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Abstract— This paper presents a method for multi-view 3D
robotic object recognition targeted for cluttered indoor scenes.
We explicitly model occlusions that cause failures in visual
detectors by learning a generative appearance-occlusion model
from a training set containing annotated 3D objects, images
and point clouds. A Bayesian 3D object likelihood incorporates
visual information from many views as well as geometric
priors for object size and position. An iterative, sampling-
based inference technique determines object locations based on
the model. We also contribute a novel robot-collected data set
with images and point clouds from multiple views of 60 scenes,
with over 600 manually annotated 3D objects accounting for
over ten thousand bounding boxes. This data has been released
to the community. Our results show that our system is able
to robustly recognize objects in realistic scenes, significantly
improving recognition performance in clutter.

I. INTRODUCTION

This paper considers the problem of locating objects
specified by category in 3D, based on images and point
cloud data collected from several viewpoints by a mobile
platform. We focus on cluttered indoor scenes, where objects
are often not completely visible from a single viewpoint.
Here, occlusion is a primary mode of failure for state-of-
the-art visual recognizers and geometry-based shape models
alike. We propose a method to integrate information from
many views and to reason explicitly about occlusion in each
view. Our system can reliably locate objects in 3D even when
they are occluded, as demonstrated by the sample result in
figure 1.

Our approach augments a state-of-the-art visual category
recognizer by modeling its performance as a function of
visibility. We learn an occlusion model from a novel dataset
of registered images and point clouds where the 3D location
and category label of objects have been manually annotated.
We are motivated by the observation that even the best
current object detectors often produce false negatives for
objects that are only partially visible. This is a primary failure
mode in cluttered areas typical for real homes. By combining
visual object models, images, point clouds, and annotated
3D object regions, our system learns a generative model for
the expected drop in detector score under occlusion, which
allows optimal use of the weaker appearance information that
is present. The final component of our method is an inference
procedure that uses sampling and iterative refinement to
locate the 3D objects that best explain the sensory evidence
– effectively lifting 2D detections to 3D object regions. Note
that we localize objects based on semantic categories where
the test instances have not been given to the system during
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Fig. 1. An example result from our 3D object detection system evaluated
on 10 views of a cluttered kitchen. This result is thresholded at one false
positive per image and shows mugs in red, bowls in green and bottles in
blue. Best viewed in colour.

training rather than recognizing specific object instances seen
both in training and test.

Few previous robotic recognition methods have been made
repeatable for other researchers since they are tied to their
target platform. To improve this situation, we have assembled
a new robot-collected database of images and scans from
a tilting laser range finder and made our data publicly
available. The UBC Visual Robot Survey (VRS1) includes
60 environments measured from numerous viewpoints. Data
from each viewpoint is registered geometrically by use of
a visual fiducial system. This allows us to focus only on
locating objects in 3D. We assume visual SLAM systems will
soon be robust and off-the-shelf so that this is a reasonable
reduction in complexity. Instances of object categories have
been manually annotated in both 2D and 3D for purposes of
training and evaluation.

1http://www.cs.ubc.ca/labs/lci/vrs/index.html



II. RELATED WORK

Our system must learn the visual appearance of object
categories from training data. We have utilized the state-
of-the-art visual recognizer named Deformable Parts Model
(DPM) [1] for this task. While our method is compatible
with any recognizer that produces scored bounding boxes
from test images, DPM is open-source and has placed
first place in several recent Pascal Visual Object Categories
challenges, so it provides a strong baseline for comparison
and improvement.

Several previous approaches have combined information
from many images in order to locate objects. This is a
common approach for tracking moving objects where ex-
amples include [2], [3], [4], [5] among many others. Our
method shares several characteristics with the work of Wojek
et al. [6] as they also lift 2D detections of pedestrians to
3D in order to perform scene level inference. However, our
approach handles more varied environment geometry, and we
target indoor robotics where sensed point cloud information
is also available.

Other authors have also considered fusing information
between depth sensors and images, for example: [7], [8],
[9]. However, we are not aware of other work that has
directly reasoned about occlusion and fused this with image
appearance reasoning.

Integrating imagery from many viewpoints of the same
scene has also been studied. Many papers in the Active
Vision literature involve similar high-level formulations to
our own. Laporte et al. [10] is one particularly similar
example where a Bayesian formulation is used. Even more
similar are approaches targeted to recognizing objects in
indoor scenes, such as [11] and our previous work [12], [13].
We have previously proposed the use of a generative model
to combine detections, but this is our first attempt to include
occlusion reasoning as a variable within the model, which
increases the performance in high clutter.

