
Bayesian Learning

Mark Schmidt

UBC Machine Learning Reading Group

January 2016

Current Hot Topics in Machine Learning

Bayesian learning includes:

Gaussian processes.
Approximate inference.
Bayesian nonparametrics.

Why Bayesian Learning in the MLRG?

Standard L2-regularized logistic regression steup:
Given finite dataset containing IID samples.

E.g., samples (xi, yi) with xi ∈ Rd and yi ∈ {−1, 1}.

Predict label ŷ of new example x̂ using weights ŵ,

ŷ = sgn(ŵT x̂).

Find ‘best’ ŵ by minimizing loss function,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)).

Usually add regularization because it “prevents overfitting”,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)) +
λ

2
‖w‖2.

Data was random, so weights ŵ are random variables.
Finds ŵ maximizing p(ŵ|X, y), but predictions are sub-optimal.

Does not consider that p(ŵ|X, y) may be tiny.

Bayesian approach: predictions based on rules of probability.

Why Bayesian Learning in the MLRG?

Standard L2-regularized logistic regression steup:
Given finite dataset containing IID samples.

E.g., samples (xi, yi) with xi ∈ Rd and yi ∈ {−1, 1}.

Predict label ŷ of new example x̂ using weights ŵ,

ŷ = sgn(ŵT x̂).

Find ‘best’ ŵ by minimizing loss function,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)).

Usually add regularization because it “prevents overfitting”,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)) +
λ

2
‖w‖2.

Data was random, so weights ŵ are random variables.
Finds ŵ maximizing p(ŵ|X, y), but predictions are sub-optimal.

Does not consider that p(ŵ|X, y) may be tiny.

Bayesian approach: predictions based on rules of probability.

Why Bayesian Learning in the MLRG?

Standard L2-regularized logistic regression steup:
Given finite dataset containing IID samples.

E.g., samples (xi, yi) with xi ∈ Rd and yi ∈ {−1, 1}.

Predict label ŷ of new example x̂ using weights ŵ,

ŷ = sgn(ŵT x̂).

Find ‘best’ ŵ by minimizing loss function,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)).

Usually add regularization because it “prevents overfitting”,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)) +
λ

2
‖w‖2.

Data was random, so weights ŵ are random variables.
Finds ŵ maximizing p(ŵ|X, y), but predictions are sub-optimal.

Does not consider that p(ŵ|X, y) may be tiny.

Bayesian approach: predictions based on rules of probability.

Why Bayesian Learning in the MLRG?

Standard L2-regularized logistic regression steup:
Given finite dataset containing IID samples.

E.g., samples (xi, yi) with xi ∈ Rd and yi ∈ {−1, 1}.

Predict label ŷ of new example x̂ using weights ŵ,

ŷ = sgn(ŵT x̂).

Find ‘best’ ŵ by minimizing loss function,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)).

Usually add regularization because it “prevents overfitting”,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)) +
λ

2
‖w‖2.

Data was random, so weights ŵ are random variables.
Finds ŵ maximizing p(ŵ|X, y), but predictions are sub-optimal.

Does not consider that p(ŵ|X, y) may be tiny.

Bayesian approach: predictions based on rules of probability.

Why Bayesian Learning in the MLRG?

Standard L2-regularized logistic regression steup:
Given finite dataset containing IID samples.

E.g., samples (xi, yi) with xi ∈ Rd and yi ∈ {−1, 1}.

Predict label ŷ of new example x̂ using weights ŵ,

ŷ = sgn(ŵT x̂).

Find ‘best’ ŵ by minimizing loss function,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)).

Usually add regularization because it “prevents overfitting”,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)) +
λ

2
‖w‖2.

Data was random, so weights ŵ are random variables.
Finds ŵ maximizing p(ŵ|X, y), but predictions are sub-optimal.

Does not consider that p(ŵ|X, y) may be tiny.

Bayesian approach: predictions based on rules of probability.

Why Bayesian Learning in the MLRG?

Standard L2-regularized logistic regression steup:
Given finite dataset containing IID samples.

E.g., samples (xi, yi) with xi ∈ Rd and yi ∈ {−1, 1}.

Predict label ŷ of new example x̂ using weights ŵ,

ŷ = sgn(ŵT x̂).

