
Structural Extensions of
Support Vector Machines

Mark Schmidt
March 30, 2009

Outline
• Formulation:

• Binary SVMs

• Multiclass SVMs

• Structural SVMs

• Training:

• Subgradients

• Cutting Planes

• Marginal Formulations

• Min-Max Formulations

Topics Not Covered

• Optimal separating hyper-planes

• Deriving Wolfe duals of quadratic programs

• The kernel trick, Mercer/Representer theorems

• Generalization bounds

Logistic Regression
• Model probabilities of binary labels as:

• Train by maximizing likelihood, or minimizing negative
log-likelihood:

• To make solution unique, add an L2 penalty:

• Make decisions using the rule:

A Note on Structural Extensions of SVMs

Mark Schmidt

March 30, 2009

1 Introduction

This document is intended as an introduction to structural extensions of support vector machines for those
who are familiar with logistic regression (binary and multinomial) and discrete-state probabilistic graphical
models (in particular, conditional random fields). No prior knowledge about support vector machines is
assumed. The outline is as follows

• §2 motivates and outlines binary support vector machines. The contents of this section are standard,
and the reader is referred to [Vapnik, 1995] for more details. However, we will follow a non-standard
presentation; instead of motivating support vector machines from the point of view of optimal separat-
ing hyper-planes, we focus on the relationship between logistic regression and support vector machines
through likelihood ratios, a viewpoint due to SVN Vishwanthan.

• §3 discusses multi-class generalizations of binary suppport vector machines, focusing on the NK-slack
formulation of [Weston and Watkins, 1999], and the N -slack formulation of [Crammer and Singer, 2001].

• §4 discusses extensions of the N -slack multi-class support vector machine that can model data with
structured output spaces. In particular, this section focuses on hidden Markov support vector machines
[Altun et al., 2003, Joachims, 2003], max-margin Markov networks [Taskar et al., 2003], and structural
support vector machines [Tsochantaridis et al., 2004].

• §5 (in progress) will discuss solving the optimization problems in §4. There are four main approaches:
(1) sub-gradient methods
[Collins, 2002, Altun et al., 2003, Zhang, 2004, Shalev-Shwartz et al., 2007],
(2) cutting plane and bundle methods
[Tsochantaridis et al., 2004, Joachims, 2006, Teo et al., 2007, Smola et al., 2008, Joachims et al., 2009],
(3) polynomial-sized reformulations [Taskar et al., 2003, Bartlett et al., 2005, Collins et al., 2008], and
(4) min-max formulations [Taskar et al., 2004, Taskar et al., 2006b, Taskar et al., 2006a].

Some of the things that will not be covered in this documentation are a discussion of optimal separating
hyper-planes, deriving the Wolfe dual formulations, the kernel trick, and computational learning theory.
[Lacoste-Julien, 2003] is an accessible introduction to max-margin Markov networks that discusses these
topics, and also contains introductory material on graphical models and conditional random fields.

2 Support Vector Machines

We first look at binary classification with an N by P design matrix X, and an N by 1 vector of class labels
y with yi ∈ {−1, 1}. We will ignore the bias term to simplify presentation, and consider probabilities for the
class labels that are proportional to the exponential of a linear function of the data,

p(yi = 1|w, xi) ∝ exp(wT xi),

1

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

Linear Separability
• If we just want to get the decisions right, then the we require

(for some arbitrary c > 1):

• Taking logarithms

• Plugging in probabilities (canceling normalizing constants):

• Choose c such that log(c)/2 = 1:

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

Fixing
• We can solve this as a linear feasibility problem:

• This problem either has no solution, or an infinite number

• To make the solution unique with add an L2 penalty:

• To make the solution exist we allow ‘slack’ in the constraints,
but penalize the L1-norm of this slack:

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

Support Vector Machine
• This is the primal form of ‘soft-margin’ SVMs:

• We can also eliminate the slacks and write it as an
unconstrained problem:

• The ‘hinge’ loss is an upper bound on the classification errors

• It is very similar to logistic regression with L2-regularization:

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

which has P + N variables and is the primal form of support vector machines. Specifically, this is what is
known as a soft-margin support vector machine [Vapnik, 1995]. The support vectors are those data points
where the non-negativity constraint holds with equality (to keep the presentation simple, we will not discuss
the dual form or the ‘kernel trick’).

By re-arranging the constraints, we have that for all i, ξi ≥ 0 and ξi ≥ 1 − yiwT xi, and therefore we
know that ξi ≥ max{0, 1− yiwT xi}. Further, since we are directly minimizing a linear function of ξi, we can
show that the following minimization

min
w

∑

i

(1− yiw
T xi)+ + λ||w||22,

where we use (z)+ to denote max{0, z}, has the same solution as the primal form of support vector machines.
This is an unconstrained but non-differentiable problem in P variables1. The term

∑
i(1−yiwT xi)+ is known

as the hinge loss, and is an upper bound on the number of classification errors.
To summarize, #2-regularized logistic regression and support vector machines are closely related. They

employ a very similar model and use the same regularization, but differ in that logistic regression seeks to
maximize the (penalized) likelihood (a log-concave smooth approximation to the number of classification
errors), while support vector machines seek to minimize the (penalized) constraint violations in a set of
conditions on the likelihood ratios (a convex piecewise-linear upper bound on the number of classification
errors).

3 Multi-Class Support Vector Machines

Viewed from the optimal separating hyper-plane perspective, it is not immediately clear how to extend
binary support vector machines to the case where we consider K possible class labels. Most attempts at
developing multi-class support vector machines concentrate on producing a multi-class classifier by combining
the decisions made by a set of independent binary classifiers, a popular approach of this type is to use error-
correcting output codes [Dietterich and Bakiri, 1995]. However, the likelihood ratio perspective of support
vector machines suggests an obvious generalization to the multi-class scenario by analogy to the extensions
of logistic regression to the multi-class scenario.

A natural generalization of the binary logistic regression classifier to the case of a K-class problem is to
use a weight vector wk for each class

p(yi = k|wk, xi) ∝ exp(wT
k xi).

Parameter estimation is performed as in the binary case, and we are lead to the decision rule

ŷi = max
k

p(yi = k|wk, xi).

Viewed in terms of likelihood ratios, we would like our decision rule to satisfy the constraint

∀i∀k !=yi ,
p(yi|w, xi)

p(yi = k|wk, xi)
≥ c

Following the same steps as before, we arrive at a set of linear constraints of the form

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1.

We will again consider the minimizing #2-norm of w (concatenating all K of the wk vectors into one large
vector), and introduce slack variables to allow for constraint violation. However, there are different ways

1If we instead considered penalizing the squared !2-norm of the slack variables, then we can re-write the problem as a
differentiable unconstrained optimization. This smooth support vector machine is due to [Lee and Mangasarian, 2001]

3

p(yi = −1|w, xi) ∝ exp(−wT xi),

Using these class probabilities is equivalent to using a logistic regression model, and we can estimate the
parameters w by maximizing the likelihood of the training data, or equivalently minimizing the negative
log-likelihood

min
w
−

∑

i

log p(yi|w, xi).

The solution to this problem is not necessarily unique (and the optimal parameters may be unbounded). To
yield a unique solution (and avoid over-fitting), we typically add a penalty on the !2-norm of the parameter
vector and compute a penalized maximum likelihood estimate

min
w
−

∑

i

log p(yi|w, xi) + λ||w||22,

where the scalar λ controls the strength of the regularizer. With an estimate of the parameter w, we can
classify a data point xi using

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

.

But what if our goal isn’t to have a good model p(yi|w, xi), but rather to make the right decision for all
our training set points? We can express this in terms of the following condition on the likelihood ratios

∀i
p(yi|w, xi)

p(−yi|w, xi)
≥ c,

where c > 1. The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also
satisfy it for any c′ > 1 by re-scaling w. Taking logarithms, we can re-write this condition as

∀i log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c,

and plugging in the definitions of p(yi|w, xi) we can write this as

∀i 2yiw
T xi ≥ log c.

Since c is an arbitrary constant greater than 1, we will pick c so that (1/2) log c = 1, so that our conditions
can be written in a very simple form

∀i yiw
T xi ≥ 1.

This is a linear feasibility problem, and it can be solved using techniques from linear programming. However,
one of two things will go wrong: (i) the solution may not be unique, or (ii) there may be no solution. As
before, we can make the parameters identifiable by using an !2-norm regularizer, which leads to a quadratic
program

min
w

λ||w||22,

s.t. ∀i yiw
T xi ≥ 1,

In this case, the choice of λ is arbitrary since solving this quadratic program will yield the solution with
smallest !2 norm for any λ > 0. To address the case where the linear feasibility problem has no solution, we
will introduce a non-negative slack variable ξi for each training case that allows the constraint to be violated
for that instance, but we will penalize the !1-norm of ξ to try and minimize the violation of the constraints.
This yields the quadratic program

min
w,ξ

∑

i

ξ + λ||w||22,

s.t. ∀i yiw
T xi ≥ 1− ξi, ∀i ξi ≥ 0,

2

Outline
• Formulation:

• Binary SVMs

• Multiclass SVMs

• Structural SVMs

• Training:

• Subgradients

• Cutting Planes

• Marginal Formulations

• Min-Max Formulations

Multinomial Logistic

• We extend binary logistic regression to multi-class data by
giving each class ‘k’ its own weight vector:

• Training is the same as before, and we make decisions using:

which has P + N variables and is the primal form of support vector machines. Specifically, this is what is
known as a soft-margin support vector machine [Vapnik, 1995]. The support vectors are those data points
where the non-negativity constraint holds with equality (to keep the presentation simple, we will not discuss
the dual form or the ‘kernel trick’).

By re-arranging the constraints, we have that for all i, ξi ≥ 0 and ξi ≥ 1 − yiwT xi, and therefore we
know that ξi ≥ max{0, 1− yiwT xi}. Further, since we are directly minimizing a linear function of ξi, we can
show that the following minimization

min
w

∑

i

(1− yiw
T xi)+ + λ||w||22,

where we use (z)+ to denote max{0, z}, has the same solution as the primal form of support vector machines.
This is an unconstrained but non-differentiable problem in P variables1. The term

∑
i(1−yiwT xi)+ is known

as the hinge loss, and is an upper bound on the number of classification errors.
To summarize, #2-regularized logistic regression and support vector machines are closely related. They

employ a very similar model and use the same regularization, but differ in that logistic regression seeks to
maximize the (penalized) likelihood (a log-concave smooth approximation to the number of classification
errors), while support vector machines seek to minimize the (penalized) constraint violations in a set of
conditions on the likelihood ratios (a convex piecewise-linear upper bound on the number of classification
errors).

3 Multi-Class Support Vector Machines

Viewed from the optimal separating hyper-plane perspective, it is not immediately clear how to extend
binary support vector machines to the case where we consider K possible class labels. Most attempts at
developing multi-class support vector machines concentrate on producing a multi-class classifier by combining
the decisions made by a set of independent binary classifiers, a popular approach of this type is to use error-
correcting output codes [Dietterich and Bakiri, 1995]. However, the likelihood ratio perspective of support
vector machines suggests an obvious generalization to the multi-class scenario by analogy to the extensions
of logistic regression to the multi-class scenario.

A natural generalization of the binary logistic regression classifier to the case of a K-class problem is to
use a weight vector wk for each class

p(yi = k|wk, xi) ∝ exp(wT
k xi).

Parameter estimation is performed as in the binary case, and we are lead to the decision rule

ŷi = max
k

p(yi = k|wk, xi).

Viewed in terms of likelihood ratios, we would like our decision rule to satisfy the constraint

∀i∀k !=yi ,
p(yi|w, xi)

p(yi = k|wk, xi)
≥ c

Following the same steps as before, we arrive at a set of linear constraints of the form

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1.

We will again consider the minimizing #2-norm of w (concatenating all K of the wk vectors into one large
vector), and introduce slack variables to allow for constraint violation. However, there are different ways

1If we instead considered penalizing the squared !2-norm of the slack variables, then we can re-write the problem as a
differentiable unconstrained optimization. This smooth support vector machine is due to [Lee and Mangasarian, 2001]

3

which has P + N variables and is the primal form of support vector machines. Specifically, this is what is
known as a soft-margin support vector machine [Vapnik, 1995]. The support vectors are those data points
where the non-negativity constraint holds with equality (to keep the presentation simple, we will not discuss
the dual form or the ‘kernel trick’).

By re-arranging the constraints, we have that for all i, ξi ≥ 0 and ξi ≥ 1 − yiwT xi, and therefore we
know that ξi ≥ max{0, 1− yiwT xi}. Further, since we are directly minimizing a linear function of ξi, we can
show that the following minimization

min
w

∑

i

(1− yiw
T xi)+ + λ||w||22,

where we use (z)+ to denote max{0, z}, has the same solution as the primal form of support vector machines.
This is an unconstrained but non-differentiable problem in P variables1. The term

∑
i(1−yiwT xi)+ is known

as the hinge loss, and is an upper bound on the number of classification errors.
To summarize, #2-regularized logistic regression and support vector machines are closely related. They

employ a very similar model and use the same regularization, but differ in that logistic regression seeks to
maximize the (penalized) likelihood (a log-concave smooth approximation to the number of classification
errors), while support vector machines seek to minimize the (penalized) constraint violations in a set of
conditions on the likelihood ratios (a convex piecewise-linear upper bound on the number of classification
errors).

3 Multi-Class Support Vector Machines

Viewed from the optimal separating hyper-plane perspective, it is not immediately clear how to extend
binary support vector machines to the case where we consider K possible class labels. Most attempts at
developing multi-class support vector machines concentrate on producing a multi-class classifier by combining
the decisions made by a set of independent binary classifiers, a popular approach of this type is to use error-
correcting output codes [Dietterich and Bakiri, 1995]. However, the likelihood ratio perspective of support
vector machines suggests an obvious generalization to the multi-class scenario by analogy to the extensions
of logistic regression to the multi-class scenario.

A natural generalization of the binary logistic regression classifier to the case of a K-class problem is to
use a weight vector wk for each class

p(yi = k|wk, xi) ∝ exp(wT
k xi).

Parameter estimation is performed as in the binary case, and we are lead to the decision rule

ŷi = max
k

p(yi = k|wk, xi).

Viewed in terms of likelihood ratios, we would like our decision rule to satisfy the constraint

∀i∀k !=yi ,
p(yi|w, xi)

p(yi = k|wk, xi)
≥ c

Following the same steps as before, we arrive at a set of linear constraints of the form

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1.

We will again consider the minimizing #2-norm of w (concatenating all K of the wk vectors into one large
vector), and introduce slack variables to allow for constraint violation. However, there are different ways

1If we instead considered penalizing the squared !2-norm of the slack variables, then we can re-write the problem as a
differentiable unconstrained optimization. This smooth support vector machine is due to [Lee and Mangasarian, 2001]

3

NK-Slack Multiclass SVMs
• Making the right decisions corresponds to satisfying:

• Following the same steps as before, we can write this as:

• Adding slacks and L2-regularization yields the ‘NK’-slack
multi-class SVM:

• This can also be written as:

which has P + N variables and is the primal form of support vector machines. Specifically, this is what is
known as a soft-margin support vector machine [Vapnik, 1995]. The support vectors are those data points
where the non-negativity constraint holds with equality (to keep the presentation simple, we will not discuss
the dual form or the ‘kernel trick’).

By re-arranging the constraints, we have that for all i, ξi ≥ 0 and ξi ≥ 1 − yiwT xi, and therefore we
know that ξi ≥ max{0, 1− yiwT xi}. Further, since we are directly minimizing a linear function of ξi, we can
show that the following minimization

min
w

∑

i

(1− yiw
T xi)+ + λ||w||22,

where we use (z)+ to denote max{0, z}, has the same solution as the primal form of support vector machines.
This is an unconstrained but non-differentiable problem in P variables1. The term

∑
i(1−yiwT xi)+ is known

as the hinge loss, and is an upper bound on the number of classification errors.
To summarize, #2-regularized logistic regression and support vector machines are closely related. They

employ a very similar model and use the same regularization, but differ in that logistic regression seeks to
maximize the (penalized) likelihood (a log-concave smooth approximation to the number of classification
errors), while support vector machines seek to minimize the (penalized) constraint violations in a set of
conditions on the likelihood ratios (a convex piecewise-linear upper bound on the number of classification
errors).

3 Multi-Class Support Vector Machines

Viewed from the optimal separating hyper-plane perspective, it is not immediately clear how to extend
binary support vector machines to the case where we consider K possible class labels. Most attempts at
developing multi-class support vector machines concentrate on producing a multi-class classifier by combining
the decisions made by a set of independent binary classifiers, a popular approach of this type is to use error-
correcting output codes [Dietterich and Bakiri, 1995]. However, the likelihood ratio perspective of support
vector machines suggests an obvious generalization to the multi-class scenario by analogy to the extensions
of logistic regression to the multi-class scenario.

A natural generalization of the binary logistic regression classifier to the case of a K-class problem is to
use a weight vector wk for each class

p(yi = k|wk, xi) ∝ exp(wT
k xi).

Parameter estimation is performed as in the binary case, and we are lead to the decision rule

ŷi = max
k

p(yi = k|wk, xi).

Viewed in terms of likelihood ratios, we would like our decision rule to satisfy the constraint

∀i∀k !=yi ,
p(yi|w, xi)

p(yi = k|wk, xi)
≥ c

Following the same steps as before, we arrive at a set of linear constraints of the form

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1.

We will again consider the minimizing #2-norm of w (concatenating all K of the wk vectors into one large
vector), and introduce slack variables to allow for constraint violation. However, there are different ways

1If we instead considered penalizing the squared !2-norm of the slack variables, then we can re-write the problem as a
differentiable unconstrained optimization. This smooth support vector machine is due to [Lee and Mangasarian, 2001]

3

which has P + N variables and is the primal form of support vector machines. Specifically, this is what is
known as a soft-margin support vector machine [Vapnik, 1995]. The support vectors are those data points
where the non-negativity constraint holds with equality (to keep the presentation simple, we will not discuss
the dual form or the ‘kernel trick’).

By re-arranging the constraints, we have that for all i, ξi ≥ 0 and ξi ≥ 1 − yiwT xi, and therefore we
know that ξi ≥ max{0, 1− yiwT xi}. Further, since we are directly minimizing a linear function of ξi, we can
show that the following minimization

min
w

∑

i

(1− yiw
T xi)+ + λ||w||22,

where we use (z)+ to denote max{0, z}, has the same solution as the primal form of support vector machines.
This is an unconstrained but non-differentiable problem in P variables1. The term

∑
i(1−yiwT xi)+ is known

as the hinge loss, and is an upper bound on the number of classification errors.
To summarize, #2-regularized logistic regression and support vector machines are closely related. They

employ a very similar model and use the same regularization, but differ in that logistic regression seeks to
maximize the (penalized) likelihood (a log-concave smooth approximation to the number of classification
errors), while support vector machines seek to minimize the (penalized) constraint violations in a set of
conditions on the likelihood ratios (a convex piecewise-linear upper bound on the number of classification
errors).

3 Multi-Class Support Vector Machines

Viewed from the optimal separating hyper-plane perspective, it is not immediately clear how to extend
binary support vector machines to the case where we consider K possible class labels. Most attempts at
developing multi-class support vector machines concentrate on producing a multi-class classifier by combining
the decisions made by a set of independent binary classifiers, a popular approach of this type is to use error-
correcting output codes [Dietterich and Bakiri, 1995]. However, the likelihood ratio perspective of support
vector machines suggests an obvious generalization to the multi-class scenario by analogy to the extensions
of logistic regression to the multi-class scenario.

A natural generalization of the binary logistic regression classifier to the case of a K-class problem is to
use a weight vector wk for each class

p(yi = k|wk, xi) ∝ exp(wT
k xi).

Parameter estimation is performed as in the binary case, and we are lead to the decision rule

ŷi = max
k

p(yi = k|wk, xi).

Viewed in terms of likelihood ratios, we would like our decision rule to satisfy the constraint

∀i∀k !=yi ,
p(yi|w, xi)

p(yi = k|wk, xi)
≥ c

Following the same steps as before, we arrive at a set of linear constraints of the form

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1.

We will again consider the minimizing #2-norm of w (concatenating all K of the wk vectors into one large
vector), and introduce slack variables to allow for constraint violation. However, there are different ways

1If we instead considered penalizing the squared !2-norm of the slack variables, then we can re-write the problem as a
differentiable unconstrained optimization. This smooth support vector machine is due to [Lee and Mangasarian, 2001]

3

to introduce the slack variables. The original method of [Weston and Watkins, 1999] introduces one slack
variable for each of these constraints;

min
w,ξ

∑

i

∑

k !=yi

ξi,k + λ||w||22,

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1− ξi,k, ∀i∀k !=yiξi,k ≥ 0,

a quadratic program with NK+PK variables. We will refer to this formulation as the NK-slack formulation.
An equivalent unconstrained optimization problem where we eliminate the slack variables is

min
w

∑

i

∑

k !=yi

(1− wT
yi

xi + wT
k xi)+ + λ||w||22,

an unconstrained non-differentiable problem in PK variables2.
Later, [Crammer and Singer, 2001] proposed what we will call the N -slack multi-class formulation, which

can be motivated by re-writing the likelihood ratio in the equivalent form

∀i
p(yi|w, xi)

maxk !=yi p(yi = k|wk, xi)
≥ c.