Occlusion has been studied in the context of other Com-
puter Vision problems, such as determining optical flow [14],
segmentation [15], and recognition from single images [16].
Our method has been inspired by these approaches, but we
do not believe any has constructed a generative appearance-
occlusion model, as we require for 3D object inference.

Several robotics competitions have recently been proposed
to address the difficulty in evaluating robotic recognition
approaches. The Semantic Robot Vision Challenge [17] pro-
posed recognizing object categories in simple environments
based on training data from the world wide web. The scenes
contained in our dataset are much more realistic and cluttered
than those that were used for the contest, and our data is
publicly available. More recently the Solutions in Percep-
tion Challenge [18] was held with the goal of evaluating
performance on recognizing specific object instances using
both images and depth data from the Microsoft Kinect
sensor. Specific instance recognition is typically easier than
categorization, which we study, since there is no need to deal
with intra-category appearance variability.
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Fig. 2. An overall view of our model. Each inferred 3D object is
projected into many views. The proposed region projects into all 3 views
and associates to image-space detections with alignment errors ∆i. The
likelihood of this hypothesis is expressed based on the 3D geometry, the
score of matching detections modulated by occlusion and the error in
projection.

III. 3D OBJECT MODEL

A. Overview

At a high level, our approach attempts to infer which
objects exist in an environment based on sensed 3D infor-
mation, (i.e. point clouds from a tilting laser range-finder
or depth camera), and visual imagery, collected from many
viewpoints. We attempt to locate objects as 3D volumes,
and do not study pose estimation in this work. To achieve
a manageable scope, we assume that a SLAM component
external to our system estimates the robot’s pose and that
camera and robot calibration are available, which allows all
measurements to be related in a common coordinate frame.

Our system hypothesizes many possible objects (both
category labels and locations). As shown in figure 2, each
potential object explains the visual appearance in all views
through projection into image space and data association
to a candidate detection bounding box returned by a rec-
ognizer. Note that when an object is occluded from some
viewpoints, the data association for those views may fail, or
the recognizer may report a low probability of the object
existing in that view. If left un-modeled, this results in
poor system performance in clutter, so we have explicitly
addressed this problem by adding an occlusion term to our
appearance model. This term and a 3D geometry likelihood
for the hypothesized position are both derived from sensed
3D geometry.

B. Object Likelihood

We infer the set of objects present in an environment based
on images, It, and point clouds, Pt, collected by a robot
over time, from many views of a static scene. We denote all
inputs for one time-step as zt = {It, Pt}. We use superscript



notation to represent the set of all data up to a given time:
Zt = z1, z2..., zt.

Each static 3D object, o = {pos, sc, c}, is described
by a category label c and a 3D location determined by
a position, pos, and scale, sc. Our model includes a set
of learned parameters θ to be described shortly. We will
use θ as a generic term to describe all system parameters,
and use subscripts when we refer to specific parameters.
For example, θgeom describes the parameters used to match
an object to sensed 3D geometry. Therefore, we model
p(o|Z, θ). In order to exploit problem structure and learned
generative components, we apply Bayes rule and assume the
information from each view is independent:

p(o|Zt, θ) α p(o, θ)p(Zt|o, θ) (1)

= p(o, θ)︸ ︷︷ ︸
object prior

∏
t

p(zt|o, θ)︸ ︷︷ ︸
data likelihood

(2)

Our prior for objects, p(o, θgeom), is a size distribution of
instances from each object category. We modeled our objects
with a normal distribution for both the height and radius, as
they are all nearly cylindrical in nature. Our model is not
fixed to the assumption of cylindrical shape; it has merely
been effective for the categories we study. In principle, any
other 3D shape prior emitting a size likelihood can also be
used and more informative shape models such as [19] would
further improve our method.

We decompose the data likelihood term, p(zt|o, θ) into
two generative sub-models that describe how well an object
explains the image appearance It and the point cloud geome-
try, Pt. In order to model the occlusion in an image based on
the sensed 3D geometry, we factor the probability such that
the image appearance is conditioned on the 3D information:

p(zt|o, θ) = p(Pt, It|o, θ) (3)
= p(Pt|o, θ)︸ ︷︷ ︸

geometry

p(It|Pt, o, θ)︸ ︷︷ ︸
appearance

(4)

C. Geometric Reasoning
We use a depth map representation of the sensed geometry

(i.e. the projection of the 3D point cloud onto a 2D image
plane from the perspective of each viewpoint) to reason about
two spatial properties for every object volume: its per-view
occlusion and whether it overlaps occupied space. We project
the hypothesized 3D objects into the same frame as the depth
map using registration information, and evaluate the range
agreements. There are 3 possible outcomes for each pixel
within the image region covered by the hypothesized object:

1) The sensed depth is closer than the object, indicating
the proposed location is occluded.

