Structural Extensions of
Support Vector Machines

Mark Schmidt
March 30, 2009

Outline

® Formulation:
® Binary SVMs
® Multiclass SVMs
® Structural SVMs
® Training:
® Subgradients
® (Cutting Planes
® Marginal Formulations

® Min-Max Formulations

Topics Not Covered

Optimal separating hyper-planes
Deriving Wolte duals of quadratic programs
The kernel trick, Mercer/Representer theorems

Generalization bounds

Logistic Regression

Model probabilities of binary labels as:

T

p(y; = 1w, x;) x exp(w” x;),
T

p(y; = —1|lw, x;) < exp(—w” xz;),
Train by maximizing likelihood, or minimizing negative
log-likelihood:

min — > logp(yilw, z;).

To make solution unique, add an L2 penalty:
min — > log p(yilw, x;) + Al|w|[3,

Make decisions using the rule:

.1 i p(y = 1w, i) > ply; = — 1w, x;)
YT 1 tp(ys = 1w, 3) < plys = —1|w, 3;)

Linear Separability

If we just want to get the decisions right, then the we require
(for some arbitrary ¢ > 1):

Taking logarithms

> ¢,
Vi log p(yilw, z;) — log p(—yi|w, x;) > logc,
Plugging in probabilities (canceling normalizing constants):
V. 2y, w! x; > loge.
Choose ¢ such that log(c)/2 = 1:
V; yin:(;Z- > 1.

Fixing
We can solve this as a linear feasibility problem:

V; yinxi > 1.

This problem either has no solution, or an infinite number

To make the solution unique with add an L2 penalty:

min Alfw] 3.
w

s.t. ¥ yiwl x> 1,

To make the solution exist we allow ‘slack’ in the constraints,
but penalize the L1-norm of this slack:

rguli?Z§+AHwH§,

st. Viyw x> 1—§&, Vi & >0,

Support Vector Machine

This 1s the primal form of ‘soft-margin’ SVMs:
. A 2’
13}?225 Jwl]3
S.t. \V/z yin:L’i Z 1 — fi, \V/Z §z Z O,

We can also eliminate the slacks and write it as an
unconstrained problem:

min Z(l —ywl)T 4+ N|wl|3,
The ‘hinge’ loss 1s an upper bound on the classification errors

It 1s very similar to logistic regression with L2-regularization:

mui)n — Z log p(y;|w, x;) +)\kuga

Outline

® Formulation:
® Binary SVMs
® Multiclass SVMs
® Structural SVMs
® Training:
® Subgradients
® (Cutting Planes
® Marginal Formulations

® Min-Max Formulations

Multinomial Logistic

® We extend binary logistic regression to multi-class data by
giving each class ‘k’ its own weight vector:
p(y; = klwg, ;) o< exp(wi ;).

® Training 1s the same as before, and we make decisions using:

A

Ui = mlixxp(yz- = klwg, ;).

NK-Slack Multiclass SVMs

® Making the right decisions corresponds to satisfying:

\V/\V/k i) > C
kY p(yz' = k\wk,%)

® Following the same steps as before, we can write this as:

ViViy, wT:z;Z wi x; > 1.

® Adding slacks and L2-regularization yields the ‘NK’-slack
multi-class SVM: mmz N© Gon+ A3,

i kFY;
T T
ViVity,, W, Ti— WpT; 21 =&k, ViVizy, &k =0,

® This can also be written as:

mui}n>: >: (1— wi% T w%fam)* +)\H@UH%,
v kFy;

N-Slack Multiclass SVMs

If instead of writing the constraint on the decision rul as:

p(y; = k|lwk, ;) —

We wrote i1t as:

MaXg£y; p(yi — k|w/€7 337/) N

Then following the same procedure we obtain the ‘N’-slack
multiclass SVM: min 3 & + Alfw][3,
w,E &

ViVksty, wyTCI?z —wix >1—&, V& >0,
Which can be written as the unconstrained optimization:
min Y max(1 —w! z; +wiz;)" + N|wl|3,

w S kty; Ji

Outline

® Formulation:
® Binary SVMs
® Multiclass SVMs
® Structural SVMs
® Training:
® Subgradients
® (Cutting Planes
® Marginal Formulations

® Min-Max Formulations

Conditional Random Fields

The extension of logistic regression to data with multiple
(dependent) labels 1s known as a conditional random field.