Although this leads an equivalent set of constraints, the formulations differ when we introduce slack variables
on this set of constraints, since each training instance is only associated with 1 slack variable;

min
w,ξ

∑

i

ξi + λ||w||22,

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1− ξi, ∀iξi ≥ 0,

a quadratic program with N +PK variables. We will refer to this as the N -slack formulation. An equivalent
unconstrained optimization problem where we eliminate the slack variables is

min
w

∑

i

max
k !=yi

(1− wT
yi

xi + wT
k xi)+ + λ||w||22,

an unconstrained non-differentiable problem in PK variables.
Comparing these two formulations, we see that the NK-slack formulation is a much more punishing

penalty, it punishes violation of the constraints for any competing hypothesis. In contrast, the N -slack
formulation only punishes based on the violation of the most likely competing hypothesis, even if there are
many likely competing hypothesis. However, the advantage of the N -slack formulation is that it leads to
efficient structural extensions.

4 Hidden Markov Support Vector Machines,
Max-Margin Markov Networks,
Structural Support Vector Machines

We now move to the case where we no longer have a single class label yi for each training instance, but
instead have a set of j labels yi,j . If these labels are independent, then we can simply use the methods
above to fit an independent support vector machine to each label. The more interesting case occurs when
the elements of the output vector are dependent. For example, we might have a sequential dependency; the

2If we consider penalizing the squared !2-norm of the NK-slack formulation, then we can write the optimization as a
differentiable unconstrained optimization. A demo of this multi-class extension of smooth support vector machines is at
http://www.cs.ubc.ca/~schmidtm/Software/minFunc/minFunc.html

4

to introduce the slack variables. The original method of [Weston and Watkins, 1999] introduces one slack
variable for each of these constraints;

min
w,ξ

∑

i

∑

k !=yi

ξi,k + λ||w||22,

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1− ξi,k, ∀i∀k !=yiξi,k ≥ 0,

a quadratic program with NK+PK variables. We will refer to this formulation as the NK-slack formulation.
An equivalent unconstrained optimization problem where we eliminate the slack variables is

min
w

∑

i

∑

k !=yi

(1− wT
yi

xi + wT
k xi)+ + λ||w||22,

an unconstrained non-differentiable problem in PK variables2.
Later, [Crammer and Singer, 2001] proposed what we will call the N -slack multi-class formulation, which

can be motivated by re-writing the likelihood ratio in the equivalent form

∀i
p(yi|w, xi)

maxk !=yi p(yi = k|wk, xi)
≥ c.

Although this leads an equivalent set of constraints, the formulations differ when we introduce slack variables
on this set of constraints, since each training instance is only associated with 1 slack variable;

min
w,ξ

∑

i

ξi + λ||w||22,

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1− ξi, ∀iξi ≥ 0,

a quadratic program with N +PK variables. We will refer to this as the N -slack formulation. An equivalent
unconstrained optimization problem where we eliminate the slack variables is

min
w

∑

i

max
k !=yi

(1− wT
yi

xi + wT
k xi)+ + λ||w||22,

an unconstrained non-differentiable problem in PK variables.
Comparing these two formulations, we see that the NK-slack formulation is a much more punishing

penalty, it punishes violation of the constraints for any competing hypothesis. In contrast, the N -slack
formulation only punishes based on the violation of the most likely competing hypothesis, even if there are
many likely competing hypothesis. However, the advantage of the N -slack formulation is that it leads to
efficient structural extensions.

4 Hidden Markov Support Vector Machines,
Max-Margin Markov Networks,
Structural Support Vector Machines

We now move to the case where we no longer have a single class label yi for each training instance, but
instead have a set of j labels yi,j . If these labels are independent, then we can simply use the methods
above to fit an independent support vector machine to each label. The more interesting case occurs when
the elements of the output vector are dependent. For example, we might have a sequential dependency; the

2If we consider penalizing the squared !2-norm of the NK-slack formulation, then we can write the optimization as a
differentiable unconstrained optimization. A demo of this multi-class extension of smooth support vector machines is at
http://www.cs.ubc.ca/~schmidtm/Software/minFunc/minFunc.html

4

N-Slack Multiclass SVMs
• If instead of writing the constraint on the decision rul as:

• We wrote it as:

• Then following the same procedure we obtain the ‘N’-slack
multiclass SVM:

• Which can be written as the unconstrained optimization:

which has P + N variables and is the primal form of support vector machines. Specifically, this is what is
known as a soft-margin support vector machine [Vapnik, 1995]. The support vectors are those data points
where the non-negativity constraint holds with equality (to keep the presentation simple, we will not discuss
the dual form or the ‘kernel trick’).

By re-arranging the constraints, we have that for all i, ξi ≥ 0 and ξi ≥ 1 − yiwT xi, and therefore we
know that ξi ≥ max{0, 1− yiwT xi}. Further, since we are directly minimizing a linear function of ξi, we can
show that the following minimization

min
w

∑

i

(1− yiw
T xi)+ + λ||w||22,

where we use (z)+ to denote max{0, z}, has the same solution as the primal form of support vector machines.
This is an unconstrained but non-differentiable problem in P variables1. The term

∑
i(1−yiwT xi)+ is known

as the hinge loss, and is an upper bound on the number of classification errors.
To summarize, #2-regularized logistic regression and support vector machines are closely related. They

employ a very similar model and use the same regularization, but differ in that logistic regression seeks to
maximize the (penalized) likelihood (a log-concave smooth approximation to the number of classification
errors), while support vector machines seek to minimize the (penalized) constraint violations in a set of
conditions on the likelihood ratios (a convex piecewise-linear upper bound on the number of classification
errors).

3 Multi-Class Support Vector Machines

Viewed from the optimal separating hyper-plane perspective, it is not immediately clear how to extend
binary support vector machines to the case where we consider K possible class labels. Most attempts at
developing multi-class support vector machines concentrate on producing a multi-class classifier by combining
the decisions made by a set of independent binary classifiers, a popular approach of this type is to use error-
correcting output codes [Dietterich and Bakiri, 1995]. However, the likelihood ratio perspective of support
vector machines suggests an obvious generalization to the multi-class scenario by analogy to the extensions
of logistic regression to the multi-class scenario.

A natural generalization of the binary logistic regression classifier to the case of a K-class problem is to
use a weight vector wk for each class

p(yi = k|wk, xi) ∝ exp(wT
k xi).

Parameter estimation is performed as in the binary case, and we are lead to the decision rule

ŷi = max
k

p(yi = k|wk, xi).

Viewed in terms of likelihood ratios, we would like our decision rule to satisfy the constraint

∀i∀k !=yi ,
p(yi|w, xi)

p(yi = k|wk, xi)
≥ c

Following the same steps as before, we arrive at a set of linear constraints of the form

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1.

We will again consider the minimizing #2-norm of w (concatenating all K of the wk vectors into one large
vector), and introduce slack variables to allow for constraint violation. However, there are different ways

1If we instead considered penalizing the squared !2-norm of the slack variables, then we can re-write the problem as a
differentiable unconstrained optimization. This smooth support vector machine is due to [Lee and Mangasarian, 2001]

3

to introduce the slack variables. The original method of [Weston and Watkins, 1999] introduces one slack
variable for each of these constraints;

min
w,ξ

∑

i

∑

k !=yi

ξi,k + λ||w||22,

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1− ξi,k, ∀i∀k !=yiξi,k ≥ 0,

a quadratic program with NK+PK variables. We will refer to this formulation as the NK-slack formulation.
An equivalent unconstrained optimization problem where we eliminate the slack variables is

min
w

∑

i

∑

k !=yi

(1− wT
yi

xi + wT
k xi)+ + λ||w||22,

an unconstrained non-differentiable problem in PK variables2.
Later, [Crammer and Singer, 2001] proposed what we will call the N -slack multi-class formulation, which

can be motivated by re-writing the likelihood ratio in the equivalent form

∀i
p(yi|w, xi)

maxk !=yi p(yi = k|wk, xi)
≥ c.

Although this leads an equivalent set of constraints, the formulations differ when we introduce slack variables
on this set of constraints, since each training instance is only associated with 1 slack variable;

min
w,ξ

∑

i

ξi + λ||w||22,

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1− ξi, ∀iξi ≥ 0,

a quadratic program with N +PK variables. We will refer to this as the N -slack formulation. An equivalent
unconstrained optimization problem where we eliminate the slack variables is

min
w

∑

i

max
k !=yi

(1− wT
yi

xi + wT
k xi)+ + λ||w||22,

an unconstrained non-differentiable problem in PK variables.
Comparing these two formulations, we see that the NK-slack formulation is a much more punishing

penalty, it punishes violation of the constraints for any competing hypothesis. In contrast, the N -slack
formulation only punishes based on the violation of the most likely competing hypothesis, even if there are
many likely competing hypothesis. However, the advantage of the N -slack formulation is that it leads to
efficient structural extensions.

4 Hidden Markov Support Vector Machines,
Max-Margin Markov Networks,
Structural Support Vector Machines

We now move to the case where we no longer have a single class label yi for each training instance, but
instead have a set of j labels yi,j . If these labels are independent, then we can simply use the methods
above to fit an independent support vector machine to each label. The more interesting case occurs when
the elements of the output vector are dependent. For example, we might have a sequential dependency; the

2If we consider penalizing the squared !2-norm of the NK-slack formulation, then we can write the optimization as a
differentiable unconstrained optimization. A demo of this multi-class extension of smooth support vector machines is at
http://www.cs.ubc.ca/~schmidtm/Software/minFunc/minFunc.html

4

to introduce the slack variables. The original method of [Weston and Watkins, 1999] introduces one slack
variable for each of these constraints;

min
w,ξ

∑

i

∑

k !=yi

ξi,k + λ||w||22,

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1− ξi,k, ∀i∀k !=yiξi,k ≥ 0,

a quadratic program with NK+PK variables. We will refer to this formulation as the NK-slack formulation.
An equivalent unconstrained optimization problem where we eliminate the slack variables is

min
w

∑

i

∑

k !=yi

(1− wT
yi

xi + wT
k xi)+ + λ||w||22,

an unconstrained non-differentiable problem in PK variables2.
Later, [Crammer and Singer, 2001] proposed what we will call the N -slack multi-class formulation, which

can be motivated by re-writing the likelihood ratio in the equivalent form

∀i
p(yi|w, xi)

maxk !=yi p(yi = k|wk, xi)
≥ c.

Although this leads an equivalent set of constraints, the formulations differ when we introduce slack variables
on this set of constraints, since each training instance is only associated with 1 slack variable;

min
w,ξ

∑

i

ξi + λ||w||22,

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1− ξi, ∀iξi ≥ 0,

a quadratic program with N +PK variables. We will refer to this as the N -slack formulation. An equivalent
unconstrained optimization problem where we eliminate the slack variables is

min
w

∑

i

max
k !=yi

(1− wT
yi

xi + wT
k xi)+ + λ||w||22,

an unconstrained non-differentiable problem in PK variables.
Comparing these two formulations, we see that the NK-slack formulation is a much more punishing

penalty, it punishes violation of the constraints for any competing hypothesis. In contrast, the N -slack
formulation only punishes based on the violation of the most likely competing hypothesis, even if there are
many likely competing hypothesis. However, the advantage of the N -slack formulation is that it leads to
efficient structural extensions.

4 Hidden Markov Support Vector Machines,
Max-Margin Markov Networks,
Structural Support Vector Machines

We now move to the case where we no longer have a single class label yi for each training instance, but
instead have a set of j labels yi,j . If these labels are independent, then we can simply use the methods
above to fit an independent support vector machine to each label. The more interesting case occurs when
the elements of the output vector are dependent. For example, we might have a sequential dependency; the

2If we consider penalizing the squared !2-norm of the NK-slack formulation, then we can write the optimization as a
differentiable unconstrained optimization. A demo of this multi-class extension of smooth support vector machines is at
http://www.cs.ubc.ca/~schmidtm/Software/minFunc/minFunc.html

4

to introduce the slack variables. The original method of [Weston and Watkins, 1999] introduces one slack
variable for each of these constraints;

min
w,ξ

∑

i

∑

k !=yi

ξi,k + λ||w||22,

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1− ξi,k, ∀i∀k !=yiξi,k ≥ 0,

a quadratic program with NK+PK variables. We will refer to this formulation as the NK-slack formulation.
An equivalent unconstrained optimization problem where we eliminate the slack variables is

min
w

∑

i

∑

k !=yi

(1− wT
yi

xi + wT
k xi)+ + λ||w||22,

an unconstrained non-differentiable problem in PK variables2.
Later, [Crammer and Singer, 2001] proposed what we will call the N -slack multi-class formulation, which

can be motivated by re-writing the likelihood ratio in the equivalent form

∀i
p(yi|w, xi)

maxk !=yi p(yi = k|wk, xi)
≥ c.

Although this leads an equivalent set of constraints, the formulations differ when we introduce slack variables
on this set of constraints, since each training instance is only associated with 1 slack variable;

min
w,ξ

∑

i

ξi + λ||w||22,

∀i∀k !=yi , wT
yi

xi − wT
k xi ≥ 1− ξi, ∀iξi ≥ 0,

a quadratic program with N +PK variables. We will refer to this as the N -slack formulation. An equivalent
unconstrained optimization problem where we eliminate the slack variables is

min
w

∑

i

max
k !=yi

(1− wT
yi

xi + wT
k xi)+ + λ||w||22,

an unconstrained non-differentiable problem in PK variables.
Comparing these two formulations, we see that the NK-slack formulation is a much more punishing

penalty, it punishes violation of the constraints for any competing hypothesis. In contrast, the N -slack
formulation only punishes based on the violation of the most likely competing hypothesis, even if there are
many likely competing hypothesis. However, the advantage of the N -slack formulation is that it leads to
efficient structural extensions.

4 Hidden Markov Support Vector Machines,
Max-Margin Markov Networks,
Structural Support Vector Machines

We now move to the case where we no longer have a single class label yi for each training instance, but
instead have a set of j labels yi,j . If these labels are independent, then we can simply use the methods
above to fit an independent support vector machine to each label. The more interesting case occurs when
the elements of the output vector are dependent. For example, we might have a sequential dependency; the

2If we consider penalizing the squared !2-norm of the NK-slack formulation, then we can write the optimization as a
differentiable unconstrained optimization. A demo of this multi-class extension of smooth support vector machines is at
http://www.cs.ubc.ca/~schmidtm/Software/minFunc/minFunc.html

4

Outline
• Formulation:

• Binary SVMs

• Multiclass SVMs

• Structural SVMs

• Training:

• Subgradients

• Cutting Planes

• Marginal Formulations

• Min-Max Formulations

Conditional Random Fields
• The extension of logistic regression to data with multiple

(dependent) labels is known as a conditional random field.

• For example, a binary chain-CRF with Ising-like potentials
and tied parameters could use:

• A concise notation for the general case is:

• One possible decision rule is:

• In the case of chains, this is Viterbi decoding

label yi,j depends on the previous label yi,j−1. The structural extension of logistic regression to handle this
type of dependency structure is known as a linear-chain conditional random field [Lafferty et al., 2001]. In
the case of tied parameters, binary labels, Ising-like potentials, and sequences of labels with the same length
S (removing any of these restrictions is trivial, but would require more notation), the probability of a vector
of labels Yi is written as

p(Yi|w, Xi) ∝ exp(
S∑

j=1

yi,jw
T
n xi,j +

S−1∑

j=1

yi,jyi,j+1w
T
e xi,j,j+1),

where wn represent the node parameters, we represent the edge/transition parameters, and we allow a feature
vector xi,j for each node and xi,j,j+1 for each transition. Although there are other possibilities, we consider
the decision rule

Ŷi = max
Yi

p(Yi|w, Xi).

Computing this maximum by considering all possible labels may no longer be feasible, since there are now
2S possible labels, but the maximum can be found in O(S) by dynamic programming in the form of the
Viterbi decoding algorithm.

Moving to an interpretation in terms of likelihood ratios, we would like our classifier to satisfy the criteria

∀i∀Y ′
i "=Yi

p(Yi|w, Xi)
p(Y ′

i |w, Xi)
≥ c,

leading to the set of constraints

∀i∀Y ′
i "=Yi

log p(Yi|w, Xi)− log p(Y ′
i |w, Xi) ≥ 1. (1)

Introducing the !2-norm (squared) regularizer and the N -slack constraint violation penalty, we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w, Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi, ∀i ξi ≥ 0

This is known as a hidden Markov support vector machine [Altun et al., 2003, Joachims, 2003].
Because it is based on the N -slack formulation, the hidden Markov support vector machine penalizes all

alternative hypothesis based on the most promising alternative hypothesis. In particular, the number of label
differences between Yi and an alternative configuration Y ′

i is never considered. Rather than selecting the
constant to be 1 across all alternative configurations, we could consider setting it to ∆(Yi, Y ′

i), the number
of label differences between Yi and Y ′

i

∀i∀Y ′
i "=Yi

log p(Yi|w, Xi)− log p(Y ′
i |w, Xi) ≥ ∆(Yi, Y

′
i). (2)

This encourages the likelihood ratio between the true label and an alternative configuration to be higher
if the alternative configuration disagrees with Yi at many nodes. With our usual procedure we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w, Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i)− ξi, ∀iξi ≥ 0,

which is known as a max-margin Markov network [Taskar et al., 2003], or a structural support vector machine
with margin re-scaling [Tsochantaridis et al., 2004].

Of course, this isn’t the only way to change the constraints based on the agreement between Yi and Y ′
i ,

and [Tsochantaridis et al., 2004] argues that this formulation has the disadvantage that it tries to make very
large the difference between competing labels that differ in many positions. An alternative to changing the

5

the method requires O(1/ε) iterations to converge9, and that the method offers a speed advantage over the
method of [Shalev-Shwartz et al., 2007].

5.3 Polynomial-Size Reformulations

In this section, we examine an alternative to cutting plane methods for dealing with the exponential sized
quadratic programs. In particular, we consider methods that take advantage of the sparse dependency struc-
ture in the underlying distribution to rewrite the exponential-sized quadratic program into a polynomial-sized
problem. In this section, we will largely follow [Taskar et al., 2003] and will work with a dual formulation
to the MMMN quadratic program. In this dual formulation, we will have a variable αi(Y ′

i) for each possible
configuration Y ′

i of training example i. We will also find it convenient to use the feature representation of
the probability functions

p(Yi|w,Xi) ∝ exp(wT F (Xi, Yi)),

and use the notation
∆Fi(Y ′

i) ! F (Xi, Yi)− F (Xi, Y
′
i).

Using this notation, [Taskar et al., 2003] shows that the following problem is dual to the MMMN quadratic
program

max
α

∑

i

∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i)− 1

2

∑

i

∑

Y ′
i

∑

j

∑

Y ′
j

αi(Y ′
i)αj(Y ′

j)∆Fi(Y ′
i)T ∆Fj(Y ′

j),

s.t. ∀i

∑

Y ′
i

αi(Y ′
i) =

1
2λ

, ∀i∀Y ′
i
αi(Y ′

i) ≥ 0.

Although this dual formulation has an exponential number of constraints and an exponential number of
variables, note the simple form of the constraints. If λ = 1/2, then the constraints simply enforce that
αi(Y ′

i) is a valid probability distribution over all values of Y ′
i (for each training example i). For other

values of λ, it enforces that αi(Y ′
i) is an unnormalized distribution (with normalizing constant 1/2λ). If our

dependency structure factorizes over nodes and edges in a graph, then we can consider a parameterization
in terms of expectations with respect to this distribution

µi(yij) =
∑

Y ′
i ∼[yij]

αi(Y ′
i),

µi(yij , yik) =
∑

Y ′
i ∼[yij ,yik]

αi(Y ′
i),

where the notation Y ′
i ∼ [yij] is used to denote that a configuration Y ′

i is consistent with the label yij . When
we consider using these variables, we will require that the node parameters satisfy the constraints of the
original problem

∀i∀j µi(yij) ≥ 0, ∀i

∑

j

µi(yij) =
1
2λ

.

To ensure that the edge variables form a legal density, they must belong to the marginal polytope. In the
case of tree-structured graphs, this is equivalent to the requirement that [Taskar et al., 2003]

∀i∀(j,k)∈E

∑

yij

µi(yij , yik) = µi(yik), ∀i∀(j,k)∈E µi(yij , yik) ≥ 0.

Using these expectations, we can re-write the set of first terms in the dual formulation as
∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i) =

∑

Y ′
i

∑

j

αi(Y ′
i)∆j(yij , y

′
ij) =

∑

j

∑

y′
ij

∆j(yij , y
′
ij)µi(y′ij).

9[Smola et al., 2008] also show that applying their method to train conditional random fields with !2-regularization achieves
the faster rate of O(log(1/ε)).

10

label yi,j depends on the previous label yi,j−1. The structural extension of logistic regression to handle this
type of dependency structure is known as a linear-chain conditional random field [Lafferty et al., 2001]. In
the case of tied parameters, binary labels, Ising-like potentials, and sequences of labels with the same length
S (removing any of these restrictions is trivial, but would require more notation), the probability of a vector
of labels Yi is written as

p(Yi|w,Xi) ∝ exp(
S∑

j=1

yi,jw
T
n xi,j +

S−1∑

j=1

yi,jyi,j+1w
T
e xi,j,j+1),

where wn represent the node parameters, we represent the edge/transition parameters, and we allow a feature
vector xi,j for each node and xi,j,j+1 for each transition. Although there are other possibilities, we consider
the decision rule

Ŷi = max
Yi

p(Yi|w,Xi).