Find ‘best’ ŵ by minimizing loss function,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)).

Usually add regularization because it “prevents overfitting”,

ŵ = argmin
w

n∑
i=1

log(1 + exp(−yiwTxi)) +
λ

2
‖w‖2.

Data was random, so weights ŵ are random variables.
Finds ŵ maximizing p(ŵ|X, y), but predictions are sub-optimal.

Does not consider that p(ŵ|X, y) may be tiny.

Bayesian approach: predictions based on rules of probability.

Why Bayesian Learning in the MLRG?

Optimization approach only considers h2 so you should take plane.

Why Bayesian Learning in the MLRG?

Bayesian approach averages models: says you shouldn’t take plane.

Bayesian decision theory: take into account cost of different errors.

Why Bayesian Learning in the MLRG?

Motivation for studying Bayesian learning:
1 Optimal decisions using rules of probability and error costs.

2 Gives estimates of variability/confidence.
E.g., this gene has a 70% chance of being relevant.

3 Elegant approaches for model selection and model averaging.
E.g., optimize λ or optimize grouping of w elements.

4 Easy to relax IID assumption.
E.g., hierarchical Bayesian models for data from different sources.

5 Bayesian optimization: fastest rates for some non-convex problems.
6 Allows models with unknown/infinite number of parameters.

E.g., number of clusters or number of states in hidden Markov model.

Why isn’t everyone using this?

Philosophical: Some people don’t like “subjective” prior.
Computational: Typically leads to nasty integration problems.

Why Bayesian Learning in the MLRG?

Motivation for studying Bayesian learning:
1 Optimal decisions using rules of probability and error costs.
2 Gives estimates of variability/confidence.

E.g., this gene has a 70% chance of being relevant.

3 Elegant approaches for model selection and model averaging.
E.g., optimize λ or optimize grouping of w elements.

4 Easy to relax IID assumption.
E.g., hierarchical Bayesian models for data from different sources.

5 Bayesian optimization: fastest rates for some non-convex problems.
6 Allows models with unknown/infinite number of parameters.

E.g., number of clusters or number of states in hidden Markov model.

Why isn’t everyone using this?

Philosophical: Some people don’t like “subjective” prior.
Computational: Typically leads to nasty integration problems.

Why Bayesian Learning in the MLRG?

Motivation for studying Bayesian learning:
1 Optimal decisions using rules of probability and error costs.
2 Gives estimates of variability/confidence.

E.g., this gene has a 70% chance of being relevant.
3 Elegant approaches for model selection and model averaging.

E.g., optimize λ or optimize grouping of w elements.

4 Easy to relax IID assumption.
E.g., hierarchical Bayesian models for data from different sources.

5 Bayesian optimization: fastest rates for some non-convex problems.
6 Allows models with unknown/infinite number of parameters.

E.g., number of clusters or number of states in hidden Markov model.

Why isn’t everyone using this?

Philosophical: Some people don’t like “subjective” prior.
Computational: Typically leads to nasty integration problems.

Why Bayesian Learning in the MLRG?

Motivation for studying Bayesian learning:
1 Optimal decisions using rules of probability and error costs.
2 Gives estimates of variability/confidence.

E.g., this gene has a 70% chance of being relevant.
3 Elegant approaches for model selection and model averaging.

E.g., optimize λ or optimize grouping of w elements.
4 Easy to relax IID assumption.

E.g., hierarchical Bayesian models for data from different sources.

5 Bayesian optimization: fastest rates for some non-convex problems.
6 Allows models with unknown/infinite number of parameters.

E.g., number of clusters or number of states in hidden Markov model.

Why isn’t everyone using this?

Philosophical: Some people don’t like “subjective” prior.
Computational: Typically leads to nasty integration problems.

Why Bayesian Learning in the MLRG?

Motivation for studying Bayesian learning:
1 Optimal decisions using rules of probability and error costs.
2 Gives estimates of variability/confidence.

E.g., this gene has a 70% chance of being relevant.
3 Elegant approaches for model selection and model averaging.

E.g., optimize λ or optimize grouping of w elements.
4 Easy to relax IID assumption.

E.g., hierarchical Bayesian models for data from different sources.