For example, a binary chain-CRF with Ising-like potentials

and tied parameters could use:
S—1

S
p(Yilw, X;) o< exp(D i jwh iy + Y Yij¥i 1w T g1,
j=1 j=1

A concise notation for the general case 1s:

p(Yilw, X;) o< exp(w’ F(X;,Y;)),

One possible decision rule 1s:
Y; = max p(Y;|w, X;).

In the case of chains, this 1s Viterb1 decoding

Hidden Markov SVMs

Making the right decisions with Viterbi decoding corresponds
to satisfying:

>
p(Y/|w, X;) =

This 1s equivalent to the set of constraints:

ViVy’ 2y,

ViVy 2y, log p(Yilw, X;) —log p(Y{|w, X;) > 1.
Adding the L2-penalty and using the N-slack penalty:
%1325 + Alfwl]3,

s.t. ViVyszy, logp(Yilw, X;) —log p(Y] |w, X;) > 1 =&, V; § >0

The ‘hidden Markov support vector machine’

Max-Margin Markov Networks

® The constraints in the HMSVM don’t care about the number
of differences between Y1 and Y1’:

ViVy 2y, log p(Yilw, X;) —log p(Y{|w, X;) > 1.

® We might to be the difference in probability to be higher
when the difference 1n labels 1s higher:

ViVy 2y, log p(Yi|w, X;) —log p(Y] |w, X;) > A(Y;, Y]).
® Leading to the QP: min} & +Alw]i,
s.t. ViVyrzy, logp(Yilw, X;) —logp(Y/ |w, X;) > A(Y;, Y]) — &, V& >0,

® This 1s known as a ‘max-margin Markov networks’, or
‘structural SVM’ with ‘margin-rescaling’

Structural SVMs

® Rescaling the constant might make us concentrate on being
much better than sequences that differ at many positions:

® An alternative 1s to rescale the slacks based on the difference

between sequences:
Vi¥y 2y, log p(Yilw, X;) —log p(Y'|w, X;) > 1 - &§/A(Y;,Y]), Vi€ > 0.

® [.cading to the QP:

s.t. Vi¥yrzy, log p(Yilw, X;) —logp(Y] |w, X3) > 1 —&/A(Y;,Y]), V& > 0.

® This 1s known as a ‘structural SVM’ with ‘slack-rescaling’

Summary

® Unconstrained formulations of structural extensions:

(HMSVM) m&“Zé?Qé(l —log p(Yi|w, X;) +log p(Y; |w, X;))™ + Al [3,
(MMMN) mqgnZ;?%(A(% Y;) —log p(Yi|w, X;) +log p(Y; |w, X;)) ™ + AlJwl |3,
(SSVM) mgnz max (A(Y;, Y;)(1 — log p(Yi|w, X;) + log p(¥/|w, X))+ Awl[3.
® Since delta(Y1,Y1)=0, we simplifty MMMN and SSVM.:
(MMMN) mmZmaX (Y3, Y) + log p(Y! |w, X;)) — log p(Y;|w, X;) + A||w||?,
(SSVM) min) max(A(Y;, Y)(1 —log p(Yi|w, X;) +log p(Y{ |w, X;))) + Alfwl]5.

1

® This allows us to use Viterbi decoding with a modified input
to compute the max values.

Beyond Chains

(MMMN) mmZmax (Y;,Y/)) +log p(Y/ |w, X;)) — log p(Yi|w, X;) + A||w||3,

(SSVM) mmZmax (Y3, Y)Y (1 = log p(Yilw, X;) + log p(Y] |w, X3))) + Al|w||3.

® We can compute these objective value anytime we can do decoding in
the model:

® Trees and low-treewidth graphs
® (Context-free grammars
® General graphs with sub-modular potentials™
® Weighted bipartite matching™
® °*: #P-hard to train conditional random field

® We can also plug 1in an approximate decoding or convex relaxation of
decoding

Outline

® Formulation:
® Binary SVMs
® Multiclass SVMs
® Structural SVMs
® Training:
® Subgradients
® (Cutting Planes
® Marginal Formulations

® Min-Max Formulations

Subgradients

Our objective function 1s:

f(w) = max(A(Y;, Y{) + log p(Y;'|w, X;)) — log p(Yi|w, X;) + AlJwl 3.