Computing this maximum by considering all possible labels may no longer be feasible, since there are now
2S possible labels, but the maximum can be found in O(S) by dynamic programming in the form of the
Viterbi decoding algorithm.

Moving to an interpretation in terms of likelihood ratios, we would like our classifier to satisfy the criteria

∀i∀Y ′
i "=Yi

p(Yi|w,Xi)
p(Y ′

i |w,Xi)
≥ c,

leading to the set of constraints

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1. (1)

Introducing the !2-norm (squared) regularizer and the N -slack constraint violation penalty, we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi, ∀i ξi ≥ 0

This is known as a hidden Markov support vector machine [Altun et al., 2003, Joachims, 2003].
Because it is based on the N -slack formulation, the hidden Markov support vector machine penalizes all

alternative hypothesis based on the most promising alternative hypothesis. In particular, the number of label
differences between Yi and an alternative configuration Y ′

i is never considered. Rather than selecting the
constant to be 1 across all alternative configurations, we could consider setting it to ∆(Yi, Y ′

i), the number
of label differences between Yi and Y ′

i

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i). (2)

This encourages the likelihood ratio between the true label and an alternative configuration to be higher
if the alternative configuration disagrees with Yi at many nodes. With our usual procedure we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i)− ξi, ∀iξi ≥ 0,

which is known as a max-margin Markov network [Taskar et al., 2003], or a structural support vector machine
with margin re-scaling [Tsochantaridis et al., 2004].

Of course, this isn’t the only way to change the constraints based on the agreement between Yi and Y ′
i ,

and [Tsochantaridis et al., 2004] argues that this formulation has the disadvantage that it tries to make very
large the difference between competing labels that differ in many positions. An alternative to changing the

5

Hidden Markov SVMs
• Making the right decisions with Viterbi decoding corresponds

to satisfying:

• This is equivalent to the set of constraints:

• Adding the L2-penalty and using the N-slack penalty:

• The ‘hidden Markov support vector machine’

label yi,j depends on the previous label yi,j−1. The structural extension of logistic regression to handle this
type of dependency structure is known as a linear-chain conditional random field [Lafferty et al., 2001]. In
the case of tied parameters, binary labels, Ising-like potentials, and sequences of labels with the same length
S (removing any of these restrictions is trivial, but would require more notation), the probability of a vector
of labels Yi is written as

p(Yi|w,Xi) ∝ exp(
S∑

j=1

yi,jw
T
n xi,j +

S−1∑

j=1

yi,jyi,j+1w
T
e xi,j,j+1),

where wn represent the node parameters, we represent the edge/transition parameters, and we allow a feature
vector xi,j for each node and xi,j,j+1 for each transition. Although there are other possibilities, we consider
the decision rule

Ŷi = max
Yi

p(Yi|w,Xi).

Computing this maximum by considering all possible labels may no longer be feasible, since there are now
2S possible labels, but the maximum can be found in O(S) by dynamic programming in the form of the
Viterbi decoding algorithm.

Moving to an interpretation in terms of likelihood ratios, we would like our classifier to satisfy the criteria

∀i∀Y ′
i "=Yi

p(Yi|w,Xi)
p(Y ′

i |w,Xi)
≥ c,

leading to the set of constraints

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1. (1)

Introducing the !2-norm (squared) regularizer and the N -slack constraint violation penalty, we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi, ∀i ξi ≥ 0

This is known as a hidden Markov support vector machine [Altun et al., 2003, Joachims, 2003].
Because it is based on the N -slack formulation, the hidden Markov support vector machine penalizes all

alternative hypothesis based on the most promising alternative hypothesis. In particular, the number of label
differences between Yi and an alternative configuration Y ′

i is never considered. Rather than selecting the
constant to be 1 across all alternative configurations, we could consider setting it to ∆(Yi, Y ′

i), the number
of label differences between Yi and Y ′

i

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i). (2)

This encourages the likelihood ratio between the true label and an alternative configuration to be higher
if the alternative configuration disagrees with Yi at many nodes. With our usual procedure we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i)− ξi, ∀iξi ≥ 0,

which is known as a max-margin Markov network [Taskar et al., 2003], or a structural support vector machine
with margin re-scaling [Tsochantaridis et al., 2004].

Of course, this isn’t the only way to change the constraints based on the agreement between Yi and Y ′
i ,

and [Tsochantaridis et al., 2004] argues that this formulation has the disadvantage that it tries to make very
large the difference between competing labels that differ in many positions. An alternative to changing the

5

label yi,j depends on the previous label yi,j−1. The structural extension of logistic regression to handle this
type of dependency structure is known as a linear-chain conditional random field [Lafferty et al., 2001]. In
the case of tied parameters, binary labels, Ising-like potentials, and sequences of labels with the same length
S (removing any of these restrictions is trivial, but would require more notation), the probability of a vector
of labels Yi is written as

p(Yi|w,Xi) ∝ exp(
S∑

j=1

yi,jw
T
n xi,j +

S−1∑

j=1

yi,jyi,j+1w
T
e xi,j,j+1),

where wn represent the node parameters, we represent the edge/transition parameters, and we allow a feature
vector xi,j for each node and xi,j,j+1 for each transition. Although there are other possibilities, we consider
the decision rule

Ŷi = max
Yi

p(Yi|w,Xi).

Computing this maximum by considering all possible labels may no longer be feasible, since there are now
2S possible labels, but the maximum can be found in O(S) by dynamic programming in the form of the
Viterbi decoding algorithm.

Moving to an interpretation in terms of likelihood ratios, we would like our classifier to satisfy the criteria

∀i∀Y ′
i "=Yi

p(Yi|w,Xi)
p(Y ′

i |w,Xi)
≥ c,

leading to the set of constraints

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1. (1)

Introducing the !2-norm (squared) regularizer and the N -slack constraint violation penalty, we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi, ∀i ξi ≥ 0

This is known as a hidden Markov support vector machine [Altun et al., 2003, Joachims, 2003].
Because it is based on the N -slack formulation, the hidden Markov support vector machine penalizes all

alternative hypothesis based on the most promising alternative hypothesis. In particular, the number of label
differences between Yi and an alternative configuration Y ′

i is never considered. Rather than selecting the
constant to be 1 across all alternative configurations, we could consider setting it to ∆(Yi, Y ′

i), the number
of label differences between Yi and Y ′

i

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i). (2)

This encourages the likelihood ratio between the true label and an alternative configuration to be higher
if the alternative configuration disagrees with Yi at many nodes. With our usual procedure we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i)− ξi, ∀iξi ≥ 0,

which is known as a max-margin Markov network [Taskar et al., 2003], or a structural support vector machine
with margin re-scaling [Tsochantaridis et al., 2004].

Of course, this isn’t the only way to change the constraints based on the agreement between Yi and Y ′
i ,

and [Tsochantaridis et al., 2004] argues that this formulation has the disadvantage that it tries to make very
large the difference between competing labels that differ in many positions. An alternative to changing the

5

label yi,j depends on the previous label yi,j−1. The structural extension of logistic regression to handle this
type of dependency structure is known as a linear-chain conditional random field [Lafferty et al., 2001]. In
the case of tied parameters, binary labels, Ising-like potentials, and sequences of labels with the same length
S (removing any of these restrictions is trivial, but would require more notation), the probability of a vector
of labels Yi is written as

p(Yi|w,Xi) ∝ exp(
S∑

j=1

yi,jw
T
n xi,j +

S−1∑

j=1

yi,jyi,j+1w
T
e xi,j,j+1),

where wn represent the node parameters, we represent the edge/transition parameters, and we allow a feature
vector xi,j for each node and xi,j,j+1 for each transition. Although there are other possibilities, we consider
the decision rule

Ŷi = max
Yi

p(Yi|w,Xi).

Computing this maximum by considering all possible labels may no longer be feasible, since there are now
2S possible labels, but the maximum can be found in O(S) by dynamic programming in the form of the
Viterbi decoding algorithm.

Moving to an interpretation in terms of likelihood ratios, we would like our classifier to satisfy the criteria

∀i∀Y ′
i "=Yi

p(Yi|w,Xi)
p(Y ′

i |w,Xi)
≥ c,

leading to the set of constraints

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1. (1)

Introducing the !2-norm (squared) regularizer and the N -slack constraint violation penalty, we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi, ∀i ξi ≥ 0

This is known as a hidden Markov support vector machine [Altun et al., 2003, Joachims, 2003].
Because it is based on the N -slack formulation, the hidden Markov support vector machine penalizes all

alternative hypothesis based on the most promising alternative hypothesis. In particular, the number of label
differences between Yi and an alternative configuration Y ′

i is never considered. Rather than selecting the
constant to be 1 across all alternative configurations, we could consider setting it to ∆(Yi, Y ′

i), the number
of label differences between Yi and Y ′

i

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i). (2)

This encourages the likelihood ratio between the true label and an alternative configuration to be higher
if the alternative configuration disagrees with Yi at many nodes. With our usual procedure we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i)− ξi, ∀iξi ≥ 0,

which is known as a max-margin Markov network [Taskar et al., 2003], or a structural support vector machine
with margin re-scaling [Tsochantaridis et al., 2004].

Of course, this isn’t the only way to change the constraints based on the agreement between Yi and Y ′
i ,

and [Tsochantaridis et al., 2004] argues that this formulation has the disadvantage that it tries to make very
large the difference between competing labels that differ in many positions. An alternative to changing the

5

Max-Margin Markov Networks
• The constraints in the HMSVM don’t care about the number

of differences between Yi and Yi’:

• We might to be the difference in probability to be higher
when the difference in labels is higher:

• Leading to the QP:

• This is known as a ‘max-margin Markov networks’, or
‘structural SVM’ with ‘margin-rescaling’

label yi,j depends on the previous label yi,j−1. The structural extension of logistic regression to handle this
type of dependency structure is known as a linear-chain conditional random field [Lafferty et al., 2001]. In
the case of tied parameters, binary labels, Ising-like potentials, and sequences of labels with the same length
S (removing any of these restrictions is trivial, but would require more notation), the probability of a vector
of labels Yi is written as

p(Yi|w,Xi) ∝ exp(
S∑

j=1

yi,jw
T
n xi,j +

S−1∑

j=1

yi,jyi,j+1w
T
e xi,j,j+1),

where wn represent the node parameters, we represent the edge/transition parameters, and we allow a feature
vector xi,j for each node and xi,j,j+1 for each transition. Although there are other possibilities, we consider
the decision rule

Ŷi = max
Yi

p(Yi|w,Xi).

Computing this maximum by considering all possible labels may no longer be feasible, since there are now
2S possible labels, but the maximum can be found in O(S) by dynamic programming in the form of the
Viterbi decoding algorithm.

Moving to an interpretation in terms of likelihood ratios, we would like our classifier to satisfy the criteria

∀i∀Y ′
i "=Yi

p(Yi|w,Xi)
p(Y ′

i |w,Xi)
≥ c,

leading to the set of constraints

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1. (1)

Introducing the !2-norm (squared) regularizer and the N -slack constraint violation penalty, we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi, ∀i ξi ≥ 0

This is known as a hidden Markov support vector machine [Altun et al., 2003, Joachims, 2003].
Because it is based on the N -slack formulation, the hidden Markov support vector machine penalizes all

alternative hypothesis based on the most promising alternative hypothesis. In particular, the number of label
differences between Yi and an alternative configuration Y ′

i is never considered. Rather than selecting the
constant to be 1 across all alternative configurations, we could consider setting it to ∆(Yi, Y ′

i), the number
of label differences between Yi and Y ′

i

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i). (2)

This encourages the likelihood ratio between the true label and an alternative configuration to be higher
if the alternative configuration disagrees with Yi at many nodes. With our usual procedure we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i)− ξi, ∀iξi ≥ 0,

which is known as a max-margin Markov network [Taskar et al., 2003], or a structural support vector machine
with margin re-scaling [Tsochantaridis et al., 2004].

Of course, this isn’t the only way to change the constraints based on the agreement between Yi and Y ′
i ,

and [Tsochantaridis et al., 2004] argues that this formulation has the disadvantage that it tries to make very
large the difference between competing labels that differ in many positions. An alternative to changing the

5

label yi,j depends on the previous label yi,j−1. The structural extension of logistic regression to handle this
type of dependency structure is known as a linear-chain conditional random field [Lafferty et al., 2001]. In
the case of tied parameters, binary labels, Ising-like potentials, and sequences of labels with the same length
S (removing any of these restrictions is trivial, but would require more notation), the probability of a vector
of labels Yi is written as

p(Yi|w,Xi) ∝ exp(
S∑

j=1

yi,jw
T
n xi,j +

S−1∑

j=1

yi,jyi,j+1w
T
e xi,j,j+1),

where wn represent the node parameters, we represent the edge/transition parameters, and we allow a feature
vector xi,j for each node and xi,j,j+1 for each transition. Although there are other possibilities, we consider
the decision rule

Ŷi = max
Yi

p(Yi|w,Xi).

Computing this maximum by considering all possible labels may no longer be feasible, since there are now
2S possible labels, but the maximum can be found in O(S) by dynamic programming in the form of the
Viterbi decoding algorithm.

Moving to an interpretation in terms of likelihood ratios, we would like our classifier to satisfy the criteria

∀i∀Y ′
i "=Yi

p(Yi|w,Xi)
p(Y ′

i |w,Xi)
≥ c,

leading to the set of constraints

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1. (1)

Introducing the !2-norm (squared) regularizer and the N -slack constraint violation penalty, we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi, ∀i ξi ≥ 0

This is known as a hidden Markov support vector machine [Altun et al., 2003, Joachims, 2003].
Because it is based on the N -slack formulation, the hidden Markov support vector machine penalizes all

alternative hypothesis based on the most promising alternative hypothesis. In particular, the number of label
differences between Yi and an alternative configuration Y ′

i is never considered. Rather than selecting the
constant to be 1 across all alternative configurations, we could consider setting it to ∆(Yi, Y ′

i), the number
of label differences between Yi and Y ′

i

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i). (2)

This encourages the likelihood ratio between the true label and an alternative configuration to be higher
if the alternative configuration disagrees with Yi at many nodes. With our usual procedure we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i)− ξi, ∀iξi ≥ 0,

which is known as a max-margin Markov network [Taskar et al., 2003], or a structural support vector machine
with margin re-scaling [Tsochantaridis et al., 2004].

Of course, this isn’t the only way to change the constraints based on the agreement between Yi and Y ′
i ,

and [Tsochantaridis et al., 2004] argues that this formulation has the disadvantage that it tries to make very
large the difference between competing labels that differ in many positions. An alternative to changing the

5

label yi,j depends on the previous label yi,j−1. The structural extension of logistic regression to handle this
type of dependency structure is known as a linear-chain conditional random field [Lafferty et al., 2001]. In
the case of tied parameters, binary labels, Ising-like potentials, and sequences of labels with the same length
S (removing any of these restrictions is trivial, but would require more notation), the probability of a vector
of labels Yi is written as

p(Yi|w,Xi) ∝ exp(
S∑

j=1

yi,jw
T
n xi,j +

S−1∑

j=1

yi,jyi,j+1w
T
e xi,j,j+1),

where wn represent the node parameters, we represent the edge/transition parameters, and we allow a feature
vector xi,j for each node and xi,j,j+1 for each transition. Although there are other possibilities, we consider
the decision rule

Ŷi = max
Yi

p(Yi|w,Xi).

Computing this maximum by considering all possible labels may no longer be feasible, since there are now
2S possible labels, but the maximum can be found in O(S) by dynamic programming in the form of the
Viterbi decoding algorithm.

Moving to an interpretation in terms of likelihood ratios, we would like our classifier to satisfy the criteria

∀i∀Y ′
i "=Yi

p(Yi|w,Xi)
p(Y ′

i |w,Xi)
≥ c,

leading to the set of constraints

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1. (1)

Introducing the !2-norm (squared) regularizer and the N -slack constraint violation penalty, we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi, ∀i ξi ≥ 0

This is known as a hidden Markov support vector machine [Altun et al., 2003, Joachims, 2003].
Because it is based on the N -slack formulation, the hidden Markov support vector machine penalizes all

alternative hypothesis based on the most promising alternative hypothesis. In particular, the number of label
differences between Yi and an alternative configuration Y ′

i is never considered. Rather than selecting the
constant to be 1 across all alternative configurations, we could consider setting it to ∆(Yi, Y ′

i), the number
of label differences between Yi and Y ′

i

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i). (2)

This encourages the likelihood ratio between the true label and an alternative configuration to be higher
if the alternative configuration disagrees with Yi at many nodes. With our usual procedure we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i)− ξi, ∀iξi ≥ 0,

which is known as a max-margin Markov network [Taskar et al., 2003], or a structural support vector machine
with margin re-scaling [Tsochantaridis et al., 2004].

Of course, this isn’t the only way to change the constraints based on the agreement between Yi and Y ′
i ,

and [Tsochantaridis et al., 2004] argues that this formulation has the disadvantage that it tries to make very
large the difference between competing labels that differ in many positions. An alternative to changing the

5

Structural SVMs
• Rescaling the constant might make us concentrate on being

much better than sequences that differ at many positions:

• An alternative is to rescale the slacks based on the difference
between sequences:

• Leading to the QP:

• This is known as a ‘structural SVM’ with ‘slack-rescaling’

label yi,j depends on the previous label yi,j−1. The structural extension of logistic regression to handle this
type of dependency structure is known as a linear-chain conditional random field [Lafferty et al., 2001]. In
the case of tied parameters, binary labels, Ising-like potentials, and sequences of labels with the same length
S (removing any of these restrictions is trivial, but would require more notation), the probability of a vector
of labels Yi is written as

p(Yi|w,Xi) ∝ exp(
S∑

j=1

yi,jw
T
n xi,j +

S−1∑

j=1

yi,jyi,j+1w
T
e xi,j,j+1),

where wn represent the node parameters, we represent the edge/transition parameters, and we allow a feature
vector xi,j for each node and xi,j,j+1 for each transition. Although there are other possibilities, we consider
the decision rule

Ŷi = max
Yi

p(Yi|w,Xi).

Computing this maximum by considering all possible labels may no longer be feasible, since there are now
2S possible labels, but the maximum can be found in O(S) by dynamic programming in the form of the
Viterbi decoding algorithm.

Moving to an interpretation in terms of likelihood ratios, we would like our classifier to satisfy the criteria

∀i∀Y ′
i "=Yi

p(Yi|w,Xi)
p(Y ′

i |w,Xi)
≥ c,

leading to the set of constraints

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1. (1)

Introducing the !2-norm (squared) regularizer and the N -slack constraint violation penalty, we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi, ∀i ξi ≥ 0

This is known as a hidden Markov support vector machine [Altun et al., 2003, Joachims, 2003].
Because it is based on the N -slack formulation, the hidden Markov support vector machine penalizes all

alternative hypothesis based on the most promising alternative hypothesis. In particular, the number of label
differences between Yi and an alternative configuration Y ′

i is never considered. Rather than selecting the
constant to be 1 across all alternative configurations, we could consider setting it to ∆(Yi, Y ′

i), the number
of label differences between Yi and Y ′

i

∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i). (2)

This encourages the likelihood ratio between the true label and an alternative configuration to be higher
if the alternative configuration disagrees with Yi at many nodes. With our usual procedure we obtain the
quadratic program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i "=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ ∆(Yi, Y

′
i)− ξi, ∀iξi ≥ 0,

which is known as a max-margin Markov network [Taskar et al., 2003], or a structural support vector machine
with margin re-scaling [Tsochantaridis et al., 2004].

Of course, this isn’t the only way to change the constraints based on the agreement between Yi and Y ′
i ,

and [Tsochantaridis et al., 2004] argues that this formulation has the disadvantage that it tries to make very
large the difference between competing labels that differ in many positions. An alternative to changing the

5

constant factor in the likelihood ratio is to change the scaling of the slack variables and solve the quadratic
program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i !=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi/∆(Yi, Y

′
i), ∀iξi ≥ 0.

Here, you need to add more ‘slack’ for a competing hypothesis that differs in many position. This last variant
is known as a structural support vector machine with slack re-scaling [Tsochantaridis et al., 2004].

Equivalent unconstrained versions of these 3 structural extensions of support vector machines are3

(HMSVM) min
w

∑

i

max
Y ′

i !=Yi

(1− log p(Yi|w,Xi) + log p(Y ′
i |w,Xi))+ + λ||w||22,

(MMMN) min
w

∑

i

max
Y ′

i !=Yi

(∆(Yi, Y
′
i)− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi))+ + λ||w||22,

(SSVM) min
w

∑

i

max
Y ′

i !=Yi

(∆(Yi, Y
′
i)(1− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi)))+ + λ||w||22.

In the (MMMN) and (SSVM) formulations, we can use ∆(Yi, Yi) = 0 to simplify these expressions, giving

(MMMN) min
w

∑

i

max
Y ′

i

(∆(Yi, Y
′
i) + log p(Y ′

i |w,Xi))− log p(Yi|w,Xi) + λ||w||22,

(SSVM) min
w

∑

i

max
Y ′

i

(∆(Yi, Y
′
i)(1− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi))) + λ||w||22.