5 Bayesian optimization: fastest rates for some non-convex problems.

6 Allows models with unknown/infinite number of parameters.
E.g., number of clusters or number of states in hidden Markov model.

Why isn’t everyone using this?

Philosophical: Some people don’t like “subjective” prior.
Computational: Typically leads to nasty integration problems.

Why Bayesian Learning in the MLRG?

Motivation for studying Bayesian learning:
1 Optimal decisions using rules of probability and error costs.
2 Gives estimates of variability/confidence.

E.g., this gene has a 70% chance of being relevant.
3 Elegant approaches for model selection and model averaging.

E.g., optimize λ or optimize grouping of w elements.
4 Easy to relax IID assumption.

E.g., hierarchical Bayesian models for data from different sources.

5 Bayesian optimization: fastest rates for some non-convex problems.
6 Allows models with unknown/infinite number of parameters.

E.g., number of clusters or number of states in hidden Markov model.

Why isn’t everyone using this?

Philosophical: Some people don’t like “subjective” prior.
Computational: Typically leads to nasty integration problems.

Why Bayesian Learning in the MLRG?

Motivation for studying Bayesian learning:
1 Optimal decisions using rules of probability and error costs.
2 Gives estimates of variability/confidence.

E.g., this gene has a 70% chance of being relevant.
3 Elegant approaches for model selection and model averaging.

E.g., optimize λ or optimize grouping of w elements.
4 Easy to relax IID assumption.

E.g., hierarchical Bayesian models for data from different sources.

5 Bayesian optimization: fastest rates for some non-convex problems.
6 Allows models with unknown/infinite number of parameters.

E.g., number of clusters or number of states in hidden Markov model.

Why isn’t everyone using this?

Philosophical: Some people don’t like “subjective” prior.
Computational: Typically leads to nasty integration problems.

Maximum Likelihood vs. Maximum a Posteriori (MAP)

Maximum likelihood (least squares):

ĥ = argmax
h∈H

p(D|h) (train)

D̂ = argmax
D

p(D|ĥ) (predict)

Could choose a very unlikely h that fits data well.

Maximum a posteriori (MAP) (regularized least squares):

ĥ = argmax
h∈H

p(h|D)

= argmax
h∈H

p(D|h)p(h)
p(D)

(Bayes’ rule)

= argmax
h∈H

p(D|h)p(h) (train)

D̂ = argmax
D

p(D|ĥ) (predict)

Prior p(h) penalizes unlikely hypotheses.

Maximum Likelihood vs. Maximum a Posteriori (MAP)

Maximum likelihood (least squares):

ĥ = argmax
h∈H

p(D|h) (train)

D̂ = argmax
D

p(D|ĥ) (predict)

Could choose a very unlikely h that fits data well.

Maximum a posteriori (MAP) (regularized least squares):

ĥ = argmax
h∈H

p(h|D)

= argmax
h∈H

p(D|h)p(h)
p(D)

(Bayes’ rule)

= argmax
h∈H

p(D|h)p(h) (train)

D̂ = argmax
D

p(D|ĥ) (predict)

Prior p(h) penalizes unlikely hypotheses.

Digression: MAP vs. Regularized Optimization

Consider MAP estimate conditioned on X for linear regression:
Data D is a set of n IID (xi, yi) samples stored in X and y.
Hypothesis h represented by a parameter vector w.
Hypothesis space H is Rd.

ŵ = argmax
w∈Rd

p(w|X, y) (MAP def’n)

= argmax
w∈Rd

p(y|X,w)p(w) (Bayes’, w ⊥ X)

= argmax
w∈Rd

n∏
i=1

[p(yi|xi, w)]p(w) (IID assump)

= argmax
w∈Rd

log

(
n∏

i=1

[p(yi|xi, w)]p(w)

)
(log is monotonic)

= argmax
w∈Rd

n∑
i=1

log p(yi|xi, w) + log p(w) (log(ab) = log(a) + log(b))

= argmin
w∈Rd

−
n∑

i=1

log p(yi|xi, w)− log p(w) (max = min{neg})

Digression: MAP vs. Regularized Optimization

Consider MAP estimate conditioned on X for linear regression:
Data D is a set of n IID (xi, yi) samples stored in X and y.
Hypothesis h represented by a parameter vector w.
Hypothesis space H is Rd.