7

If Y17’ 1s an argmax of the max, a subgradient 1s:
g(w) = Z Vau log p(Y;" |w, X;) — V., log p(Yi|w, X;) + 2 w.
Consider {he step:
Wi+1 = W — Neg(W)-
For small enough eta, this will:
® always move us toward the optimal solution

® decrease the objective function when the argmax 1s unique

Subgradient descent

We can therefore consider optimization algorithms of the form:

Wrt1 = Wk — Mkg(Wk)-
Common choices of step size are constant, or a sequence

satisfying: > >
2
Mk =00,)1 < oo

Update based on a single training example:
gi(w) = Vy log p(Y)'|w, X;) — Vi, log p(Yi|w, X;) + (2/N) Aw,

Average the iterations: ;| = wy — ng;(wy),

kE—1 _ +1
Wk + —Wk+1-
. Wk T Wk

Project onto a compact set containing the solution:

We4+1 = W(wk — ng(wk)),

Wi+l =

Some Convergence Rates

Projected batch SD (diminishing step sizes): O(1/eps)

Averaged stochastic SD (constant step sizes): O(1/eps?),
asymptotic variance

Stochastic projected SD (dimishing step sizes): O(1/(d eps))
w.p. 1-d

Averaged stochastic projected SD (constant step sizes): ?,
asymptotic variance

Batch SD (constant step sizes): O(log(1/eps)) to get within
bounded region of optimal (bound depends on lambda and
bound on sub-differential)

Outline

® Formulation:
® Binary SVMs
® Multiclass SVMs
® Structural SVMs
® Training:
® Subgradients
® Cutting Planes
® Marginal Formulations

® Min-Max Formulations

Cutting Plane Methods

The problem with the QP formulation 1s that it has an exponential
number of constraints:

st. ViVy log p(Yi|w, X;) —logp(Y|w, Xi) > A(Y;,Y]) — &, Vi€ > 0.

But, there always exists a polynomial-sized set that satisfies all
constraints up to an accuracy of eps.

Basic 1dea behind cutting plane method:
® use decoding to find out 1f all constraints are satisfied

® if not, greedily add a constraint

QP Cutting Plane Method

® (utting plane method:
® we have a working set of constraints
® iterate over training examples:
® if decoding does not violate constraints, continue
® otherwise, add constraint to working set and solve QP
® stop if no changes in working set

® Solving these QPs in the dual 1s efficient, as long as the working
set 1s small.

® At most O(l/eps) constraints are required.

Convex Cutting Plane

There also exist ‘cutting plane’ methods for solving (non-
smooth) convex optimization problems

We can apply these to the unconstrained formulation:
Zmax (Y3, Y)) + log p(Y; |w, X;)) — log p(Y;|w, X;) + A||w]|3.

Basic 1dea. any subgradient gives a lower bounding hyper-
plane

T
fw) = fwo) + (w — wo)” g(wo),
Cutting plane for non-smooth optimization:
® Find minimum over these lower bounds

® Use minimum to make better lower bound

Bundle Methods

Problem: minimum of lower bound may be far away from
current solution.

Bundle method: minimize lower bound subject to L2-penalty
on distance from current solution ||wy_1 — wyg]|3

Combined cutting-plane/bundle-method: use the L2-penalty
already present in the objective, and build a lower bound on
the hinge loss

Combined method requires at most O(1/eps) iterations.

Outline

® Formulation:
® Binary SVMs
® Multiclass SVMs
® Structural SVMs
® Training:
® Subgradients
® (Cutting Planes
® Marginal Formulations

® Min-Max Formulations

Poly-sized Formulations

® The previous two strategies use the graph structure to allow
efficient decoding.

® An alternative strategy is to use the graph structure to re-
parameterize our quadratic program.

® Although we can also do this for the primal, this can be
shown more directly for the dual problem...

Dual MMMN

® Solving the MMMN QP 1s equivalent to solving the
following QP:

maxYS‘az A(Y;, YY) ——S‘S‘S‘Yo{z Y)AF,(Y)) T AF;(Y)),

1
st Vi Y oap(Y)) = R Vi Vy oy (Y/) > 0.
Y/

® Notes:
® this QP has an exponential number of constraints/variables

® the constraints take the form of an unnormalized
distribution over label configurations

® We are going to write this QP 1n terms of marginals of this
distribution

Marginal Representation

If the distribution factorizes into node and edge potentials,
we can write the marginals of the distribution as:
pilyi) = Y au(Yy),

Yi,N[yij]

i (Yigs Yik) = Z a;(Y7),

Y/ ~yijYir]

We must satisty the constraints of the original problem:
1
ViV wi(yi;) > 0, V5 Zuz(yzg) ~on
j