N.B., in these latter two expressions we can maximize over all Y ′
i instead of over all Y ′

i $= Yi; In these cases,
we can compute the objective function using the Viterbi decoding algorithm (with a suitably modified input).
In contrast, the HMSVM model requires solving a maximization problem over all configurations except Yi,
which be may be much harder to solve4. Finally, we note that while the structural hinge losses in all three
formulations represent an upper bound on the number of sequence errors (ie. the number of times at least
one label in the sequence was wrong), the MMMN and SSVM formulations give an upper bound on the
number of label errors while the HMSVM does not.

Although this section has focused on a chain-structured dependency structure, we only used this property
in two places: (i) the definition of p(Yi|w,Xi), and (ii) in efficient methods to compute maximums over the
space of possible configurations. We can apply the same methodology to derive MMMNs and SSVMs for
a wide variety of alternative models. For example, we can consider the cases where conditional random
fields can be applied exactly, such as low tree-width structured dependencies, and probabilistic context free
grammars. We can also consider models where we consider higher-order dependencies, rather than simply
pairwise dependencies, as long as the graph structure or parameterization allows us to efficiently solve the
associated maximization problems.

As discussed in [Taskar et al., 2004], an advantage that MMMNs/SSVMs have over conditional random
fields is that we can also consider completely general graph structures (such as lattices or fully connected
graphs), if we enforce the additional constraint that the edge weights enforce a sub-modularity condition
[Kolmogorov and Zabin, 2004]. In these cases, the exact inference needed for training conditional random
fields is intractable, but computing the maximums needed by MMMNs/SSVMs can be formulated as a linear
program (that can be efficiently solved using min-cut techniques). [Taskar et al., 2004] proposes associative
max margin Markov networks, models that take advantage of this property to allow efficient training and
decoding in models with an arbitrary graph structure and arbitrary clique sizes. In these models, the

3We can also consider penalizing the squared values of the slack variables [Tsochantaridis et al., 2004], but this does not
lead to a differentiable minimization problem due to the potential for ties in the max functions.

4We could also consider structural extensions based on the NK-slack formulation [Altun and Hofmann, 2003]. In this case,
the max functions would be replaced by sums, but it is not obvious (to me, anyway) how you would compute these sums
efficiently, nor how you would deal with the exponential number of variables and constraints in the quadratic program

6

constant factor in the likelihood ratio is to change the scaling of the slack variables and solve the quadratic
program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i !=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi/∆(Yi, Y

′
i), ∀iξi ≥ 0.

Here, you need to add more ‘slack’ for a competing hypothesis that differs in many position. This last variant
is known as a structural support vector machine with slack re-scaling [Tsochantaridis et al., 2004].

Equivalent unconstrained versions of these 3 structural extensions of support vector machines are3

(HMSVM) min
w

∑

i

max
Y ′

i !=Yi

(1− log p(Yi|w,Xi) + log p(Y ′
i |w,Xi))+ + λ||w||22,

(MMMN) min
w

∑

i

max
Y ′

i !=Yi

(∆(Yi, Y
′
i)− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi))+ + λ||w||22,

(SSVM) min
w

∑

i

max
Y ′

i !=Yi

(∆(Yi, Y
′
i)(1− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi)))+ + λ||w||22.

In the (MMMN) and (SSVM) formulations, we can use ∆(Yi, Yi) = 0 to simplify these expressions, giving

(MMMN) min
w

∑

i

max
Y ′

i

(∆(Yi, Y
′
i) + log p(Y ′

i |w,Xi))− log p(Yi|w,Xi) + λ||w||22,

(SSVM) min
w

∑

i

max
Y ′

i

(∆(Yi, Y
′
i)(1− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi))) + λ||w||22.

N.B., in these latter two expressions we can maximize over all Y ′
i instead of over all Y ′

i $= Yi; In these cases,
we can compute the objective function using the Viterbi decoding algorithm (with a suitably modified input).
In contrast, the HMSVM model requires solving a maximization problem over all configurations except Yi,
which be may be much harder to solve4. Finally, we note that while the structural hinge losses in all three
formulations represent an upper bound on the number of sequence errors (ie. the number of times at least
one label in the sequence was wrong), the MMMN and SSVM formulations give an upper bound on the
number of label errors while the HMSVM does not.

Although this section has focused on a chain-structured dependency structure, we only used this property
in two places: (i) the definition of p(Yi|w,Xi), and (ii) in efficient methods to compute maximums over the
space of possible configurations. We can apply the same methodology to derive MMMNs and SSVMs for
a wide variety of alternative models. For example, we can consider the cases where conditional random
fields can be applied exactly, such as low tree-width structured dependencies, and probabilistic context free
grammars. We can also consider models where we consider higher-order dependencies, rather than simply
pairwise dependencies, as long as the graph structure or parameterization allows us to efficiently solve the
associated maximization problems.

As discussed in [Taskar et al., 2004], an advantage that MMMNs/SSVMs have over conditional random
fields is that we can also consider completely general graph structures (such as lattices or fully connected
graphs), if we enforce the additional constraint that the edge weights enforce a sub-modularity condition
[Kolmogorov and Zabin, 2004]. In these cases, the exact inference needed for training conditional random
fields is intractable, but computing the maximums needed by MMMNs/SSVMs can be formulated as a linear
program (that can be efficiently solved using min-cut techniques). [Taskar et al., 2004] proposes associative
max margin Markov networks, models that take advantage of this property to allow efficient training and
decoding in models with an arbitrary graph structure and arbitrary clique sizes. In these models, the

3We can also consider penalizing the squared values of the slack variables [Tsochantaridis et al., 2004], but this does not
lead to a differentiable minimization problem due to the potential for ties in the max functions.

4We could also consider structural extensions based on the NK-slack formulation [Altun and Hofmann, 2003]. In this case,
the max functions would be replaced by sums, but it is not obvious (to me, anyway) how you would compute these sums
efficiently, nor how you would deal with the exponential number of variables and constraints in the quadratic program

6

Summary
• Unconstrained formulations of structural extensions:

• Since delta(Yi,Yi)=0, we simplify MMMN and SSVM:

• This allows us to use Viterbi decoding with a modified input
to compute the max values.

constant factor in the likelihood ratio is to change the scaling of the slack variables and solve the quadratic
program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i !=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi/∆(Yi, Y

′
i), ∀iξi ≥ 0.

Here, you need to add more ‘slack’ for a competing hypothesis that differs in many position. This last variant
is known as a structural support vector machine with slack re-scaling [Tsochantaridis et al., 2004].

Equivalent unconstrained versions of these 3 structural extensions of support vector machines are3

(HMSVM) min
w

∑

i

max
Y ′

i !=Yi

(1− log p(Yi|w,Xi) + log p(Y ′
i |w,Xi))+ + λ||w||22,

(MMMN) min
w

∑

i

max
Y ′

i !=Yi

(∆(Yi, Y
′
i)− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi))+ + λ||w||22,

(SSVM) min
w

∑

i

max
Y ′

i !=Yi

(∆(Yi, Y
′
i)(1− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi)))+ + λ||w||22.

In the (MMMN) and (SSVM) formulations, we can use ∆(Yi, Yi) = 0 to simplify these expressions, giving

(MMMN) min
w

∑

i

max
Y ′

i

(∆(Yi, Y
′
i) + log p(Y ′

i |w,Xi))− log p(Yi|w,Xi) + λ||w||22,

(SSVM) min
w

∑

i

max
Y ′

i

(∆(Yi, Y
′
i)(1− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi))) + λ||w||22.

N.B., in these latter two expressions we can maximize over all Y ′
i instead of over all Y ′

i $= Yi; In these cases,
we can compute the objective function using the Viterbi decoding algorithm (with a suitably modified input).
In contrast, the HMSVM model requires solving a maximization problem over all configurations except Yi,
which be may be much harder to solve4. Finally, we note that while the structural hinge losses in all three
formulations represent an upper bound on the number of sequence errors (ie. the number of times at least
one label in the sequence was wrong), the MMMN and SSVM formulations give an upper bound on the
number of label errors while the HMSVM does not.

Although this section has focused on a chain-structured dependency structure, we only used this property
in two places: (i) the definition of p(Yi|w,Xi), and (ii) in efficient methods to compute maximums over the
space of possible configurations. We can apply the same methodology to derive MMMNs and SSVMs for
a wide variety of alternative models. For example, we can consider the cases where conditional random
fields can be applied exactly, such as low tree-width structured dependencies, and probabilistic context free
grammars. We can also consider models where we consider higher-order dependencies, rather than simply
pairwise dependencies, as long as the graph structure or parameterization allows us to efficiently solve the
associated maximization problems.

As discussed in [Taskar et al., 2004], an advantage that MMMNs/SSVMs have over conditional random
fields is that we can also consider completely general graph structures (such as lattices or fully connected
graphs), if we enforce the additional constraint that the edge weights enforce a sub-modularity condition
[Kolmogorov and Zabin, 2004]. In these cases, the exact inference needed for training conditional random
fields is intractable, but computing the maximums needed by MMMNs/SSVMs can be formulated as a linear
program (that can be efficiently solved using min-cut techniques). [Taskar et al., 2004] proposes associative
max margin Markov networks, models that take advantage of this property to allow efficient training and
decoding in models with an arbitrary graph structure and arbitrary clique sizes. In these models, the

3We can also consider penalizing the squared values of the slack variables [Tsochantaridis et al., 2004], but this does not
lead to a differentiable minimization problem due to the potential for ties in the max functions.

4We could also consider structural extensions based on the NK-slack formulation [Altun and Hofmann, 2003]. In this case,
the max functions would be replaced by sums, but it is not obvious (to me, anyway) how you would compute these sums
efficiently, nor how you would deal with the exponential number of variables and constraints in the quadratic program

6

constant factor in the likelihood ratio is to change the scaling of the slack variables and solve the quadratic
program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i !=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi/∆(Yi, Y

′
i), ∀iξi ≥ 0.

Here, you need to add more ‘slack’ for a competing hypothesis that differs in many position. This last variant
is known as a structural support vector machine with slack re-scaling [Tsochantaridis et al., 2004].

Equivalent unconstrained versions of these 3 structural extensions of support vector machines are3

(HMSVM) min
w

∑

i

max
Y ′

i !=Yi

(1− log p(Yi|w,Xi) + log p(Y ′
i |w,Xi))+ + λ||w||22,

(MMMN) min
w

∑

i

max
Y ′

i !=Yi

(∆(Yi, Y
′
i)− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi))+ + λ||w||22,

(SSVM) min
w

∑

i

max
Y ′

i !=Yi

(∆(Yi, Y
′
i)(1− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi)))+ + λ||w||22.

In the (MMMN) and (SSVM) formulations, we can use ∆(Yi, Yi) = 0 to simplify these expressions, giving

(MMMN) min
w

∑

i

max
Y ′

i

(∆(Yi, Y
′
i) + log p(Y ′

i |w,Xi))− log p(Yi|w,Xi) + λ||w||22,

(SSVM) min
w

∑

i

max
Y ′

i

(∆(Yi, Y
′
i)(1− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi))) + λ||w||22.

N.B., in these latter two expressions we can maximize over all Y ′
i instead of over all Y ′

i $= Yi; In these cases,
we can compute the objective function using the Viterbi decoding algorithm (with a suitably modified input).
In contrast, the HMSVM model requires solving a maximization problem over all configurations except Yi,
which be may be much harder to solve4. Finally, we note that while the structural hinge losses in all three
formulations represent an upper bound on the number of sequence errors (ie. the number of times at least
one label in the sequence was wrong), the MMMN and SSVM formulations give an upper bound on the
number of label errors while the HMSVM does not.

Although this section has focused on a chain-structured dependency structure, we only used this property
in two places: (i) the definition of p(Yi|w,Xi), and (ii) in efficient methods to compute maximums over the
space of possible configurations. We can apply the same methodology to derive MMMNs and SSVMs for
a wide variety of alternative models. For example, we can consider the cases where conditional random
fields can be applied exactly, such as low tree-width structured dependencies, and probabilistic context free
grammars. We can also consider models where we consider higher-order dependencies, rather than simply
pairwise dependencies, as long as the graph structure or parameterization allows us to efficiently solve the
associated maximization problems.

As discussed in [Taskar et al., 2004], an advantage that MMMNs/SSVMs have over conditional random
fields is that we can also consider completely general graph structures (such as lattices or fully connected
graphs), if we enforce the additional constraint that the edge weights enforce a sub-modularity condition
[Kolmogorov and Zabin, 2004]. In these cases, the exact inference needed for training conditional random
fields is intractable, but computing the maximums needed by MMMNs/SSVMs can be formulated as a linear
program (that can be efficiently solved using min-cut techniques). [Taskar et al., 2004] proposes associative
max margin Markov networks, models that take advantage of this property to allow efficient training and
decoding in models with an arbitrary graph structure and arbitrary clique sizes. In these models, the

3We can also consider penalizing the squared values of the slack variables [Tsochantaridis et al., 2004], but this does not
lead to a differentiable minimization problem due to the potential for ties in the max functions.

4We could also consider structural extensions based on the NK-slack formulation [Altun and Hofmann, 2003]. In this case,
the max functions would be replaced by sums, but it is not obvious (to me, anyway) how you would compute these sums
efficiently, nor how you would deal with the exponential number of variables and constraints in the quadratic program

6

Beyond Chains

• We can compute these objective value anytime we can do decoding in
the model:

• Trees and low-treewidth graphs

• Context-free grammars

• General graphs with sub-modular potentials*

• Weighted bipartite matching*

• *: #P-hard to train conditional random field

• We can also plug in an approximate decoding or convex relaxation of
decoding

constant factor in the likelihood ratio is to change the scaling of the slack variables and solve the quadratic
program

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i !=Yi

log p(Yi|w,Xi)− log p(Y ′
i |w,Xi) ≥ 1− ξi/∆(Yi, Y

′
i), ∀iξi ≥ 0.

Here, you need to add more ‘slack’ for a competing hypothesis that differs in many position. This last variant
is known as a structural support vector machine with slack re-scaling [Tsochantaridis et al., 2004].

Equivalent unconstrained versions of these 3 structural extensions of support vector machines are3

(HMSVM) min
w

∑

i

max
Y ′

i !=Yi

(1− log p(Yi|w,Xi) + log p(Y ′
i |w,Xi))+ + λ||w||22,

(MMMN) min
w

∑

i

max
Y ′

i !=Yi

(∆(Yi, Y
′
i)− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi))+ + λ||w||22,

(SSVM) min
w

∑

i

max
Y ′

i !=Yi

(∆(Yi, Y
′
i)(1− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi)))+ + λ||w||22.

In the (MMMN) and (SSVM) formulations, we can use ∆(Yi, Yi) = 0 to simplify these expressions, giving

(MMMN) min
w

∑

i

max
Y ′

i

(∆(Yi, Y
′
i) + log p(Y ′

i |w,Xi))− log p(Yi|w,Xi) + λ||w||22,

(SSVM) min
w

∑

i

max
Y ′

i

(∆(Yi, Y
′
i)(1− log p(Yi|w,Xi) + log p(Y ′

i |w,Xi))) + λ||w||22.

N.B., in these latter two expressions we can maximize over all Y ′
i instead of over all Y ′

i $= Yi; In these cases,
we can compute the objective function using the Viterbi decoding algorithm (with a suitably modified input).
In contrast, the HMSVM model requires solving a maximization problem over all configurations except Yi,
which be may be much harder to solve4. Finally, we note that while the structural hinge losses in all three
formulations represent an upper bound on the number of sequence errors (ie. the number of times at least
one label in the sequence was wrong), the MMMN and SSVM formulations give an upper bound on the
number of label errors while the HMSVM does not.

Although this section has focused on a chain-structured dependency structure, we only used this property
in two places: (i) the definition of p(Yi|w,Xi), and (ii) in efficient methods to compute maximums over the
space of possible configurations. We can apply the same methodology to derive MMMNs and SSVMs for
a wide variety of alternative models. For example, we can consider the cases where conditional random
fields can be applied exactly, such as low tree-width structured dependencies, and probabilistic context free
grammars. We can also consider models where we consider higher-order dependencies, rather than simply
pairwise dependencies, as long as the graph structure or parameterization allows us to efficiently solve the
associated maximization problems.

As discussed in [Taskar et al., 2004], an advantage that MMMNs/SSVMs have over conditional random
fields is that we can also consider completely general graph structures (such as lattices or fully connected
graphs), if we enforce the additional constraint that the edge weights enforce a sub-modularity condition
[Kolmogorov and Zabin, 2004]. In these cases, the exact inference needed for training conditional random
fields is intractable, but computing the maximums needed by MMMNs/SSVMs can be formulated as a linear
program (that can be efficiently solved using min-cut techniques). [Taskar et al., 2004] proposes associative
max margin Markov networks, models that take advantage of this property to allow efficient training and
decoding in models with an arbitrary graph structure and arbitrary clique sizes. In these models, the

3We can also consider penalizing the squared values of the slack variables [Tsochantaridis et al., 2004], but this does not
lead to a differentiable minimization problem due to the potential for ties in the max functions.

4We could also consider structural extensions based on the NK-slack formulation [Altun and Hofmann, 2003]. In this case,
the max functions would be replaced by sums, but it is not obvious (to me, anyway) how you would compute these sums
efficiently, nor how you would deal with the exponential number of variables and constraints in the quadratic program

6

Outline
• Formulation:

• Binary SVMs

• Multiclass SVMs

• Structural SVMs

• Training:

• Subgradients

• Cutting Planes

• Marginal Formulations

• Min-Max Formulations

Subgradients
• Our objective function is:

• If Yi’’ is an argmax of the max, a subgradient is:

• Consider the step:

• For small enough eta, this will:

• always move us toward the optimal solution

• decrease the objective function when the argmax is unique

potential that all variables in a clique take the state k based on a non-negative feature xi is modeled with a
parameter λk,i ≥ 1, while the potential for any configuration where they don’t take the same state is fixed
at 1. For binary variables, the decoding problem can be solved exactly as a linear program for any graph
structure, while for multi-class problems the linear program yields a worst-case approximation ratio of 1/c
(where c is the largest clique size), if an appropriate discretization strategy is used. [Taskar et al., 2006b]
also gives the example of weighted bipartite graph matching, where decoding can be computed in polynomial
time using linear programming, but the inference needed to train a conditional random field is #P -hard.

For general graphs where we do not want the sub-modularity condition, we can also consider an approxi-
mation where we use an approximate decoding method, such as loopy belief propagation or a stochastic local
search method [Hutter et al., 2005]). However, theoretical and empirical work in [Finley and Joachims, 2008]
shows that using such under-generating decoding methods (which may return sub-optimal solutions to the
decoding problem) have several disadvantages compared to so-called over-generating decoding methods. A
typical example of an over-generating decoding method is a linear programming relaxation of an integer
programming formulations of decoding, where in the relaxation the objective is optimized exactly over an
expanded space [Kumar et al., 2007], hence yielding a fractional decoding that is a strict upper bound on
the optimal decoding.

5 Training

In this section, we discuss methods for estimating the parameters of structural extensions of SVMs. We will
focus on MMMNs since it makes the notation slightly simpler, but most of the techniques can be applied
with only minor modifications to the case of SSVMs.

5.1 Subgradient Methods

We first consider methods that address the unconstrained non-differentiable formulation of MMMNs by
moving along sub-gradients of the objective function

f(w) !
∑

i

max
Y ′

i

(∆(Yi, Y
′
i) + log p(Y ′

i |w,Xi))− log p(Yi|w,Xi) + λ||w||22.

If we use Y ′′
i as an argmax of the max, then a sub-gradient of this objective function is

g(w) !
∑

i

∇w log p(Y ′′
i |w,Xi)−∇w log p(Yi|w,Xi) + 2λw.

The function is differentiable and this will be the gradient whenever all of the argmax values are unique.
The negative sub-gradient direction is a descent direction at all points where the function is differentiable,
which means that f(w− ηg(w)) < f(w) for sufficiently small η > 0. In contrast, at non-differentiable points
(where at least one argmax is not unique) negative sub-gradient directions may not be descent directions
[Bertsekas, 1999, §6.3]. However, we can guarantee that for sufficiently small η the distance to the optimal
solution is reduced, even if the function value is not [Bertsekas, 1999, §6.3]. We can therefore consider a
simple sub-gradient method that uses a sequence of small step sizes {ηk}, where the iterations take of the
form

wk+1 = wk − ηkg(wk).

Several strategies for choosing the step length that lead to convergence of the iterations are discussed in
[Bertsekas, 1999, §6.3], with a common choice being a sequence {ηk} of positive step sizes satisfying

∞∑

k=1

ηk =∞,
∞∑

k=1

η2
k <∞.

7

potential that all variables in a clique take the state k based on a non-negative feature xi is modeled with a
parameter λk,i ≥ 1, while the potential for any configuration where they don’t take the same state is fixed
at 1. For binary variables, the decoding problem can be solved exactly as a linear program for any graph
structure, while for multi-class problems the linear program yields a worst-case approximation ratio of 1/c
(where c is the largest clique size), if an appropriate discretization strategy is used. [Taskar et al., 2006b]
also gives the example of weighted bipartite graph matching, where decoding can be computed in polynomial
time using linear programming, but the inference needed to train a conditional random field is #P -hard.