ŵ = argmax
w∈Rd

p(w|X, y) (MAP def’n)

= argmax
w∈Rd

p(y|X,w)p(w) (Bayes’, w ⊥ X)

= argmax
w∈Rd

n∏
i=1

[p(yi|xi, w)]p(w) (IID assump)

= argmax
w∈Rd

log

(
n∏

i=1

[p(yi|xi, w)]p(w)

)
(log is monotonic)

= argmax
w∈Rd

n∑
i=1

log p(yi|xi, w) + log p(w) (log(ab) = log(a) + log(b))

= argmin
w∈Rd

−
n∑

i=1

log p(yi|xi, w)− log p(w) (max = min{neg})

Digression: MAP vs. Regularized Optimization

So MAP estimate can be written in the form

ŵ = argmin
w∈Rd

−
n∑

i=1

log p(yi|xi, w)− log p(w),

and by same argument maximum likelihood can be written

ŵ = argmin
w∈Rd

−
n∑

i=1

log p(yi|xi, w),

We obtain our standard models as special cases:

Least squares: yi ∼ N (wTxi, σ
2).

L2-regularized least squares: yi ∼ N (wTxi, σ
2), wj ∼ N (0, 1√

λ
).

L2-regularized logistic regression:
yi ∼ Sigm(wTxi), wj ∼ N (0, 1√

λ
).

L1-regularized logistic regression:
yi ∼ Sigm(wTxi), wj ∼ L(0, 1

λ
).

And so on...

Digression: MAP vs. Regularized Optimization

So MAP estimate can be written in the form

ŵ = argmin
w∈Rd

−
n∑

i=1

log p(yi|xi, w)− log p(w),

and by same argument maximum likelihood can be written

ŵ = argmin
w∈Rd

−
n∑

i=1

log p(yi|xi, w),

We obtain our standard models as special cases:

Least squares: yi ∼ N (wTxi, σ
2).

L2-regularized least squares: yi ∼ N (wTxi, σ
2), wj ∼ N (0, 1√

λ
).

L2-regularized logistic regression:
yi ∼ Sigm(wTxi), wj ∼ N (0, 1√

λ
).

L1-regularized logistic regression:
yi ∼ Sigm(wTxi), wj ∼ L(0, 1

λ
).

And so on...

MAP vs. Bayes

Maximum a posteriori (MAP) (regularized optimization):

ĥ = argmax
h∈H

p(h|D)

= argmax
h∈H

p(D|h)p(h) (train)

D̂ = argmax
D

p(D|ĥ) (predict)

Bayesian approach (Bayesian linear regression):
Predict by integrating over “hidden” parameters:

p(D̂|D) =

∫
H
p(D̂, h|D)dh (marginalization rule)

=

∫
H
p(D̂|h,D)p(h|D)dh (product rule)

=

∫
H
p(D̂|h)p(h|D)dh (assume D̂ ⊥ D | h)

Integrate over posterior distribution rather than optimize over it.
Note that p(D|h) dominates p(h|D) as datasize grows.

MAP vs. Bayes

Maximum a posteriori (MAP) (regularized optimization):

ĥ = argmax
h∈H

p(h|D)

= argmax
h∈H

p(D|h)p(h) (train)

D̂ = argmax
D

p(D|ĥ) (predict)

Bayesian approach (Bayesian linear regression):
Predict by integrating over “hidden” parameters:

p(D̂|D) =

∫
H
p(D̂, h|D)dh (marginalization rule)

=

∫
H
p(D̂|h,D)p(h|D)dh (product rule)

=

∫
H
p(D̂|h)p(h|D)dh (assume D̂ ⊥ D | h)

Integrate over posterior distribution rather than optimize over it.
Note that p(D|h) dominates p(h|D) as datasize grows.