We also need the node and edge marginals to lie in the
‘marginal polytope’. For chains/trees/forests, it 1s sufficient
to enforce a local consistency condition:

ViVimer Y ki vir) = i(in)s ViVimyer (Wi, yir) > 0.
YiJ

Polynomial-Sized Dual

® We can re-write the first set of terms 1n the dual using these
marginals:

ZO@(Y/)A(Y@,Y’ S‘S‘az YA (v, yis) = S:S:Aj(yij,yéj)/%(y:;j)-
Y/ ' /

J v
® We can similarly wr1te the second set of terms, yielding a
polynomial-sized version of the dual problem:

ml?x y: y: y: Aj (yija ?Jéj)ﬂi(ygg‘)_

2 YS‘ S‘ Z Z Z fi ywvyzk i’ (yz 'j ’yz w) Fi (X’“y’tj’y@k)TFz(Xi’y;/j/’yg/k/%

i (J,k)EE (3',k")EE Y5, ,Y5p Yy

1

st. ViV pi(yi;) >0, Y, Zﬂz(yw) = o\

J

ViViikeE Zﬂi(yija Yik) = 1i(Yik)s ViV ryer ti(Yij, Vi) = 0.
YiJ

® ‘Structural SMO’; coordinate descent on this problem

Exponentiated Gradient

® An alternative to using an explicity formulation of the dual 1s
to use an 1implicit formulation apply the exponentiated
gradient (EG) algorithm.

® The EG algorithm solves optimization problem where the
variables take the form of a distribution:

® LG steps take the form:
zi exp(—nVif(x))
i Tir exp(—nVi f(x))

Lq —

Exponentiated Gradient

It 1s possible to derive a dual where the variables alpha
represent a normalized distribution.

In this case, we can apply the batch or online EG algorithm.

To make the iterations efficient, an implicit representation for
alpha that factorizes according to the graph 1s used.

The algorithm requires O(1/eps) iterations to reach an eps-
accurate solution.

Performing the updates using this implicit representation
requires inference, instead of just decoding
(so 1t can’t be applied 1n general)

Outline

® Formulation:
® Binary SVMs
® Multiclass SVMs
® Structural SVMs
® Training:
® Subgradients
® (Cutting Planes
® Marginal Formulations

® Min-Max Formulations

Min-Max Formulations

® Rather than dealing with the exponential number of
constraints linear:

s.t. ViVy log p(Yi|w, X;) —logp(Y|w, Xi) > A(Y;,Y]) — &, Vi€ > 0.

® We could just use one non-linear constraint for each training
example:

rgiglz{z- + Alfw[3,
st Vilogp(Yilw, X;) + & > maxlog p(Y|w, Xi) + A(Y;, Y]), Vi&i = 0.

® In this formulation, we have a constraint on the optimal
decoding.

Linear Programming

® The min-max formulation 1s useful 1s when the optimal
decoding can be formulated as a linear program:

max wBz s.t. 2z >0, Az <,
Z

® In this case we can write out the dual of this problem:

min blz sit. 2>0, Alz> (wB)T.

® And plug it in to the min-max formulation:

sit. Vilogp(Yilw, X;) + & >blz, V& >0, 2>0, A'z> (wB)’.

® This 1s like changing the max over Z into a max over R

Extragradient Method

An alternative to plugging the linear program into the QP
formulation 1s to plug it into the unconstrained formulation:

min max A||lwl|5 + ZwTFq;ZZ- +cfzi—w F(X,Y),
weW zeZ .

This problem can be solved using the extragradient method:

w? =y (w — Ve, L(w, 2)),

Zf = 7'('2(21@' + nVZiL(w, Z)),
w® = my(w — NV, L(w?
(

2P)),
2P)).

The projection onto Z can be formulated as a quadratic-cost
network flow problem.

Z’LC — 7-‘-Z(Z’i + nvzzL wpa

The step size 1s chosen by backtracking, and the algorithm
has a linear convergence rate, O(log(1/eps))

Comments on rates of convergence

® O(l/eps?) 1s incredibly, incredibly slow
® O(l/eps) 1s still incredibly slow (‘sub-linear’ convergence)

® O(log(1/eps)) can be tast, slow, or somewhere in between
(‘linear convergence’)

® O(log log(1l/eps)) 1s fast (‘quadratic’ convergence)

® Open question: can we get a practical O(log log(1/eps))
algorithm, or an O(log(1/eps)) algorithm with a provably nice
constant in the rate of convergence.

