs. Bayes

Maximum a posteriori (MAP) (regularized optimization):

ĥ = argmax
h∈H

p(h|D)

= argmax
h∈H

p(D|h)p(h) (train)

D̂ = argmax
D

p(D|ĥ) (predict)

Bayesian approach (Bayesian linear regression):
Predict by integrating over “hidden” parameters:

p(D̂|D) =

∫
H
p(D̂, h|D)dh (marginalization rule)

=

∫
H
p(D̂|h,D)p(h|D)dh (product rule)

=

∫
H
p(D̂|h)p(h|D)dh (assume D̂ ⊥ D | h)

Integrate over posterior distribution rather than optimize over it.
Note that p(D|h) dominates p(h|D) as datasize grows.
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ĥ = argmax
h∈H

p(h|D)

= argmax
h∈H

p(D|h)p(h) (train)

D̂ = argmax
D
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Coin Flipping Example: Model

3 ingredients for Bayesian analysis of coin flipping:

1 Use a Bernoulli likelihood for coin X landing ‘heads’,

p(X = ‘H ′|θ) = θ, p(X = ‘T ′|θ) = 1− θ,

2 Our prior reflects our prior beliefs about θ, we’ll assume:

The coin has a 50% chance of being fair (θ = 0.5).
The coin has a 50% chance of being rigged (θ = 1).

3 Our data consists of three consecutive heads: ‘HHH’.
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Coin Flipping Example: Estimators

What is the probability that the next coin lands heads?

Maximum likelihood estimate is θ̂ = 1 since

1 = p(HHH|θ = 1) > p(HHH|θ = 0.5) = 1/8,

MAP estimate is θ̂ = 1 since

0.5 = p(HHH|θ = 1)p(θ = 1) > p(HHH|θ = 0.5)p(θ = 0.5) = 1/16,

ML and MAP both the say probability is 1.

But we believed that there was a 50% chance the coin is fair.



Coin Flipping Example: Posterior

What is the probability that the next coin lands heads?

The posterior probability that θ = 1 is

p(θ = 1|HHH) =
p(HHH|θ = 1)p(θ = 1)

p(HHH)

=
p(HHH|θ = 1)p(θ = 1)

p(HHH|θ = 0.5)p(θ = 0.5) + p(HHH|θ = 1)p(θ = 1)

=
(1)(0.5)

(1/8)(0.5) + (1)(0.5)
=

8

9
,

and similarly we have p(θ = 0.5|HHH) = 1
9 .

Posterior predictive distribution is

p(H|HHH) = p(H, θ = 1|HHH) + p(H, θ = 0.5|HHH)

= p(H|θ = 1, HHH)p(θ = 1|HHH) + p(H|θ = 0.5, HHH)p(θ = 0.5|HHH)

= p(H|θ = 1)p(θ = 1|HHH) + p(H|θ = 0.5)p(θ = 0.5|HHH)

= (1)(8/9) + (0.5)(1/9) = 0.94.
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Coin Flipping Example: Discussion

Comments on coin flipping example:

Bayesian prediction uses that HHH could come from fair coin.

As we see more heads, posterior converges to 1.

ML/MLE/Bayes usually agree as data size increases.

If we ever see a tail, posterior of θ = 1 becomes 0.

If the prior is correct, then Bayesian estimate is optimal:

Bayesian decision theory gives optimal action incorporating costs.

If the prior is incorrect, Bayesian estimate may be worse.

This is where people get uncomfortable about “subjective” priors.

But ML/MAP are also based on “subjective” assumptions.
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Summary

Summary of topics discussed this week:

Regularized optimization is usually equivalent to MAP estimation.
But MAP estimation is sub-optimal.
Bayesian methods give optimal estimators:

Integrate over posterior rather than maximize over the posterior.

But Bayesian methods require prior beliefs.

Topics for next week:

When can we compute the posterior predictive?
Are there “non-informative” priors?
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Schedule

Jan 6 Baysics Mark
Jan 13 Conjugate Priors, Non-Informative Priors Nasim
Jan 20 Hierarchical Modeling and Bayesian Model Selection Geoff
Jan 27 Gaussian Processes and Empirical Bayes Issam
Feb 3 Basic Monte Carlo Methods Ricky
Feb 10 MCMC Jason
Feb 24 Bayesian Optimization Hamed
Mar 2 Variational Bayes Sharan
Mar 9 Stochastic Variational Inference Reza
Mar 16 Non-Parametric Bayes 1 Mark
Mary 23 Non-Parametric Bayes 2 Reza
Mar 30 Expectation Propagation Behrooz
Apr 6 Sequential Monte Carlo and Population MCMC Julieta
Apr 13 Reversible-Jump MCMC Rudy
Apr 20 Approximate Bayesian Computation Alireza