For general graphs where we do not want the sub-modularity condition, we can also consider an approxi-
mation where we use an approximate decoding method, such as loopy belief propagation or a stochastic local
search method [Hutter et al., 2005]). However, theoretical and empirical work in [Finley and Joachims, 2008]
shows that using such under-generating decoding methods (which may return sub-optimal solutions to the
decoding problem) have several disadvantages compared to so-called over-generating decoding methods. A
typical example of an over-generating decoding method is a linear programming relaxation of an integer
programming formulations of decoding, where in the relaxation the objective is optimized exactly over an
expanded space [Kumar et al., 2007], hence yielding a fractional decoding that is a strict upper bound on
the optimal decoding.

5 Training

In this section, we discuss methods for estimating the parameters of structural extensions of SVMs. We will
focus on MMMNs since it makes the notation slightly simpler, but most of the techniques can be applied
with only minor modifications to the case of SSVMs.

5.1 Subgradient Methods

We first consider methods that address the unconstrained non-differentiable formulation of MMMNs by
moving along sub-gradients of the objective function

f(w) !
∑

i

max
Y ′

i

(∆(Yi, Y
′
i) + log p(Y ′

i |w,Xi))− log p(Yi|w,Xi) + λ||w||22.

If we use Y ′′
i as an argmax of the max, then a sub-gradient of this objective function is

g(w) !
∑

i

∇w log p(Y ′′
i |w,Xi)−∇w log p(Yi|w,Xi) + 2λw.

The function is differentiable and this will be the gradient whenever all of the argmax values are unique.
The negative sub-gradient direction is a descent direction at all points where the function is differentiable,
which means that f(w− ηg(w)) < f(w) for sufficiently small η > 0. In contrast, at non-differentiable points
(where at least one argmax is not unique) negative sub-gradient directions may not be descent directions
[Bertsekas, 1999, §6.3]. However, we can guarantee that for sufficiently small η the distance to the optimal
solution is reduced, even if the function value is not [Bertsekas, 1999, §6.3]. We can therefore consider a
simple sub-gradient method that uses a sequence of small step sizes {ηk}, where the iterations take of the
form

wk+1 = wk − ηkg(wk).

Several strategies for choosing the step length that lead to convergence of the iterations are discussed in
[Bertsekas, 1999, §6.3], with a common choice being a sequence {ηk} of positive step sizes satisfying

∞∑

k=1

ηk =∞,
∞∑

k=1

η2
k <∞.

7

potential that all variables in a clique take the state k based on a non-negative feature xi is modeled with a
parameter λk,i ≥ 1, while the potential for any configuration where they don’t take the same state is fixed
at 1. For binary variables, the decoding problem can be solved exactly as a linear program for any graph
structure, while for multi-class problems the linear program yields a worst-case approximation ratio of 1/c
(where c is the largest clique size), if an appropriate discretization strategy is used. [Taskar et al., 2006b]
also gives the example of weighted bipartite graph matching, where decoding can be computed in polynomial
time using linear programming, but the inference needed to train a conditional random field is #P -hard.

For general graphs where we do not want the sub-modularity condition, we can also consider an approxi-
mation where we use an approximate decoding method, such as loopy belief propagation or a stochastic local
search method [Hutter et al., 2005]). However, theoretical and empirical work in [Finley and Joachims, 2008]
shows that using such under-generating decoding methods (which may return sub-optimal solutions to the
decoding problem) have several disadvantages compared to so-called over-generating decoding methods. A
typical example of an over-generating decoding method is a linear programming relaxation of an integer
programming formulations of decoding, where in the relaxation the objective is optimized exactly over an
expanded space [Kumar et al., 2007], hence yielding a fractional decoding that is a strict upper bound on
the optimal decoding.

5 Training

In this section, we discuss methods for estimating the parameters of structural extensions of SVMs. We will
focus on MMMNs since it makes the notation slightly simpler, but most of the techniques can be applied
with only minor modifications to the case of SSVMs.

5.1 Subgradient Methods

We first consider methods that address the unconstrained non-differentiable formulation of MMMNs by
moving along sub-gradients of the objective function

f(w) !
∑

i

max
Y ′

i

(∆(Yi, Y
′
i) + log p(Y ′

i |w,Xi))− log p(Yi|w,Xi) + λ||w||22.

If we use Y ′′
i as an argmax of the max, then a sub-gradient of this objective function is

g(w) !
∑

i

∇w log p(Y ′′
i |w,Xi)−∇w log p(Yi|w,Xi) + 2λw.

The function is differentiable and this will be the gradient whenever all of the argmax values are unique.
The negative sub-gradient direction is a descent direction at all points where the function is differentiable,
which means that f(w− ηg(w)) < f(w) for sufficiently small η > 0. In contrast, at non-differentiable points
(where at least one argmax is not unique) negative sub-gradient directions may not be descent directions
[Bertsekas, 1999, §6.3]. However, we can guarantee that for sufficiently small η the distance to the optimal
solution is reduced, even if the function value is not [Bertsekas, 1999, §6.3]. We can therefore consider a
simple sub-gradient method that uses a sequence of small step sizes {ηk}, where the iterations take of the
form

wk+1 = wk − ηkg(wk).

Several strategies for choosing the step length that lead to convergence of the iterations are discussed in
[Bertsekas, 1999, §6.3], with a common choice being a sequence {ηk} of positive step sizes satisfying

∞∑

k=1

ηk =∞,
∞∑

k=1

η2
k <∞.

7

Subgradient descent
• We can therefore consider optimization algorithms of the form:

• Common choices of step size are constant, or a sequence
satisfying:

• Update based on a single training example:

• Average the iterations:

• Project onto a compact set containing the solution:

potential that all variables in a clique take the state k based on a non-negative feature xi is modeled with a
parameter λk,i ≥ 1, while the potential for any configuration where they don’t take the same state is fixed
at 1. For binary variables, the decoding problem can be solved exactly as a linear program for any graph
structure, while for multi-class problems the linear program yields a worst-case approximation ratio of 1/c
(where c is the largest clique size), if an appropriate discretization strategy is used. [Taskar et al., 2006b]
also gives the example of weighted bipartite graph matching, where decoding can be computed in polynomial
time using linear programming, but the inference needed to train a conditional random field is #P -hard.

For general graphs where we do not want the sub-modularity condition, we can also consider an approxi-
mation where we use an approximate decoding method, such as loopy belief propagation or a stochastic local
search method [Hutter et al., 2005]). However, theoretical and empirical work in [Finley and Joachims, 2008]
shows that using such under-generating decoding methods (which may return sub-optimal solutions to the
decoding problem) have several disadvantages compared to so-called over-generating decoding methods. A
typical example of an over-generating decoding method is a linear programming relaxation of an integer
programming formulations of decoding, where in the relaxation the objective is optimized exactly over an
expanded space [Kumar et al., 2007], hence yielding a fractional decoding that is a strict upper bound on
the optimal decoding.

5 Training

In this section, we discuss methods for estimating the parameters of structural extensions of SVMs. We will
focus on MMMNs since it makes the notation slightly simpler, but most of the techniques can be applied
with only minor modifications to the case of SSVMs.

5.1 Subgradient Methods

We first consider methods that address the unconstrained non-differentiable formulation of MMMNs by
moving along sub-gradients of the objective function

f(w) !
∑

i

max
Y ′

i

(∆(Yi, Y
′
i) + log p(Y ′

i |w,Xi))− log p(Yi|w,Xi) + λ||w||22.

If we use Y ′′
i as an argmax of the max, then a sub-gradient of this objective function is

g(w) !
∑

i

∇w log p(Y ′′
i |w,Xi)−∇w log p(Yi|w,Xi) + 2λw.

The function is differentiable and this will be the gradient whenever all of the argmax values are unique.
The negative sub-gradient direction is a descent direction at all points where the function is differentiable,
which means that f(w− ηg(w)) < f(w) for sufficiently small η > 0. In contrast, at non-differentiable points
(where at least one argmax is not unique) negative sub-gradient directions may not be descent directions
[Bertsekas, 1999, §6.3]. However, we can guarantee that for sufficiently small η the distance to the optimal
solution is reduced, even if the function value is not [Bertsekas, 1999, §6.3]. We can therefore consider a
simple sub-gradient method that uses a sequence of small step sizes {ηk}, where the iterations take of the
form

wk+1 = wk − ηkg(wk).

Several strategies for choosing the step length that lead to convergence of the iterations are discussed in
[Bertsekas, 1999, §6.3], with a common choice being a sequence {ηk} of positive step sizes satisfying

∞∑

k=1

ηk =∞,
∞∑

k=1

η2
k <∞.

7

potential that all variables in a clique take the state k based on a non-negative feature xi is modeled with a
parameter λk,i ≥ 1, while the potential for any configuration where they don’t take the same state is fixed
at 1. For binary variables, the decoding problem can be solved exactly as a linear program for any graph
structure, while for multi-class problems the linear program yields a worst-case approximation ratio of 1/c
(where c is the largest clique size), if an appropriate discretization strategy is used. [Taskar et al., 2006b]
also gives the example of weighted bipartite graph matching, where decoding can be computed in polynomial
time using linear programming, but the inference needed to train a conditional random field is #P -hard.

For general graphs where we do not want the sub-modularity condition, we can also consider an approxi-
mation where we use an approximate decoding method, such as loopy belief propagation or a stochastic local
search method [Hutter et al., 2005]). However, theoretical and empirical work in [Finley and Joachims, 2008]
shows that using such under-generating decoding methods (which may return sub-optimal solutions to the
decoding problem) have several disadvantages compared to so-called over-generating decoding methods. A
typical example of an over-generating decoding method is a linear programming relaxation of an integer
programming formulations of decoding, where in the relaxation the objective is optimized exactly over an
expanded space [Kumar et al., 2007], hence yielding a fractional decoding that is a strict upper bound on
the optimal decoding.

5 Training

In this section, we discuss methods for estimating the parameters of structural extensions of SVMs. We will
focus on MMMNs since it makes the notation slightly simpler, but most of the techniques can be applied
with only minor modifications to the case of SSVMs.

5.1 Subgradient Methods

We first consider methods that address the unconstrained non-differentiable formulation of MMMNs by
moving along sub-gradients of the objective function

f(w) !
∑

i

max
Y ′

i

(∆(Yi, Y
′
i) + log p(Y ′

i |w,Xi))− log p(Yi|w,Xi) + λ||w||22.

If we use Y ′′
i as an argmax of the max, then a sub-gradient of this objective function is

g(w) !
∑

i

∇w log p(Y ′′
i |w,Xi)−∇w log p(Yi|w,Xi) + 2λw.

The function is differentiable and this will be the gradient whenever all of the argmax values are unique.
The negative sub-gradient direction is a descent direction at all points where the function is differentiable,
which means that f(w− ηg(w)) < f(w) for sufficiently small η > 0. In contrast, at non-differentiable points
(where at least one argmax is not unique) negative sub-gradient directions may not be descent directions
[Bertsekas, 1999, §6.3]. However, we can guarantee that for sufficiently small η the distance to the optimal
solution is reduced, even if the function value is not [Bertsekas, 1999, §6.3]. We can therefore consider a
simple sub-gradient method that uses a sequence of small step sizes {ηk}, where the iterations take of the
form

wk+1 = wk − ηkg(wk).

Several strategies for choosing the step length that lead to convergence of the iterations are discussed in
[Bertsekas, 1999, §6.3], with a common choice being a sequence {ηk} of positive step sizes satisfying

∞∑

k=1

ηk =∞,
∞∑

k=1

η2
k <∞.

7

Convergence of the method can also be shown if each step uses the contribution to the sub-gradient of a
suitably chosen individual training example i [Kushner and Yin, 2003]

gi(w) ! ∇w log p(Y ′′
i |w,Xi)−∇w log p(Yi|w,Xi) + (2/N)λw,

resulting in steps of the form
wk+1 = wk − ηkgi(wk).

This is known as a stochastic sub-gradient descent method, and was presented in [Collins, 2002] (predating
the formulation of structural SVMs) for the degenerate case of λ = 0 and ∀Yi,Y ′

i
∆(Yi, Y ′

i) = 0, and where a
constant step size (ηk = η) was used instead of a convergent sequence.

An interesting alternative method was also outlined in [Collins, 2002]; In this second method a constant
step size was used, and a variant on the procedure was considered where the final estimator is the average
of all the iterates;

wk+1 = wk − ηgi(wk),

w̃k+1 =
k − 1

k
w̃k +

1
k

wk+1.

Convergence of averaged estimators of the form w̃ is discussed in [Kushner and Yin, 2003], where it is shown
that under certain conditions these steps satisfy an asymptotic statistical efficiency property.

In the special case of binary support vector machines (though easily extended to structural support vector
machines), [Shalev-Shwartz et al., 2007] considers iterations of the form

wk+1 = π(wk − ηkg(wk)),

where π is a projection onto an $2-ball that is guaranteed to contain the solution5. They showed that the num-
ber of iterations to obtain a solution with accuracy ε using this method is O(1/ε) (ignoring poly-logarithmic
factors), which was an improvement over the O(1/ε2) number of iterations provided by the previous anal-
ysis of the averaged stochastic gradient method [Zhang, 2004] and cutting plane methods [Joachims, 2006].
[Shalev-Shwartz et al., 2007] also consider the case of a projected stochastic gradient update, and show
that the iterations achieve an accuracy of ε with probability 1 − δ in O(1/(δε)) iterations. One could
also consider combining averaging and projections, whose asymptotic statistical efficiency is considered in
[Kushner and Yin, 2003]. Finally, [Ratliff et al., 2007] show that the (deterministic) subgradient method
with a sufficiently small constant step size will converge linearly (ie. with the faster rate of O(log(1/ε)))
to a region containing the minimum whose radius is proportional to C/λ (where C is a bound on the
sub-differential).

5.2 Cutting Plane and Bundle Methods

We now consider methods for solving the quadratic programming formulation of MMMNs

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i
log p(Yi|w,Xi)− log p(Y ′

i |w,Xi) ≥ ∆(Yi, Y
′
i)− ξi, ∀iξi ≥ 0.

This formulation is problematic since we have an exponential number of constraints. However, it is con-
ceivable that we do not need to enforce all of these constraints at the optimal solution. In particular,
[Tsochantaridis et al., 2004] showed that there always exists a polynomial-sized subset of the constraints
that can satisfy all constraints with accuracy at least ε. This makes cutting-plane methods for quadratic
programming an appealing approach for solving this type of problem.

Cutting plane methods have a very simple structure; We first find the unconstrained minimizer. If the
minimizer does not satisfy all the constraints, we find a constraint that is violated and use it to construct our

5The projection of a vector w onto a set W is defined as minw∗∈W ||w − w∗||2

8

Convergence of the method can also be shown if each step uses the contribution to the sub-gradient of a
suitably chosen individual training example i [Kushner and Yin, 2003]

gi(w) ! ∇w log p(Y ′′
i |w,Xi)−∇w log p(Yi|w,Xi) + (2/N)λw,

resulting in steps of the form
wk+1 = wk − ηkgi(wk).

This is known as a stochastic sub-gradient descent method, and was presented in [Collins, 2002] (predating
the formulation of structural SVMs) for the degenerate case of λ = 0 and ∀Yi,Y ′

i
∆(Yi, Y ′

i) = 0, and where a
constant step size (ηk = η) was used instead of a convergent sequence.

An interesting alternative method was also outlined in [Collins, 2002]; In this second method a constant
step size was used, and a variant on the procedure was considered where the final estimator is the average
of all the iterates;

wk+1 = wk − ηgi(wk),

w̃k+1 =
k − 1

k
w̃k +

1
k

wk+1.

Convergence of averaged estimators of the form w̃ is discussed in [Kushner and Yin, 2003], where it is shown
that under certain conditions these steps satisfy an asymptotic statistical efficiency property.

In the special case of binary support vector machines (though easily extended to structural support vector
machines), [Shalev-Shwartz et al., 2007] considers iterations of the form

wk+1 = π(wk − ηkg(wk)),

where π is a projection onto an $2-ball that is guaranteed to contain the solution5. They showed that the num-
ber of iterations to obtain a solution with accuracy ε using this method is O(1/ε) (ignoring poly-logarithmic
factors), which was an improvement over the O(1/ε2) number of iterations provided by the previous anal-
ysis of the averaged stochastic gradient method [Zhang, 2004] and cutting plane methods [Joachims, 2006].
[Shalev-Shwartz et al., 2007] also consider the case of a projected stochastic gradient update, and show
that the iterations achieve an accuracy of ε with probability 1 − δ in O(1/(δε)) iterations. One could
also consider combining averaging and projections, whose asymptotic statistical efficiency is considered in
[Kushner and Yin, 2003]. Finally, [Ratliff et al., 2007] show that the (deterministic) subgradient method
with a sufficiently small constant step size will converge linearly (ie. with the faster rate of O(log(1/ε)))
to a region containing the minimum whose radius is proportional to C/λ (where C is a bound on the
sub-differential).

5.2 Cutting Plane and Bundle Methods

We now consider methods for solving the quadratic programming formulation of MMMNs

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i
log p(Yi|w,Xi)− log p(Y ′

i |w,Xi) ≥ ∆(Yi, Y
′
i)− ξi, ∀iξi ≥ 0.

This formulation is problematic since we have an exponential number of constraints. However, it is con-
ceivable that we do not need to enforce all of these constraints at the optimal solution. In particular,
[Tsochantaridis et al., 2004] showed that there always exists a polynomial-sized subset of the constraints
that can satisfy all constraints with accuracy at least ε. This makes cutting-plane methods for quadratic
programming an appealing approach for solving this type of problem.

Cutting plane methods have a very simple structure; We first find the unconstrained minimizer. If the
minimizer does not satisfy all the constraints, we find a constraint that is violated and use it to construct our

5The projection of a vector w onto a set W is defined as minw∗∈W ||w − w∗||2

8

Convergence of the method can also be shown if each step uses the contribution to the sub-gradient of a
suitably chosen individual training example i [Kushner and Yin, 2003]

gi(w) ! ∇w log p(Y ′′
i |w,Xi)−∇w log p(Yi|w,Xi) + (2/N)λw,

resulting in steps of the form
wk+1 = wk − ηkgi(wk).

This is known as a stochastic sub-gradient descent method, and was presented in [Collins, 2002] (predating
the formulation of structural SVMs) for the degenerate case of λ = 0 and ∀Yi,Y ′

i
∆(Yi, Y ′

i) = 0, and where a
constant step size (ηk = η) was used instead of a convergent sequence.

An interesting alternative method was also outlined in [Collins, 2002]; In this second method a constant
step size was used, and a variant on the procedure was considered where the final estimator is the average
of all the iterates;

wk+1 = wk − ηgi(wk),

w̃k+1 =
k − 1

k
w̃k +

1
k

wk+1.

Convergence of averaged estimators of the form w̃ is discussed in [Kushner and Yin, 2003], where it is shown
that under certain conditions these steps satisfy an asymptotic statistical efficiency property.

In the special case of binary support vector machines (though easily extended to structural support vector
machines), [Shalev-Shwartz et al., 2007] considers iterations of the form

wk+1 = π(wk − ηkg(wk)),

where π is a projection onto an $2-ball that is guaranteed to contain the solution5. They showed that the num-
ber of iterations to obtain a solution with accuracy ε using this method is O(1/ε) (ignoring poly-logarithmic
factors), which was an improvement over the O(1/ε2) number of iterations provided by the previous anal-
ysis of the averaged stochastic gradient method [Zhang, 2004] and cutting plane methods [Joachims, 2006].
[Shalev-Shwartz et al., 2007] also consider the case of a projected stochastic gradient update, and show
that the iterations achieve an accuracy of ε with probability 1 − δ in O(1/(δε)) iterations. One could
also consider combining averaging and projections, whose asymptotic statistical efficiency is considered in
[Kushner and Yin, 2003]. Finally, [Ratliff et al., 2007] show that the (deterministic) subgradient method
with a sufficiently small constant step size will converge linearly (ie. with the faster rate of O(log(1/ε)))
to a region containing the minimum whose radius is proportional to C/λ (where C is a bound on the
sub-differential).

5.2 Cutting Plane and Bundle Methods

We now consider methods for solving the quadratic programming formulation of MMMNs

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i
log p(Yi|w,Xi)− log p(Y ′

i |w,Xi) ≥ ∆(Yi, Y
′
i)− ξi, ∀iξi ≥ 0.

This formulation is problematic since we have an exponential number of constraints. However, it is con-
ceivable that we do not need to enforce all of these constraints at the optimal solution. In particular,
[Tsochantaridis et al., 2004] showed that there always exists a polynomial-sized subset of the constraints
that can satisfy all constraints with accuracy at least ε. This makes cutting-plane methods for quadratic
programming an appealing approach for solving this type of problem.

Cutting plane methods have a very simple structure; We first find the unconstrained minimizer. If the
minimizer does not satisfy all the constraints, we find a constraint that is violated and use it to construct our

5The projection of a vector w onto a set W is defined as minw∗∈W ||w − w∗||2

8

Some Convergence Rates
• Projected batch SD (diminishing step sizes): O(1/eps)

• Averaged stochastic SD (constant step sizes): O(1/eps2),
asymptotic variance

• Stochastic projected SD (dimishing step sizes): O(1/(d eps))
w.p. 1-d

• Averaged stochastic projected SD (constant step sizes): ?,
asymptotic variance

• Batch SD (constant step sizes): O(log(1/eps)) to get within
bounded region of optimal (bound depends on lambda and
bound on sub-differential)

Outline
• Formulation:

• Binary SVMs

• Multiclass SVMs

• Structural SVMs

• Training:

• Subgradients

• Cutting Planes

• Marginal Formulations

• Min-Max Formulations

Cutting Plane Methods
• The problem with the QP formulation is that it has an exponential

number of constraints:

• But, there always exists a polynomial-sized set that satisfies all
constraints up to an accuracy of eps.