MAP vs. Bayes

Maximum a posteriori (MAP) (regularized optimization):

ĥ = argmax
h∈H

p(h|D)

= argmax
h∈H

p(D|h)p(h) (train)

D̂ = argmax
D

p(D|ĥ) (predict)

Bayesian approach (Bayesian linear regression):
Predict by integrating over “hidden” parameters:

p(D̂|D) =

∫
H
p(D̂, h|D)dh (marginalization rule)

=

∫
H
p(D̂|h,D)p(h|D)dh (product rule)

=

∫
H
p(D̂|h)p(h|D)dh (assume D̂ ⊥ D | h)

Integrate over posterior distribution rather than optimize over it.
Note that p(D|h) dominates p(h|D) as datasize grows.

Coin Flipping Example: Model

3 ingredients for Bayesian analysis of coin flipping:

1 Use a Bernoulli likelihood for coin X landing ‘heads’,

p(X = ‘H ′|θ) = θ, p(X = ‘T ′|θ) = 1− θ,

2 Our prior reflects our prior beliefs about θ, we’ll assume:

The coin has a 50% chance of being fair (θ = 0.5).
The coin has a 50% chance of being rigged (θ = 1).

3 Our data consists of three consecutive heads: ‘HHH’.

Coin Flipping Example: Model

3 ingredients for Bayesian analysis of coin flipping:

1 Use a Bernoulli likelihood for coin X landing ‘heads’,

p(X = ‘H ′|θ) = θ, p(X = ‘T ′|θ) = 1− θ,

2 Our prior reflects our prior beliefs about θ, we’ll assume:

The coin has a 50% chance of being fair (θ = 0.5).
The coin has a 50% chance of being rigged (θ = 1).

3 Our data consists of three consecutive heads: ‘HHH’.

Coin Flipping Example: Model

3 ingredients for Bayesian analysis of coin flipping:

1 Use a Bernoulli likelihood for coin X landing ‘heads’,

p(X = ‘H ′|θ) = θ, p(X = ‘T ′|θ) = 1− θ,

2 Our prior reflects our prior beliefs about θ, we’ll assume:

The coin has a 50% chance of being fair (θ = 0.5).
The coin has a 50% chance of being rigged (θ = 1).

3 Our data consists of three consecutive heads: ‘HHH’.

Coin Flipping Example: Estimators

What is the probability that the next coin lands heads?

Maximum likelihood estimate is θ̂ = 1 since

1 = p(HHH|θ = 1) > p(HHH|θ = 0.5) = 1/8,

MAP estimate is θ̂ = 1 since

0.5 = p(HHH|θ = 1)p(θ = 1) > p(HHH|θ = 0.5)p(θ = 0.5) = 1/16,

ML and MAP both the say probability is 1.

But we believed that there was a 50% chance the coin is fair.

Coin Flipping Example: Posterior

What is the probability that the next coin lands heads?

The posterior probability that θ = 1 is

p(θ = 1|HHH) =
p(HHH|θ = 1)p(θ = 1)

p(HHH)

=
p(HHH|θ = 1)p(θ = 1)

p(HHH|θ = 0.5)p(θ = 0.5) + p(HHH|θ = 1)p(θ = 1)

=
(1)(0.5)

(1/8)(0.5) + (1)(0.5)
=

8

9
,

and similarly we have p(θ = 0.5|HHH) = 1
9 .

Posterior predictive distribution is

p(H|HHH) = p(H, θ = 1|HHH) + p(H, θ = 0.5|HHH)

= p(H|θ = 1, HHH)p(θ = 1|HHH) + p(H|θ = 0.5, HHH)p(θ = 0.5|HHH)

= p(H|θ = 1)p(θ = 1|HHH) + p(H|θ = 0.5)p(θ = 0.5|HHH)

= (1)(8/9) + (0.5)(1/9) = 0.94.

Coin Flipping Example: Posterior

What is the probability that the next coin lands heads?

The posterior probability that θ = 1 is

p(θ = 1|HHH) =
p(HHH|θ = 1)p(θ = 1)

p(HHH)

=
p(HHH|θ = 1)p(θ = 1)

p(HHH|θ = 0.5)p(θ = 0.5) + p(HHH|θ = 1)p(θ = 1)

=
(1)(0.5)

(1/8)(0.5) + (1)(0.5)
=

8

9
,

and similarly we have p(θ = 0.5|HHH) = 1
9 .