• Basic idea behind cutting plane method:

• use decoding to find out if all constraints are satisfied

• if not, greedily add a constraint

Convergence of the method can also be shown if each step uses the contribution to the sub-gradient of a
suitably chosen individual training example i [Kushner and Yin, 2003]

gi(w) ! ∇w log p(Y ′′
i |w,Xi)−∇w log p(Yi|w,Xi) + (2/N)λw,

resulting in steps of the form
wk+1 = wk − ηkgi(wk).

This is known as a stochastic sub-gradient descent method, and was presented in [Collins, 2002] (predating
the formulation of structural SVMs) for the degenerate case of λ = 0 and ∀Yi,Y ′

i
∆(Yi, Y ′

i) = 0, and where a
constant step size (ηk = η) was used instead of a convergent sequence.

An interesting alternative method was also outlined in [Collins, 2002]; In this second method a constant
step size was used, and a variant on the procedure was considered where the final estimator is the average
of all the iterates;

wk+1 = wk − ηgi(wk),

w̃k+1 =
k − 1

k
w̃k +

1
k

wk+1.

Convergence of averaged estimators of the form w̃ is discussed in [Kushner and Yin, 2003], where it is shown
that under certain conditions these steps satisfy an asymptotic statistical efficiency property.

In the special case of binary support vector machines (though easily extended to structural support vector
machines), [Shalev-Shwartz et al., 2007] considers iterations of the form

wk+1 = π(wk − ηkg(wk)),

where π is a projection onto an $2-ball that is guaranteed to contain the solution5. They showed that the num-
ber of iterations to obtain a solution with accuracy ε using this method is O(1/ε) (ignoring poly-logarithmic
factors), which was an improvement over the O(1/ε2) number of iterations provided by the previous anal-
ysis of the averaged stochastic gradient method [Zhang, 2004] and cutting plane methods [Joachims, 2006].
[Shalev-Shwartz et al., 2007] also consider the case of a projected stochastic gradient update, and show
that the iterations achieve an accuracy of ε with probability 1 − δ in O(1/(δε)) iterations. One could
also consider combining averaging and projections, whose asymptotic statistical efficiency is considered in
[Kushner and Yin, 2003]. Finally, [Ratliff et al., 2007] show that the (deterministic) subgradient method
with a sufficiently small constant step size will converge linearly (ie. with the faster rate of O(log(1/ε)))
to a region containing the minimum whose radius is proportional to C/λ (where C is a bound on the
sub-differential).

5.2 Cutting Plane and Bundle Methods

We now consider methods for solving the quadratic programming formulation of MMMNs

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i
log p(Yi|w,Xi)− log p(Y ′

i |w,Xi) ≥ ∆(Yi, Y
′
i)− ξi, ∀iξi ≥ 0.

This formulation is problematic since we have an exponential number of constraints. However, it is con-
ceivable that we do not need to enforce all of these constraints at the optimal solution. In particular,
[Tsochantaridis et al., 2004] showed that there always exists a polynomial-sized subset of the constraints
that can satisfy all constraints with accuracy at least ε. This makes cutting-plane methods for quadratic
programming an appealing approach for solving this type of problem.

Cutting plane methods have a very simple structure; We first find the unconstrained minimizer. If the
minimizer does not satisfy all the constraints, we find a constraint that is violated and use it to construct our

5The projection of a vector w onto a set W is defined as minw∗∈W ||w − w∗||2

8

QP Cutting Plane Method
• Cutting plane method:

• we have a working set of constraints

• iterate over training examples:

• if decoding does not violate constraints, continue

• otherwise, add constraint to working set and solve QP

• stop if no changes in working set

• Solving these QPs in the dual is efficient, as long as the working
set is small.

• At most O(1/eps) constraints are required.

Convex Cutting Plane
• There also exist ‘cutting plane’ methods for solving (non-

smooth) convex optimization problems

• We can apply these to the unconstrained formulation:

• Basic idea: any subgradient gives a lower bounding hyper-
plane

• Cutting plane for non-smooth optimization:

• Find minimum over these lower bounds

• Use minimum to make better lower bound

potential that all variables in a clique take the state k based on a non-negative feature xi is modeled with a
parameter λk,i ≥ 1, while the potential for any configuration where they don’t take the same state is fixed
at 1. For binary variables, the decoding problem can be solved exactly as a linear program for any graph
structure, while for multi-class problems the linear program yields a worst-case approximation ratio of 1/c
(where c is the largest clique size), if an appropriate discretization strategy is used. [Taskar et al., 2006b]
also gives the example of weighted bipartite graph matching, where decoding can be computed in polynomial
time using linear programming, but the inference needed to train a conditional random field is #P -hard.

For general graphs where we do not want the sub-modularity condition, we can also consider an approxi-
mation where we use an approximate decoding method, such as loopy belief propagation or a stochastic local
search method [Hutter et al., 2005]). However, theoretical and empirical work in [Finley and Joachims, 2008]
shows that using such under-generating decoding methods (which may return sub-optimal solutions to the
decoding problem) have several disadvantages compared to so-called over-generating decoding methods. A
typical example of an over-generating decoding method is a linear programming relaxation of an integer
programming formulations of decoding, where in the relaxation the objective is optimized exactly over an
expanded space [Kumar et al., 2007], hence yielding a fractional decoding that is a strict upper bound on
the optimal decoding.

5 Training

In this section, we discuss methods for estimating the parameters of structural extensions of SVMs. We will
focus on MMMNs since it makes the notation slightly simpler, but most of the techniques can be applied
with only minor modifications to the case of SSVMs.

5.1 Subgradient Methods

We first consider methods that address the unconstrained non-differentiable formulation of MMMNs by
moving along sub-gradients of the objective function

f(w) !
∑

i

max
Y ′

i

(∆(Yi, Y
′
i) + log p(Y ′

i |w,Xi))− log p(Yi|w,Xi) + λ||w||22.

If we use Y ′′
i as an argmax of the max, then a sub-gradient of this objective function is

g(w) !
∑

i

∇w log p(Y ′′
i |w,Xi)−∇w log p(Yi|w,Xi) + 2λw.

The function is differentiable and this will be the gradient whenever all of the argmax values are unique.
The negative sub-gradient direction is a descent direction at all points where the function is differentiable,
which means that f(w− ηg(w)) < f(w) for sufficiently small η > 0. In contrast, at non-differentiable points
(where at least one argmax is not unique) negative sub-gradient directions may not be descent directions
[Bertsekas, 1999, §6.3]. However, we can guarantee that for sufficiently small η the distance to the optimal
solution is reduced, even if the function value is not [Bertsekas, 1999, §6.3]. We can therefore consider a
simple sub-gradient method that uses a sequence of small step sizes {ηk}, where the iterations take of the
form

wk+1 = wk − ηkg(wk).

Several strategies for choosing the step length that lead to convergence of the iterations are discussed in
[Bertsekas, 1999, §6.3], with a common choice being a sequence {ηk} of positive step sizes satisfying

∞∑

k=1

ηk =∞,
∞∑

k=1

η2
k <∞.

7

initial working set W. We then solve the problem with the constraints contained in W, and if this solution
still does not satisfy all the constraints we add another violating constraint to W. This continues until we
have accumulated enough constraints in W so that all constraints are satisfied in the solution.

[Tsochantaridis et al., 2004] suggests the following implementation of a cutting plane algorithm for MMMNs.
We iterate over the training examples, and use Viterbi decoding to find the maximum structural hinge loss.
If no constraint is violated by more than ε then we move on to the next training example. Otherwise, we add
the constraint corresponding to this alternative configuration, and optimize the objective function subject
to our current working set of constraints. The algorithm terminates when we complete a full pass through
the training data without adding any constraints.

The quadratic programs can be efficiently solved using the Wolfe dual formulation (see the next section),
which is a relatively small problem since it has only one variable for each working constraint. Further, the
sequence of quadratic programs can be solve efficiently since each quadratic program differs from the previous
one by only a single constraint. The main concern with using this type of approach is that the number of
constraints needed might be so large that the intermediate quadratic programs may be impractical to solve.
[Tsochantaridis et al., 2004] show that at most O(1/ε2) constraints are required6.

This cutting plane algorithm for structural SVMs later inspired an efficient algorithm for binary support
vector machines [Joachims, 2006]. In this method, the binary support vector machine problem is written in
a so-called 1-slack formulation

min
w,ξ

Nξ + λ||w||22,

s.t. ∀c∈{0,1}N

∑

i

ciyiw
T xi ≥

∑

i

ci −Nξ, ξ ≥ 0.

Here, we have an exponential number of constraints but only 1 slack variable. [Joachims, 2006] shows that
this formulation has the same optimal parameters (with ξ = (1/N)

∑
i ξi), and outlines a cutting plane

algorithm for binary SVMs that is implemented in the SVMperf software7. This method was extended
(back) to structural SVMs in [Joachims et al., 2009], where it was shown that at most O(1/ε) constraints
are required. This is the algorithm implemented in the current version of the SVMstruct software8.

An alternative to applying cutting plane methods for quadratic programming to a constrained formulation
of the MMMN problem is to apply the related cutting plane methods for non-smooth optimization to the
unconstrained non-differentiable MMMN problem. This is explored in [Teo et al., 2007, Smola et al., 2008].

In cutting plane methods for optimization of (non-smooth) convex functions, we use the definition of a
sub-gradient at a point w0 to yield a global lower bound on the function

f(w) ≥ f(w0) + (w − w0)T g(w0),

that is exact at w0. Cutting plane methods for non-smooth optimization proceed by collecting a set of
these lower bounding hyper-planes, and at each iteration generate a new trial point by finding the minimum
of these lower bounds. The function value and sub-gradient at the new trial point are then added to the
working set, yielding a more accurate lower bound.

A disadvantage of this procedure is that the minimum of the set of lower bounds may suggest a trial
point that is far away from the previous point, even if the previous point was close to the optimal solution.
This is known as instability [Bertsekas, 1999, §6.3]. A common way to address this is to minimize the lower
bound subject to a regularizer ||wk+1 − wk||22 on the difference between subsequent trial values. This is
known as a bundle method. The method of [Teo et al., 2007, Smola et al., 2008] is closely related to bundle
methods, but differs in the regularizer. Rather than building a lower bound for the full objective function
and using the regularizer ||wk+1−wk||22, they build a sequence of lower bounds for the hinge loss and use the
exact regularizer λ||w||22 already present in the objective function. In [Smola et al., 2008], it is shown that

6A closely related method and analysis for HMSVMs is in [Joachims, 2003]
7http://svmlight.joachims.org/svm perf.html
8http://svmlight.joachims.org/svm struct.html

9

Bundle Methods

• Problem: minimum of lower bound may be far away from
current solution.

• Bundle method: minimize lower bound subject to L2-penalty
on distance from current solution

• Combined cutting-plane/bundle-method: use the L2-penalty
already present in the objective, and build a lower bound on
the hinge loss

• Combined method requires at most O(1/eps) iterations.

initial working set W. We then solve the problem with the constraints contained in W, and if this solution
still does not satisfy all the constraints we add another violating constraint to W. This continues until we
have accumulated enough constraints in W so that all constraints are satisfied in the solution.

[Tsochantaridis et al., 2004] suggests the following implementation of a cutting plane algorithm for MMMNs.
We iterate over the training examples, and use Viterbi decoding to find the maximum structural hinge loss.
If no constraint is violated by more than ε then we move on to the next training example. Otherwise, we add
the constraint corresponding to this alternative configuration, and optimize the objective function subject
to our current working set of constraints. The algorithm terminates when we complete a full pass through
the training data without adding any constraints.

The quadratic programs can be efficiently solved using the Wolfe dual formulation (see the next section),
which is a relatively small problem since it has only one variable for each working constraint. Further, the
sequence of quadratic programs can be solve efficiently since each quadratic program differs from the previous
one by only a single constraint. The main concern with using this type of approach is that the number of
constraints needed might be so large that the intermediate quadratic programs may be impractical to solve.
[Tsochantaridis et al., 2004] show that at most O(1/ε2) constraints are required6.

This cutting plane algorithm for structural SVMs later inspired an efficient algorithm for binary support
vector machines [Joachims, 2006]. In this method, the binary support vector machine problem is written in
a so-called 1-slack formulation

min
w,ξ

Nξ + λ||w||22,

s.t. ∀c∈{0,1}N

∑

i

ciyiw
T xi ≥

∑

i

ci −Nξ, ξ ≥ 0.

Here, we have an exponential number of constraints but only 1 slack variable. [Joachims, 2006] shows that
this formulation has the same optimal parameters (with ξ = (1/N)

∑
i ξi), and outlines a cutting plane

algorithm for binary SVMs that is implemented in the SVMperf software7. This method was extended
(back) to structural SVMs in [Joachims et al., 2009], where it was shown that at most O(1/ε) constraints
are required. This is the algorithm implemented in the current version of the SVMstruct software8.

An alternative to applying cutting plane methods for quadratic programming to a constrained formulation
of the MMMN problem is to apply the related cutting plane methods for non-smooth optimization to the
unconstrained non-differentiable MMMN problem. This is explored in [Teo et al., 2007, Smola et al., 2008].

In cutting plane methods for optimization of (non-smooth) convex functions, we use the definition of a
sub-gradient at a point w0 to yield a global lower bound on the function

f(w) ≥ f(w0) + (w − w0)T g(w0),

that is exact at w0. Cutting plane methods for non-smooth optimization proceed by collecting a set of
these lower bounding hyper-planes, and at each iteration generate a new trial point by finding the minimum
of these lower bounds. The function value and sub-gradient at the new trial point are then added to the
working set, yielding a more accurate lower bound.

A disadvantage of this procedure is that the minimum of the set of lower bounds may suggest a trial
point that is far away from the previous point, even if the previous point was close to the optimal solution.
This is known as instability [Bertsekas, 1999, §6.3]. A common way to address this is to minimize the lower
bound subject to a regularizer ||wk+1 − wk||22 on the difference between subsequent trial values. This is
known as a bundle method. The method of [Teo et al., 2007, Smola et al., 2008] is closely related to bundle
methods, but differs in the regularizer. Rather than building a lower bound for the full objective function
and using the regularizer ||wk+1−wk||22, they build a sequence of lower bounds for the hinge loss and use the
exact regularizer λ||w||22 already present in the objective function. In [Smola et al., 2008], it is shown that

6A closely related method and analysis for HMSVMs is in [Joachims, 2003]
7http://svmlight.joachims.org/svm perf.html
8http://svmlight.joachims.org/svm struct.html

9

Outline
• Formulation:

• Binary SVMs

• Multiclass SVMs

• Structural SVMs

• Training:

• Subgradients

• Cutting Planes

• Marginal Formulations

• Min-Max Formulations

Poly-sized Formulations

• The previous two strategies use the graph structure to allow
efficient decoding.

• An alternative strategy is to use the graph structure to re-
parameterize our quadratic program.

• Although we can also do this for the primal, this can be
shown more directly for the dual problem...

Dual MMMN
• Solving the MMMN QP is equivalent to solving the

following QP:

• Notes:

• this QP has an exponential number of constraints/variables

• the constraints take the form of an unnormalized
distribution over label configurations

• We are going to write this QP in terms of marginals of this
distribution

the method requires O(1/ε) iterations to converge9, and that the method offers a speed advantage over the
method of [Shalev-Shwartz et al., 2007].

5.3 Polynomial-Size Reformulations

In this section, we examine an alternative to cutting plane methods for dealing with the exponential sized
quadratic programs. In particular, we consider methods that take advantage of the sparse dependency struc-
ture in the underlying distribution to rewrite the exponential-sized quadratic program into a polynomial-sized
problem. In this section, we will largely follow [Taskar et al., 2003] and will work with a dual formulation
to the MMMN quadratic program. In this dual formulation, we will have a variable αi(Y ′

i) for each possible
configuration Y ′

i of training example i. We will also find it convenient to use the feature representation of
the probability functions

p(Yi|w,Xi) ∝ exp(wT F (Xi, Yi)),

and use the notation
∆Fi(Y ′

i) ! F (Xi, Yi)− F (Xi, Y
′
i).

Using this notation, [Taskar et al., 2003] shows that the following problem is dual to the MMMN quadratic
program

max
α

∑

i

∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i)− 1

2

∑

i

∑

Y ′
i

∑

j

∑

Y ′
j

αi(Y ′
i)αj(Y ′

j)∆Fi(Y ′
i)T ∆Fj(Y ′

j),

s.t. ∀i

∑

Y ′
i

αi(Y ′
i) =

1
2λ

, ∀i∀Y ′
i
αi(Y ′

i) ≥ 0.

Although this dual formulation has an exponential number of constraints and an exponential number of
variables, note the simple form of the constraints. If λ = 1/2, then the constraints simply enforce that
αi(Y ′

i) is a valid probability distribution over all values of Y ′
i (for each training example i). For other

values of λ, it enforces that αi(Y ′
i) is an unnormalized distribution (with normalizing constant 1/2λ). If our

dependency structure factorizes over nodes and edges in a graph, then we can consider a parameterization
in terms of expectations with respect to this distribution

µi(yij) =
∑

Y ′
i ∼[yij]

αi(Y ′
i),

µi(yij , yik) =
∑

Y ′
i ∼[yij ,yik]

αi(Y ′
i),

where the notation Y ′
i ∼ [yij] is used to denote that a configuration Y ′

i is consistent with the label yij . When
we consider using these variables, we will require that the node parameters satisfy the constraints of the
original problem

∀i∀j µi(yij) ≥ 0, ∀i

∑

j

µi(yij) =
1
2λ

.

To ensure that the edge variables form a legal density, they must belong to the marginal polytope. In the
case of tree-structured graphs, this is equivalent to the requirement that [Taskar et al., 2003]

∀i∀(j,k)∈E

∑

yij

µi(yij , yik) = µi(yik), ∀i∀(j,k)∈E µi(yij , yik) ≥ 0.

Using these expectations, we can re-write the set of first terms in the dual formulation as
∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i) =

∑

Y ′
i

∑

j

αi(Y ′
i)∆j(yij , y

′
ij) =

∑

j

∑

y′
ij

∆j(yij , y
′
ij)µi(y′ij).

9[Smola et al., 2008] also show that applying their method to train conditional random fields with !2-regularization achieves
the faster rate of O(log(1/ε)).

10

Marginal Representation
• If the distribution factorizes into node and edge potentials,

we can write the marginals of the distribution as:

• We must satisfy the constraints of the original problem:

• We also need the node and edge marginals to lie in the
‘marginal polytope’. For chains/trees/forests, it is sufficient
to enforce a local consistency condition:

the method requires O(1/ε) iterations to converge9, and that the method offers a speed advantage over the
method of [Shalev-Shwartz et al., 2007].

5.3 Polynomial-Size Reformulations

In this section, we examine an alternative to cutting plane methods for dealing with the exponential sized
quadratic programs. In particular, we consider methods that take advantage of the sparse dependency struc-
ture in the underlying distribution to rewrite the exponential-sized quadratic program into a polynomial-sized
problem. In this section, we will largely follow [Taskar et al., 2003] and will work with a dual formulation
to the MMMN quadratic program. In this dual formulation, we will have a variable αi(Y ′

i) for each possible
configuration Y ′

i of training example i. We will also find it convenient to use the feature representation of
the probability functions

p(Yi|w,Xi) ∝ exp(wT F (Xi, Yi)),

and use the notation
∆Fi(Y ′

i) ! F (Xi, Yi)− F (Xi, Y
′
i).

Using this notation, [Taskar et al., 2003] shows that the following problem is dual to the MMMN quadratic
program

max
α

∑

i

∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i)− 1

2

∑

i

∑

Y ′
i

∑

j

∑

Y ′
j

αi(Y ′
i)αj(Y ′

j)∆Fi(Y ′
i)T ∆Fj(Y ′

j),

s.t. ∀i

∑

Y ′
i

αi(Y ′
i) =

1
2λ

, ∀i∀Y ′
i
αi(Y ′

i) ≥ 0.

Although this dual formulation has an exponential number of constraints and an exponential number of
variables, note the simple form of the constraints. If λ = 1/2, then the constraints simply enforce that
αi(Y ′

i) is a valid probability distribution over all values of Y ′
i (for each training example i). For other

values of λ, it enforces that αi(Y ′
i) is an unnormalized distribution (with normalizing constant 1/2λ). If our

dependency structure factorizes over nodes and edges in a graph, then we can consider a parameterization
in terms of expectations with respect to this distribution

µi(yij) =
∑

Y ′
i ∼[yij]

αi(Y ′
i),

µi(yij , yik) =
∑

Y ′
i ∼[yij ,yik]

αi(Y ′
i),

where the notation Y ′
i ∼ [yij] is used to denote that a configuration Y ′

i is consistent with the label yij . When
we consider using these variables, we will require that the node parameters satisfy the constraints of the
original problem

∀i∀j µi(yij) ≥ 0, ∀i

∑

j

µi(yij) =
1
2λ

.

To ensure that the edge variables form a legal density, they must belong to the marginal polytope. In the
case of tree-structured graphs, this is equivalent to the requirement that [Taskar et al., 2003]

∀i∀(j,k)∈E

∑

yij

µi(yij , yik) = µi(yik), ∀i∀(j,k)∈E µi(yij , yik) ≥ 0.

Using these expectations, we can re-write the set of first terms in the dual formulation as
∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i) =

∑

Y ′
i

∑

j

αi(Y ′
i)∆j(yij , y

′
ij) =

∑

j

∑

y′
ij

∆j(yij , y
′
ij)µi(y′ij).

9[Smola et al., 2008] also show that applying their method to train conditional random fields with !2-regularization achieves
the faster rate of O(log(1/ε)).

10

the method requires O(1/ε) iterations to converge9, and that the method offers a speed advantage over the
method of [Shalev-Shwartz et al., 2007].

5.3 Polynomial-Size Reformulations

In this section, we examine an alternative to cutting plane methods for dealing with the exponential sized
quadratic programs. In particular, we consider methods that take advantage of the sparse dependency struc-
ture in the underlying distribution to rewrite the exponential-sized quadratic program into a polynomial-sized
problem. In this section, we will largely follow [Taskar et al., 2003] and will work with a dual formulation
to the MMMN quadratic program. In this dual formulation, we will have a variable αi(Y ′

i) for each possible
configuration Y ′

i of training example i. We will also find it convenient to use the feature representation of
the probability functions

p(Yi|w,Xi) ∝ exp(wT F (Xi, Yi)),

and use the notation
∆Fi(Y ′

i) ! F (Xi, Yi)− F (Xi, Y
′
i).

Using this notation, [Taskar et al., 2003] shows that the following problem is dual to the MMMN quadratic
program

max
α

∑

i

∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i)− 1

2

∑

i

∑

Y ′
i

∑

j

∑

Y ′
j

αi(Y ′
i)αj(Y ′

j)∆Fi(Y ′
i)T ∆Fj(Y ′

j),

s.t. ∀i

∑

Y ′
i

αi(Y ′
i) =

1
2λ

, ∀i∀Y ′
i
αi(Y ′

i) ≥ 0.

Although this dual formulation has an exponential number of constraints and an exponential number of
variables, note the simple form of the constraints. If λ = 1/2, then the constraints simply enforce that
αi(Y ′

i) is a valid probability distribution over all values of Y ′
i (for each training example i). For other

values of λ, it enforces that αi(Y ′
i) is an unnormalized distribution (with normalizing constant 1/2λ). If our

dependency structure factorizes over nodes and edges in a graph, then we can consider a parameterization
in terms of expectations with respect to this distribution

µi(yij) =
∑

Y ′
i ∼[yij]

αi(Y ′
i),

µi(yij , yik) =
∑

Y ′
i ∼[yij ,yik]

αi(Y ′
i),

where the notation Y ′
i ∼ [yij] is used to denote that a configuration Y ′

i is consistent with the label yij . When
we consider using these variables, we will require that the node parameters satisfy the constraints of the
original problem

∀i∀j µi(yij) ≥ 0, ∀i

∑

j

µi(yij) =
1
2λ

.

To ensure that the edge variables form a legal density, they must belong to the marginal polytope. In the
case of tree-structured graphs, this is equivalent to the requirement that [Taskar et al., 2003]

∀i∀(j,k)∈E

∑

yij

µi(yij , yik) = µi(yik), ∀i∀(j,k)∈E µi(yij , yik) ≥ 0.

Using these expectations, we can re-write the set of first terms in the dual formulation as
∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i) =

∑

Y ′
i

∑

j

αi(Y ′
i)∆j(yij , y

′
ij) =

∑

j

∑

y′
ij

∆j(yij , y
′
ij)µi(y′ij).

9[Smola et al., 2008] also show that applying their method to train conditional random fields with !2-regularization achieves
the faster rate of O(log(1/ε)).

10

the method requires O(1/ε) iterations to converge9, and that the method offers a speed advantage over the
method of [Shalev-Shwartz et al., 2007].

5.3 Polynomial-Size Reformulations

In this section, we examine an alternative to cutting plane methods for dealing with the exponential sized
quadratic programs. In particular, we consider methods that take advantage of the sparse dependency struc-
ture in the underlying distribution to rewrite the exponential-sized quadratic program into a polynomial-sized
problem. In this section, we will largely follow [Taskar et al., 2003] and will work with a dual formulation
to the MMMN quadratic program. In this dual formulation, we will have a variable αi(Y ′

i) for each possible
configuration Y ′

i of training example i. We will also find it convenient to use the feature representation of
the probability functions

p(Yi|w,Xi) ∝ exp(wT F (Xi, Yi)),

and use the notation
∆Fi(Y ′

i) ! F (Xi, Yi)− F (Xi, Y
′
i).

Using this notation, [Taskar et al., 2003] shows that the following problem is dual to the MMMN quadratic
program

max
α

∑

i

∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i)− 1

2

∑

i

∑

Y ′
i

∑

j

∑

Y ′
j

αi(Y ′
i)αj(Y ′

j)∆Fi(Y ′
i)T ∆Fj(Y ′

j),

s.t. ∀i

∑

Y ′
i

αi(Y ′
i) =

1
2λ

, ∀i∀Y ′
i
αi(Y ′

i) ≥ 0.

Although this dual formulation has an exponential number of constraints and an exponential number of
variables, note the simple form of the constraints. If λ = 1/2, then the constraints simply enforce that
αi(Y ′

i) is a valid probability distribution over all values of Y ′
i (for each training example i). For other

values of λ, it enforces that αi(Y ′
i) is an unnormalized distribution (with normalizing constant 1/2λ). If our

dependency structure factorizes over nodes and edges in a graph, then we can consider a parameterization
in terms of expectations with respect to this distribution

µi(yij) =
∑

Y ′
i ∼[yij]

αi(Y ′
i),

µi(yij , yik) =
∑

Y ′
i ∼[yij ,yik]

αi(Y ′
i),

where the notation Y ′
i ∼ [yij] is used to denote that a configuration Y ′

i is consistent with the label yij . When
we consider using these variables, we will require that the node parameters satisfy the constraints of the
original problem

∀i∀j µi(yij) ≥ 0, ∀i

∑

j

µi(yij) =
1
2λ

.

To ensure that the edge variables form a legal density, they must belong to the marginal polytope. In the
case of tree-structured graphs, this is equivalent to the requirement that [Taskar et al., 2003]

∀i∀(j,k)∈E

∑

yij

µi(yij , yik) = µi(yik), ∀i∀(j,k)∈E µi(yij , yik) ≥ 0.

Using these expectations, we can re-write the set of first terms in the dual formulation as
∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i) =

∑

Y ′
i

∑

j

αi(Y ′
i)∆j(yij , y

′
ij) =

∑

j

∑

y′
ij

∆j(yij , y
′
ij)µi(y′ij).

9[Smola et al., 2008] also show that applying their method to train conditional random fields with !2-regularization achieves
the faster rate of O(log(1/ε)).

10

Polynomial-Sized Dual
• We can re-write the first set of terms in the dual using these

marginals:

• We can similarly write the second set of terms, yielding a
polynomial-sized version of the dual problem:

• ‘Structural SMO’; coordinate descent on this problem

the method requires O(1/ε) iterations to converge9, and that the method offers a speed advantage over the
method of [Shalev-Shwartz et al., 2007].

5.3 Polynomial-Size Reformulations

In this section, we examine an alternative to cutting plane methods for dealing with the exponential sized
quadratic programs. In particular, we consider methods that take advantage of the sparse dependency struc-
ture in the underlying distribution to rewrite the exponential-sized quadratic program into a polynomial-sized
problem. In this section, we will largely follow [Taskar et al., 2003] and will work with a dual formulation
to the MMMN quadratic program. In this dual formulation, we will have a variable αi(Y ′

i) for each possible
configuration Y ′

i of training example i. We will also find it convenient to use the feature representation of
the probability functions

p(Yi|w,Xi) ∝ exp(wT F (Xi, Yi)),

and use the notation
∆Fi(Y ′

i) ! F (Xi, Yi)− F (Xi, Y
′
i).

Using this notation, [Taskar et al., 2003] shows that the following problem is dual to the MMMN quadratic
program

max
α

∑

i

∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i)− 1

2

∑

i

∑

Y ′
i

∑

j

∑

Y ′
j

αi(Y ′
i)αj(Y ′

j)∆Fi(Y ′
i)T ∆Fj(Y ′

j),

s.t. ∀i

∑

Y ′
i

αi(Y ′
i) =

1
2λ

, ∀i∀Y ′
i
αi(Y ′

i) ≥ 0.

Although this dual formulation has an exponential number of constraints and an exponential number of
variables, note the simple form of the constraints. If λ = 1/2, then the constraints simply enforce that
αi(Y ′

i) is a valid probability distribution over all values of Y ′
i (for each training example i). For other

values of λ, it enforces that αi(Y ′
i) is an unnormalized distribution (with normalizing constant 1/2λ). If our

dependency structure factorizes over nodes and edges in a graph, then we can consider a parameterization
in terms of expectations with respect to this distribution

µi(yij) =
∑

Y ′
i ∼[yij]

αi(Y ′
i),

µi(yij , yik) =
∑

Y ′
i ∼[yij ,yik]

αi(Y ′
i),

where the notation Y ′
i ∼ [yij] is used to denote that a configuration Y ′

i is consistent with the label yij . When
we consider using these variables, we will require that the node parameters satisfy the constraints of the
original problem

∀i∀j µi(yij) ≥ 0, ∀i

∑

j

µi(yij) =
1
2λ

.

To ensure that the edge variables form a legal density, they must belong to the marginal polytope. In the
case of tree-structured graphs, this is equivalent to the requirement that [Taskar et al., 2003]

∀i∀(j,k)∈E

∑

yij

µi(yij , yik) = µi(yik), ∀i∀(j,k)∈E µi(yij , yik) ≥ 0.

Using these expectations, we can re-write the set of first terms in the dual formulation as
∑

Y ′
i

αi(Y ′
i)∆(Yi, Y

′
i) =

∑

Y ′
i

∑

j

αi(Y ′
i)∆j(yij , y

′
ij) =

∑

j

∑

y′
ij

∆j(yij , y
′
ij)µi(y′ij).

9[Smola et al., 2008] also show that applying their method to train conditional random fields with !2-regularization achieves
the faster rate of O(log(1/ε)).

10

This is now a sum over individual label assignments rather than over joint assignments. We can similarly
re-write the second term in the dual in terms of edge expectations. This leads to what [Taskar et al., 2003]
calls the factored dual

max
µ

∑

i

∑

j

∑

y′
ij

∆j(yij , y
′
ij)µi(y′ij)−

1
2

∑

i

∑

i′

∑

(j,k)∈E

∑

(j′,k′)∈E

∑

y′
ij ,y′

ik

∑

y′
i′j′ ,y

′
i′k′

µi(y′ij , y
′
ik)µi′(y′i′j′ , y′i′k′)Fi(Xi, y

′
ij , y

′
ik)T Fi(Xi, y

′
i′j′ , y′i′k′),

s.t. ∀i∀j µi(yij) ≥ 0, ∀i

∑

j

µi(yij) =
1
2λ

,

∀i∀(j,k)∈E

∑

yij

µi(yij , yik) = µi(yik), ∀i∀(j,k)∈E µi(yij , yik) ≥ 0.

While this formulation is now polynomial-size, the quadratic form has a very large number of terms (ie. it
is quadratic in the number of training examples and instances). [Taskar et al., 2003] proposes a method,
known as the structural SMO method, for solving this optimization problem. In this method, violation of
the constrained optimality conditions is used to select the two most violating variables, and their optimal
value given all the other variables is computed in closed form to update the variables.

[Taskar et al., 2003] discusses extensions of the above method to graph structures that are not forests.
For triangulated graphs, additional constraints can be imposed to ensure that the distribution remains in
the marginal polytope, although the number of additional constraints is exponential in the worst case. If we
have an untriangulated graph or do not want to triangulate and add these extra constraints, the factored
dual can be solved as an approximation (analogous to loopy belief propagation). It is also possible to derive
factored duals when the original distribution factorizes over higher-order cliques. Finally, [Taskar et al., 2003]
discusses a factored version of the primal problem, where we have an extended set of slack variables that
mimic the dependency structure in the graph and constrain dual variables enforcing constraints on the
marginal polytope.

An alternative method for optimizing the dual formulation using a polynomial-sized number of variables is
outlined in [Bartlett et al., 2005, Collins et al., 2008]. In this method, the exponentiated gradient algorithm
is used to (indirectly) optimize the variables α in the dual formulation. The exponentiated gradient algorithm
[Kivinen and Warmuth, 1997] is a method to optimize a function f(x), where x lies on the probability
simplex10

∀ixi ≥ 0,
∑

i

xi = 1.

The exponentiated gradient algorithm takes steps of the form

xi =
xi exp(−η∇if(x))∑
i′ xi′ exp(−η∇i′f(x))

,

where as before η is a learning rate, and we can consider applying the algorithm using the contribution to
the gradient of one training example at a time instead of all the training examples at once.

[Bartlett et al., 2005, Collins et al., 2008] work with a slightly modified dual formulation where the con-
straints take the form of a probability simplex (instead of an unnormalized version), and apply the exponen-
tiated gradient algorithm to this problem. To avoid dealing with the exponential number of variables α, they
use an implicit representation for α in terms of variables that are analogous to the µ variables above. Similar
to the methods from previous sections, they show that the method requires O(1/ε) iterations to reach an
accuracy of ε, and that this applies whether the full gradient or the gradient contribution from an individual

10[Kivinen and Warmuth, 1997] also outline an extension that can handle non-negative variables subject to the !1-norm of
the vector being 1, and extensions where the constant 1 is replaced by another known constant C.

11

Exponentiated Gradient

• An alternative to using an explicity formulation of the dual is
to use an implicit formulation apply the exponentiated
gradient (EG) algorithm.

• The EG algorithm solves optimization problem where the
variables take the form of a distribution:

• EG steps take the form:

This is now a sum over individual label assignments rather than over joint assignments. We can similarly
re-write the second term in the dual in terms of edge expectations. This leads to what [Taskar et al., 2003]
calls the factored dual

max
µ

∑

i

∑

j

∑

y′
ij

∆j(yij , y
′
ij)µi(y′ij)−

1
2

∑

i

∑

i′

∑

(j,k)∈E

∑

(j′,k′)∈E

∑

y′
ij ,y′

ik

∑

y′
i′j′ ,y

′
i′k′

µi(y′ij , y
′
ik)µi′(y′i′j′ , y′i′k′)Fi(Xi, y

′
ij , y

′
ik)T Fi(Xi, y

′
i′j′ , y′i′k′),

s.t. ∀i∀j µi(yij) ≥ 0, ∀i

∑

j

µi(yij) =
1
2λ

,

∀i∀(j,k)∈E

∑

yij

µi(yij , yik) = µi(yik), ∀i∀(j,k)∈E µi(yij , yik) ≥ 0.

While this formulation is now polynomial-size, the quadratic form has a very large number of terms (ie. it
is quadratic in the number of training examples and instances). [Taskar et al., 2003] proposes a method,
known as the structural SMO method, for solving this optimization problem. In this method, violation of
the constrained optimality conditions is used to select the two most violating variables, and their optimal
value given all the other variables is computed in closed form to update the variables.

[Taskar et al., 2003] discusses extensions of the above method to graph structures that are not forests.
For triangulated graphs, additional constraints can be imposed to ensure that the distribution remains in
the marginal polytope, although the number of additional constraints is exponential in the worst case. If we
have an untriangulated graph or do not want to triangulate and add these extra constraints, the factored
dual can be solved as an approximation (analogous to loopy belief propagation). It is also possible to derive
factored duals when the original distribution factorizes over higher-order cliques. Finally, [Taskar et al., 2003]
discusses a factored version of the primal problem, where we have an extended set of slack variables that
mimic the dependency structure in the graph and constrain dual variables enforcing constraints on the
marginal polytope.

An alternative method for optimizing the dual formulation using a polynomial-sized number of variables is
outlined in [Bartlett et al., 2005, Collins et al., 2008]. In this method, the exponentiated gradient algorithm
is used to (indirectly) optimize the variables α in the dual formulation. The exponentiated gradient algorithm
[Kivinen and Warmuth, 1997] is a method to optimize a function f(x), where x lies on the probability
simplex10

∀ixi ≥ 0,
∑

i

xi = 1.

The exponentiated gradient algorithm takes steps of the form

xi =
xi exp(−η∇if(x))∑
i′ xi′ exp(−η∇i′f(x))

,

where as before η is a learning rate, and we can consider applying the algorithm using the contribution to
the gradient of one training example at a time instead of all the training examples at once.

[Bartlett et al., 2005, Collins et al., 2008] work with a slightly modified dual formulation where the con-
straints take the form of a probability simplex (instead of an unnormalized version), and apply the exponen-
tiated gradient algorithm to this problem. To avoid dealing with the exponential number of variables α, they
use an implicit representation for α in terms of variables that are analogous to the µ variables above. Similar
to the methods from previous sections, they show that the method requires O(1/ε) iterations to reach an
accuracy of ε, and that this applies whether the full gradient or the gradient contribution from an individual

10[Kivinen and Warmuth, 1997] also outline an extension that can handle non-negative variables subject to the !1-norm of
the vector being 1, and extensions where the constant 1 is replaced by another known constant C.

11

This is now a sum over individual label assignments rather than over joint assignments. We can similarly
re-write the second term in the dual in terms of edge expectations. This leads to what [Taskar et al., 2003]
calls the factored dual

max
µ

∑

i

∑

j

∑

y′
ij

∆j(yij , y
′
ij)µi(y′ij)−

1
2

∑

i

∑

i′

∑

(j,k)∈E

∑

(j′,k′)∈E

∑

y′
ij ,y′

ik

∑

y′
i′j′ ,y

′
i′k′

µi(y′ij , y
′
ik)µi′(y′i′j′ , y′i′k′)Fi(Xi, y

′
ij , y

′
ik)T Fi(Xi, y

′
i′j′ , y′i′k′),

s.t. ∀i∀j µi(yij) ≥ 0, ∀i

∑

j

µi(yij) =
1
2λ

,

∀i∀(j,k)∈E

∑

yij

µi(yij , yik) = µi(yik), ∀i∀(j,k)∈E µi(yij , yik) ≥ 0.

While this formulation is now polynomial-size, the quadratic form has a very large number of terms (ie. it
is quadratic in the number of training examples and instances). [Taskar et al., 2003] proposes a method,
known as the structural SMO method, for solving this optimization problem. In this method, violation of
the constrained optimality conditions is used to select the two most violating variables, and their optimal
value given all the other variables is computed in closed form to update the variables.

[Taskar et al., 2003] discusses extensions of the above method to graph structures that are not forests.
For triangulated graphs, additional constraints can be imposed to ensure that the distribution remains in
the marginal polytope, although the number of additional constraints is exponential in the worst case. If we
have an untriangulated graph or do not want to triangulate and add these extra constraints, the factored
dual can be solved as an approximation (analogous to loopy belief propagation). It is also possible to derive
factored duals when the original distribution factorizes over higher-order cliques. Finally, [Taskar et al., 2003]
discusses a factored version of the primal problem, where we have an extended set of slack variables that
mimic the dependency structure in the graph and constrain dual variables enforcing constraints on the
marginal polytope.

An alternative method for optimizing the dual formulation using a polynomial-sized number of variables is
outlined in [Bartlett et al., 2005, Collins et al., 2008]. In this method, the exponentiated gradient algorithm
is used to (indirectly) optimize the variables α in the dual formulation. The exponentiated gradient algorithm
[Kivinen and Warmuth, 1997] is a method to optimize a function f(x), where x lies on the probability
simplex10

∀ixi ≥ 0,
∑

i

xi = 1.

The exponentiated gradient algorithm takes steps of the form

xi =
xi exp(−η∇if(x))∑
i′ xi′ exp(−η∇i′f(x))

,

where as before η is a learning rate, and we can consider applying the algorithm using the contribution to
the gradient of one training example at a time instead of all the training examples at once.

[Bartlett et al., 2005, Collins et al., 2008] work with a slightly modified dual formulation where the con-
straints take the form of a probability simplex (instead of an unnormalized version), and apply the exponen-
tiated gradient algorithm to this problem. To avoid dealing with the exponential number of variables α, they
use an implicit representation for α in terms of variables that are analogous to the µ variables above. Similar
to the methods from previous sections, they show that the method requires O(1/ε) iterations to reach an
accuracy of ε, and that this applies whether the full gradient or the gradient contribution from an individual

10[Kivinen and Warmuth, 1997] also outline an extension that can handle non-negative variables subject to the !1-norm of
the vector being 1, and extensions where the constant 1 is replaced by another known constant C.

11

Exponentiated Gradient
• It is possible to derive a dual where the variables alpha

represent a normalized distribution.

• In this case, we can apply the batch or online EG algorithm.

• To make the iterations efficient, an implicit representation for
alpha that factorizes according to the graph is used.

• The algorithm requires O(1/eps) iterations to reach an eps-
accurate solution.