Posterior predictive distribution is

p(H|HHH) = p(H, θ = 1|HHH) + p(H, θ = 0.5|HHH)

= p(H|θ = 1, HHH)p(θ = 1|HHH) + p(H|θ = 0.5, HHH)p(θ = 0.5|HHH)

= p(H|θ = 1)p(θ = 1|HHH) + p(H|θ = 0.5)p(θ = 0.5|HHH)

= (1)(8/9) + (0.5)(1/9) = 0.94.

Coin Flipping Example: Discussion

Comments on coin flipping example:

Bayesian prediction uses that HHH could come from fair coin.

As we see more heads, posterior converges to 1.

ML/MLE/Bayes usually agree as data size increases.

If we ever see a tail, posterior of θ = 1 becomes 0.

If the prior is correct, then Bayesian estimate is optimal:

Bayesian decision theory gives optimal action incorporating costs.

If the prior is incorrect, Bayesian estimate may be worse.

This is where people get uncomfortable about “subjective” priors.

But ML/MAP are also based on “subjective” assumptions.

Coin Flipping Example: Discussion

Comments on coin flipping example:

Bayesian prediction uses that HHH could come from fair coin.

As we see more heads, posterior converges to 1.

ML/MLE/Bayes usually agree as data size increases.

If we ever see a tail, posterior of θ = 1 becomes 0.

If the prior is correct, then Bayesian estimate is optimal:

Bayesian decision theory gives optimal action incorporating costs.

If the prior is incorrect, Bayesian estimate may be worse.

This is where people get uncomfortable about “subjective” priors.

But ML/MAP are also based on “subjective” assumptions.

Coin Flipping Example: Discussion

Comments on coin flipping example:

Bayesian prediction uses that HHH could come from fair coin.

As we see more heads, posterior converges to 1.

ML/MLE/Bayes usually agree as data size increases.

If we ever see a tail, posterior of θ = 1 becomes 0.

If the prior is correct, then Bayesian estimate is optimal:

Bayesian decision theory gives optimal action incorporating costs.

If the prior is incorrect, Bayesian estimate may be worse.

This is where people get uncomfortable about “subjective” priors.

But ML/MAP are also based on “subjective” assumptions.

Coin Flipping Example: Discussion

Comments on coin flipping example:

Bayesian prediction uses that HHH could come from fair coin.

As we see more heads, posterior converges to 1.

ML/MLE/Bayes usually agree as data size increases.

If we ever see a tail, posterior of θ = 1 becomes 0.

If the prior is correct, then Bayesian estimate is optimal:

Bayesian decision theory gives optimal action incorporating costs.

If the prior is incorrect, Bayesian estimate may be worse.

This is where people get uncomfortable about “subjective” priors.

But ML/MAP are also based on “subjective” assumptions.

Summary

Summary of topics discussed this week:

Regularized optimization is usually equivalent to MAP estimation.
But MAP estimation is sub-optimal.
Bayesian methods give optimal estimators:

Integrate over posterior rather than maximize over the posterior.

But Bayesian methods require prior beliefs.

Topics for next week:

When can we compute the posterior predictive?
Are there “non-informative” priors?

Summary

Summary of topics discussed this week:

Regularized optimization is usually equivalent to MAP estimation.
But MAP estimation is sub-optimal.
Bayesian methods give optimal estimators:

Integrate over posterior rather than maximize over the posterior.

But Bayesian methods require prior beliefs.

Topics for next week:

When can we compute the posterior predictive?
Are there “non-informative” priors?

Schedule

Jan 6 Baysics Mark
Jan 13 Conjugate Priors, Non-Informative Priors Nasim
Jan 20 Hierarchical Modeling and Bayesian Model Selection Geoff
Jan 27 Gaussian Processes and Empirical Bayes Issam
Feb 3 Basic Monte Carlo Methods Ricky
Feb 10 MCMC Jason
Feb 24 Bayesian Optimization Hamed
Mar 2 Variational Bayes Sharan
Mar 9 Stochastic Variational Inference Reza
Mar 16 Non-Parametric Bayes 1 Mark
Mary 23 Non-Parametric Bayes 2 Reza
Mar 30 Expectation Propagation Behrooz
Apr 6 Sequential Monte Carlo and Population MCMC Julieta
Apr 13 Reversible-Jump MCMC Rudy
Apr 20 Approximate Bayesian Computation Alireza