• Performing the updates using this implicit representation
requires inference, instead of just decoding
(so it can’t be applied in general)

Outline
• Formulation:

• Binary SVMs

• Multiclass SVMs

• Structural SVMs

• Training:

• Subgradients

• Cutting Planes

• Marginal Formulations

• Min-Max Formulations

Min-Max Formulations
• Rather than dealing with the exponential number of

constraints linear:

• We could just use one non-linear constraint for each training
example:

• In this formulation, we have a constraint on the optimal
decoding.

Convergence of the method can also be shown if each step uses the contribution to the sub-gradient of a
suitably chosen individual training example i [Kushner and Yin, 2003]

gi(w) ! ∇w log p(Y ′′
i |w,Xi)−∇w log p(Yi|w,Xi) + (2/N)λw,

resulting in steps of the form
wk+1 = wk − ηkgi(wk).

This is known as a stochastic sub-gradient descent method, and was presented in [Collins, 2002] (predating
the formulation of structural SVMs) for the degenerate case of λ = 0 and ∀Yi,Y ′

i
∆(Yi, Y ′

i) = 0, and where a
constant step size (ηk = η) was used instead of a convergent sequence.

An interesting alternative method was also outlined in [Collins, 2002]; In this second method a constant
step size was used, and a variant on the procedure was considered where the final estimator is the average
of all the iterates;

wk+1 = wk − ηgi(wk),

w̃k+1 =
k − 1

k
w̃k +

1
k

wk+1.

Convergence of averaged estimators of the form w̃ is discussed in [Kushner and Yin, 2003], where it is shown
that under certain conditions these steps satisfy an asymptotic statistical efficiency property.

In the special case of binary support vector machines (though easily extended to structural support vector
machines), [Shalev-Shwartz et al., 2007] considers iterations of the form

wk+1 = π(wk − ηkg(wk)),

where π is a projection onto an $2-ball that is guaranteed to contain the solution5. They showed that the num-
ber of iterations to obtain a solution with accuracy ε using this method is O(1/ε) (ignoring poly-logarithmic
factors), which was an improvement over the O(1/ε2) number of iterations provided by the previous anal-
ysis of the averaged stochastic gradient method [Zhang, 2004] and cutting plane methods [Joachims, 2006].
[Shalev-Shwartz et al., 2007] also consider the case of a projected stochastic gradient update, and show
that the iterations achieve an accuracy of ε with probability 1 − δ in O(1/(δε)) iterations. One could
also consider combining averaging and projections, whose asymptotic statistical efficiency is considered in
[Kushner and Yin, 2003]. Finally, [Ratliff et al., 2007] show that the (deterministic) subgradient method
with a sufficiently small constant step size will converge linearly (ie. with the faster rate of O(log(1/ε)))
to a region containing the minimum whose radius is proportional to C/λ (where C is a bound on the
sub-differential).

5.2 Cutting Plane and Bundle Methods

We now consider methods for solving the quadratic programming formulation of MMMNs

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i∀Y ′
i
log p(Yi|w,Xi)− log p(Y ′

i |w,Xi) ≥ ∆(Yi, Y
′
i)− ξi, ∀iξi ≥ 0.

This formulation is problematic since we have an exponential number of constraints. However, it is con-
ceivable that we do not need to enforce all of these constraints at the optimal solution. In particular,
[Tsochantaridis et al., 2004] showed that there always exists a polynomial-sized subset of the constraints
that can satisfy all constraints with accuracy at least ε. This makes cutting-plane methods for quadratic
programming an appealing approach for solving this type of problem.

Cutting plane methods have a very simple structure; We first find the unconstrained minimizer. If the
minimizer does not satisfy all the constraints, we find a constraint that is violated and use it to construct our

5The projection of a vector w onto a set W is defined as minw∗∈W ||w − w∗||2

8

training example is used11. A disadvantage of this optimization procedure is that using the implicit represen-
tation of α requires inference in the underlying probabilistic model. For example, running belief propagation
to compute marginals in tree-sturctured graphs. Since the inference problem is strictly harder than the
decoding problem needed by sub-gradient/cutting-plane methods, the exponentiated gradient method seems
to only apply to a subset of the problems where these other methods apply.

5.4 Min-Max Formulations

Finally, the last set of methods that we consider deals with the exponential number of constraints in the
quadratic program by replacing them with one non-linear constraint for each training example.

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i log p(Yi|w,Xi) + ξi ≥ max
Y ′

i

log p(Y ′
i |w,Xi) + ∆(Yi, Y

′
i), ∀iξi ≥ 0.

Above, we re-arranged the constraint so that the right-hand side of the inequality is the solution to the
modified decoding problem.

We first consider a method to solve this min-max formulation that is due to [Taskar et al., 2004], that
applies in the special case where the optimal decoding can be formulated as a linear program. In this method,
we write the linear program that solves the problem maxY ′

i
log p(Y ′

i |w,Xi) + ∆(Yi, Y ′
i) in standard form

max
z

wBz s.t. z ≥ 0, Az ≤ b,

for suitably defined values of A, B, and b. We obtain an equivalent minimization problem by working with
the dual of this linear program

min
z

bT z s.t. z ≥ 0, AT z ≥ (wB)T .

We then substitute this dual problem into our original problem to eliminate the non-linear constraint, yielding
the quadratic program

min
w,ξz

∑

i

ξi + λ||w||22,

s.t. ∀i log p(Yi|w,Xi) + ξi ≥ bT z, ∀iξi ≥ 0, z ≥ 0, AT z ≥ (wB)T .

Subsequently, we can solve this (reasonably-sized) quadratic program to exactly solve the original quadratic
program whenever the optimal decoding can be formulated as a linear program. In cases where the linear
programming relaxation is not exact, we can still use this formulation to compute an approximate solution,
where the slack variables will be increased for any training examples where a fractional decoding yields a
better configuration than the best integer decoding.

An alternative min-max formulation was explored in [Taskar et al., 2006b]. In this formulation, we plug a
linear programming problem that solves the decoding problem into the unconstrained version of the MMMN
problem, giving the saddle-point problem

min
w∈W

max
z∈Z

λ||w||22 +
∑

i

wT Fizi + cT
i zi − wT F (Xi, Yi),

for appropriately defined Z, Fi and ci. Subsequently, the extragradient algorithm is applied to find a value of
w and z that minimizes over w the maximizing value of z. Using L(w, z) to denote the objective function in

11[Collins et al., 2008] also shows that the faster of rate of O(log(1/ε)) is achieved when the method is applied to optimizing
a dual formulation of training conditional random fields.

12

Linear Programming
• The min-max formulation is useful is when the optimal

decoding can be formulated as a linear program:

• In this case we can write out the dual of this problem:

• And plug it in to the min-max formulation:

• This is like changing the max over Z into a max over R

training example is used11. A disadvantage of this optimization procedure is that using the implicit represen-
tation of α requires inference in the underlying probabilistic model. For example, running belief propagation
to compute marginals in tree-sturctured graphs. Since the inference problem is strictly harder than the
decoding problem needed by sub-gradient/cutting-plane methods, the exponentiated gradient method seems
to only apply to a subset of the problems where these other methods apply.

5.4 Min-Max Formulations

Finally, the last set of methods that we consider deals with the exponential number of constraints in the
quadratic program by replacing them with one non-linear constraint for each training example.

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i log p(Yi|w,Xi) + ξi ≥ max
Y ′

i

log p(Y ′
i |w,Xi) + ∆(Yi, Y

′
i), ∀iξi ≥ 0.

Above, we re-arranged the constraint so that the right-hand side of the inequality is the solution to the
modified decoding problem.

We first consider a method to solve this min-max formulation that is due to [Taskar et al., 2004], that
applies in the special case where the optimal decoding can be formulated as a linear program. In this method,
we write the linear program that solves the problem maxY ′

i
log p(Y ′

i |w,Xi) + ∆(Yi, Y ′
i) in standard form

max
z

wBz s.t. z ≥ 0, Az ≤ b,

for suitably defined values of A, B, and b. We obtain an equivalent minimization problem by working with
the dual of this linear program

min
z

bT z s.t. z ≥ 0, AT z ≥ (wB)T .

We then substitute this dual problem into our original problem to eliminate the non-linear constraint, yielding
the quadratic program

min
w,ξz

∑

i

ξi + λ||w||22,

s.t. ∀i log p(Yi|w,Xi) + ξi ≥ bT z, ∀iξi ≥ 0, z ≥ 0, AT z ≥ (wB)T .

Subsequently, we can solve this (reasonably-sized) quadratic program to exactly solve the original quadratic
program whenever the optimal decoding can be formulated as a linear program. In cases where the linear
programming relaxation is not exact, we can still use this formulation to compute an approximate solution,
where the slack variables will be increased for any training examples where a fractional decoding yields a
better configuration than the best integer decoding.

An alternative min-max formulation was explored in [Taskar et al., 2006b]. In this formulation, we plug a
linear programming problem that solves the decoding problem into the unconstrained version of the MMMN
problem, giving the saddle-point problem

min
w∈W

max
z∈Z

λ||w||22 +
∑

i

wT Fizi + cT
i zi − wT F (Xi, Yi),

for appropriately defined Z, Fi and ci. Subsequently, the extragradient algorithm is applied to find a value of
w and z that minimizes over w the maximizing value of z. Using L(w, z) to denote the objective function in

11[Collins et al., 2008] also shows that the faster of rate of O(log(1/ε)) is achieved when the method is applied to optimizing
a dual formulation of training conditional random fields.

12

training example is used11. A disadvantage of this optimization procedure is that using the implicit represen-
tation of α requires inference in the underlying probabilistic model. For example, running belief propagation
to compute marginals in tree-sturctured graphs. Since the inference problem is strictly harder than the
decoding problem needed by sub-gradient/cutting-plane methods, the exponentiated gradient method seems
to only apply to a subset of the problems where these other methods apply.

5.4 Min-Max Formulations

Finally, the last set of methods that we consider deals with the exponential number of constraints in the
quadratic program by replacing them with one non-linear constraint for each training example.

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i log p(Yi|w,Xi) + ξi ≥ max
Y ′

i

log p(Y ′
i |w,Xi) + ∆(Yi, Y

′
i), ∀iξi ≥ 0.

Above, we re-arranged the constraint so that the right-hand side of the inequality is the solution to the
modified decoding problem.

We first consider a method to solve this min-max formulation that is due to [Taskar et al., 2004], that
applies in the special case where the optimal decoding can be formulated as a linear program. In this method,
we write the linear program that solves the problem maxY ′

i
log p(Y ′

i |w,Xi) + ∆(Yi, Y ′
i) in standard form

max
z

wBz s.t. z ≥ 0, Az ≤ b,

for suitably defined values of A, B, and b. We obtain an equivalent minimization problem by working with
the dual of this linear program

min
z

bT z s.t. z ≥ 0, AT z ≥ (wB)T .

We then substitute this dual problem into our original problem to eliminate the non-linear constraint, yielding
the quadratic program

min
w,ξz

∑

i

ξi + λ||w||22,

s.t. ∀i log p(Yi|w,Xi) + ξi ≥ bT z, ∀iξi ≥ 0, z ≥ 0, AT z ≥ (wB)T .

Subsequently, we can solve this (reasonably-sized) quadratic program to exactly solve the original quadratic
program whenever the optimal decoding can be formulated as a linear program. In cases where the linear
programming relaxation is not exact, we can still use this formulation to compute an approximate solution,
where the slack variables will be increased for any training examples where a fractional decoding yields a
better configuration than the best integer decoding.

An alternative min-max formulation was explored in [Taskar et al., 2006b]. In this formulation, we plug a
linear programming problem that solves the decoding problem into the unconstrained version of the MMMN
problem, giving the saddle-point problem

min
w∈W

max
z∈Z

λ||w||22 +
∑

i

wT Fizi + cT
i zi − wT F (Xi, Yi),

for appropriately defined Z, Fi and ci. Subsequently, the extragradient algorithm is applied to find a value of
w and z that minimizes over w the maximizing value of z. Using L(w, z) to denote the objective function in

11[Collins et al., 2008] also shows that the faster of rate of O(log(1/ε)) is achieved when the method is applied to optimizing
a dual formulation of training conditional random fields.

12

training example is used11. A disadvantage of this optimization procedure is that using the implicit represen-
tation of α requires inference in the underlying probabilistic model. For example, running belief propagation
to compute marginals in tree-sturctured graphs. Since the inference problem is strictly harder than the
decoding problem needed by sub-gradient/cutting-plane methods, the exponentiated gradient method seems
to only apply to a subset of the problems where these other methods apply.

5.4 Min-Max Formulations

Finally, the last set of methods that we consider deals with the exponential number of constraints in the
quadratic program by replacing them with one non-linear constraint for each training example.

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i log p(Yi|w,Xi) + ξi ≥ max
Y ′

i

log p(Y ′
i |w,Xi) + ∆(Yi, Y

′
i), ∀iξi ≥ 0.

Above, we re-arranged the constraint so that the right-hand side of the inequality is the solution to the
modified decoding problem.

We first consider a method to solve this min-max formulation that is due to [Taskar et al., 2004], that
applies in the special case where the optimal decoding can be formulated as a linear program. In this method,
we write the linear program that solves the problem maxY ′

i
log p(Y ′

i |w,Xi) + ∆(Yi, Y ′
i) in standard form

max
z

wBz s.t. z ≥ 0, Az ≤ b,

for suitably defined values of A, B, and b. We obtain an equivalent minimization problem by working with
the dual of this linear program

min
z

bT z s.t. z ≥ 0, AT z ≥ (wB)T .

We then substitute this dual problem into our original problem to eliminate the non-linear constraint, yielding
the quadratic program

min
w,ξz

∑

i

ξi + λ||w||22,

s.t. ∀i log p(Yi|w,Xi) + ξi ≥ bT z, ∀iξi ≥ 0, z ≥ 0, AT z ≥ (wB)T .

Subsequently, we can solve this (reasonably-sized) quadratic program to exactly solve the original quadratic
program whenever the optimal decoding can be formulated as a linear program. In cases where the linear
programming relaxation is not exact, we can still use this formulation to compute an approximate solution,
where the slack variables will be increased for any training examples where a fractional decoding yields a
better configuration than the best integer decoding.

An alternative min-max formulation was explored in [Taskar et al., 2006b]. In this formulation, we plug a
linear programming problem that solves the decoding problem into the unconstrained version of the MMMN
problem, giving the saddle-point problem

min
w∈W

max
z∈Z

λ||w||22 +
∑

i

wT Fizi + cT
i zi − wT F (Xi, Yi),

for appropriately defined Z, Fi and ci. Subsequently, the extragradient algorithm is applied to find a value of
w and z that minimizes over w the maximizing value of z. Using L(w, z) to denote the objective function in

11[Collins et al., 2008] also shows that the faster of rate of O(log(1/ε)) is achieved when the method is applied to optimizing
a dual formulation of training conditional random fields.

12

Extragradient Method
• An alternative to plugging the linear program into the QP

formulation is to plug it into the unconstrained formulation:

• This problem can be solved using the extragradient method:

• The projection onto Z can be formulated as a quadratic-cost
network flow problem.

• The step size is chosen by backtracking, and the algorithm
has a linear convergence rate, O(log(1/eps))

training example is used11. A disadvantage of this optimization procedure is that using the implicit represen-
tation of α requires inference in the underlying probabilistic model. For example, running belief propagation
to compute marginals in tree-sturctured graphs. Since the inference problem is strictly harder than the
decoding problem needed by sub-gradient/cutting-plane methods, the exponentiated gradient method seems
to only apply to a subset of the problems where these other methods apply.

5.4 Min-Max Formulations

Finally, the last set of methods that we consider deals with the exponential number of constraints in the
quadratic program by replacing them with one non-linear constraint for each training example.

min
w,ξ

∑

i

ξi + λ||w||22,

s.t. ∀i log p(Yi|w,Xi) + ξi ≥ max
Y ′

i

log p(Y ′
i |w,Xi) + ∆(Yi, Y

′
i), ∀iξi ≥ 0.

Above, we re-arranged the constraint so that the right-hand side of the inequality is the solution to the
modified decoding problem.

We first consider a method to solve this min-max formulation that is due to [Taskar et al., 2004], that
applies in the special case where the optimal decoding can be formulated as a linear program. In this method,
we write the linear program that solves the problem maxY ′

i
log p(Y ′

i |w,Xi) + ∆(Yi, Y ′
i) in standard form

max
z

wBz s.t. z ≥ 0, Az ≤ b,

for suitably defined values of A, B, and b. We obtain an equivalent minimization problem by working with
the dual of this linear program

min
z

bT z s.t. z ≥ 0, AT z ≥ (wB)T .

We then substitute this dual problem into our original problem to eliminate the non-linear constraint, yielding
the quadratic program

min
w,ξz

∑

i

ξi + λ||w||22,

s.t. ∀i log p(Yi|w,Xi) + ξi ≥ bT z, ∀iξi ≥ 0, z ≥ 0, AT z ≥ (wB)T .

Subsequently, we can solve this (reasonably-sized) quadratic program to exactly solve the original quadratic
program whenever the optimal decoding can be formulated as a linear program. In cases where the linear
programming relaxation is not exact, we can still use this formulation to compute an approximate solution,
where the slack variables will be increased for any training examples where a fractional decoding yields a
better configuration than the best integer decoding.

An alternative min-max formulation was explored in [Taskar et al., 2006b]. In this formulation, we plug a
linear programming problem that solves the decoding problem into the unconstrained version of the MMMN
problem, giving the saddle-point problem

min
w∈W

max
z∈Z

λ||w||22 +
∑

i

wT Fizi + cT
i zi − wT F (Xi, Yi),

for appropriately defined Z, Fi and ci. Subsequently, the extragradient algorithm is applied to find a value of
w and z that minimizes over w the maximizing value of z. Using L(w, z) to denote the objective function in

11[Collins et al., 2008] also shows that the faster of rate of O(log(1/ε)) is achieved when the method is applied to optimizing
a dual formulation of training conditional random fields.

12

the saddle point problem, the iterations of the extragradient algorithm take the form of alternating projected
gradient steps in w and z;

wp = πW(w − η∇wL(w, z)),
zp
i = πZ(zi + η∇ziL(w, z)),

wc = πW(w − η∇wL(wp, zp)),
zc
i = πZ(zi + η∇ziL(wp, zp)).

The step size η is selected by a backtracking line search until a suitable condition on wp and zp is satis-
fied [Taskar et al., 2006b]. The iterations converge linearly to the solution, which corresponds to a rate of
O(log(1/ε)). Since w is unconstrained, the projection πW is simply the identity function (for associative max-
margin Markov networks, we project the edge parameters onto the non-negative orthant), while the projection
πZ is the solution of a min-cost quadratic flow problem [Taskar et al., 2006b]. In [Taskar et al., 2006a], a
dual extragradient method is considered, along with an extension that uses proximal steps with respect to a
Bregman divergence rather than Euclidean projections.

5.5 Comments

As the discussion above indicates, efficiently solving the structural support vector machine optimization
remains a challenging problem. Currently, the sub-gradient descent methods are one appealing choice because
of their simplicity, while the cutting plane methods are another appealing option due to the availability
of efficient implementations of these methods. However, the O(1/ε) (sub-linear) worst-case convergence
rates of these methods is somewhat unappealing. While the O(log(1/ε)) (linear) convergence speed of the
extragradient method is more appealing, it does not approach the O(log(log(1/ε))) convergence rates of
standard methods for solving quadratic programs. We could consider applying interior-point methods (see
[Boyd and Vandenberghe, 2004], for example) to one of the polynomial-sized reformulations or one of the
min-max formulations, but the number of variables/constraints in these problems would likely make iterations
of the method impractical.

References

[Altun and Hofmann, 2003] Altun, Y. and Hofmann, T. (2003). Large margin methods for label sequence
learning. In Eighth European Conference on Speech Communication and Technology. ISCA.

[Altun et al., 2003] Altun, Y., Tsochantaridis, I., Hofmann, T., et al. (2003). Hidden markov support vector
machines. In ICML, volume 20, page 3.

[Bartlett et al., 2005] Bartlett, P., Collins, M., Taskar, B., and McAllester, D. (2005). Exponentiated gra-
dient algorithms for large-margin structured classification. In Advances in Neural Information Processing
Systems 17: Proceedings Of The 2004 Conference, page 113. MIT Press.

[Bertsekas, 1999] Bertsekas, D. (1999). Nonlinear programming. Athena Scientific.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. 2004.

[Collins, 2002] Collins, M. (2002). Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Proceedings of the ACL-02 conference on Empirical methods in
natural language processing-Volume 10, pages 1–8. Association for Computational Linguistics Morristown,
NJ, USA.

[Collins et al., 2008] Collins, M., Globerson, A., Koo, T., Carreras, X., and Bartlett, P. (2008). Exponenti-
ated gradient algorithms for conditional random fields and max-margin markov networks. The Journal of
Machine Learning Research, 9:1775–1822.

13

Comments on rates of convergence

• O(1/eps2) is incredibly, incredibly slow

• O(1/eps) is still incredibly slow (‘sub-linear’ convergence)

• O(log(1/eps)) can be fast, slow, or somewhere in between
(‘linear convergence’)

• O(log log(1/eps)) is fast (‘quadratic’ convergence)

• Open question: can we get a practical O(log log(1/eps))
algorithm, or an O(log(1/eps)) algorithm with a provably nice
constant in the rate of convergence.