2) The depths match, so the proposed location is in the
image foreground.

3) The sensed depth is farther than the object, indicating
the proposed location is unoccupied.

Several examples of the pixels marked occluded by this
process are shown in figure 3. In order to form the likelihood

Fig. 3. Occlusion masks generated by our spatial reasoning procedure are
shown in red. In all of the displayed examples, the target object is the one
seen in the background and the occlusion mask is generated by our system
to reason about where the target is not visible.

models described above, two ratios summarize each depth
pixel labeling: free(o, Pt), or free space within the object
volume, is the ratio of the number of unoccupied pixels to
the number of pixels; and occ(o, Pt), or occlusion of the
volume, is computed as the ratio of the number of occluded
pixels to the total number of pixels.

The geometry term from equation (4), p(Pt|o, θgeom) is
derived based on free(o, Pt). We model the sensor error
as a zero-mean normal distribution with variance parameter
θgeom. If a large fraction of the volume described by o is
free space, it is unlikely that an object exists in the proposed
location. This reasoning allows our system to discard many
false object hypotheses suggested by visual recognition that
are not consistent with sensed 3D geometry.

In the next section, we continue to describe the visual
detection and occlusion model, which will leverage the
occlusion ratio computed here.

D. Appearance and Occlusion Likelihood

We model visual appearance using a set of bounding boxes
detected by a visual object recognizer. We denote the set of
detections from the image at time t as Dt = D(It) and
we write each detection as dtj = {score, x, y, sc} ∈ Dt,
for detector confidence, score, image location, (x, y), and
scale, sc. 3D object hypotheses are projected into each
image and a data association function, a(d, o), produces one
matching detection for each object in each image: dto =
{dtj |a(o, dtj)}. The appearance term p(dtj |o, Pt, θ) models
both the image space agreement and the detector’s prediction
score. The intuition is that correctly inferred objects will
project near to areas given high scores by the image-based
recognizer, so we penalize error in re-projection agreement
and also low detection scores for each view.

p(It|Pt, o, θ) = p(dto|o, Pt, θ) (5)
= p(∆(dto, o)|θ∆)︸ ︷︷ ︸

location

p(dto|occ(o, Pt), θdetocc)︸ ︷︷ ︸
detector score
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Fig. 4. The generative detection model obtained for the DPM [1] mug
detector. The in-class mean shows the average response of the classifier on
objects at various occlusion levels. The background distribution is plotted in
red for comparison. This reflects the distribution of all false-positive detector
responses (i.e. detections reported when the category is not present, or is
fully occluded.)

The function ∆(d, o) measures the error in image location
and scale between the projection of the 3D object volume and
the detected bounding box. This alignment error is displayed
in figure 2 and should be near zero for correct 3D regions.
Image location and scale disagreement are both penalized.
For fair comparison, we normalize location by the scale of
the detection bounding box. A zero-mean Gaussian, with
variances for each of x, y, and scale2, models the alignment
error.

The second component of the visual appearance model
is derived from the detector’s confidence score. This is our
system’s primary way to reason about the correct category
label for a region. The object detector will typically produce
high scores for un-occluded object instances. The score
is often reduced in the presence of occlusion. Recall that
occ(o, P ), the occlusion statistic, was described previously
in section III-C, and is visualized in figure 3. The intuition
is that every occluded pixel (marked red in the figure) hides
object evidence and accounts for a lower detector score.
The parameter θdetocc models this relation, and we will now
describe our method for learning this from the annotations,
images and point clouds in the UBC VRS dataset.

IV. MODEL LEARNING

This section describes a method to learn the
parameters for the appearance-occlusion distribution:
p(dtj |occ(o, Pt), θdetocc). The learning procedure requires a
visual object detector to be evaluated on a set of data where
objects are annotated in 3D and where we have access to
point cloud representations of the environment. We obtain

2The optimal values projection agreement are detector dependent. For the
DPM detector, we have used variances 0.25 for position and 0.5 for scale.

Input: Zt,θ
Output: oi ∈ O: inferred set of objects
Ofinal = ∅;
foreach cat ∈ Categories do

Ocat = Bootstrapped set of candidate object regions;
while assignments not converged do

foreach oi ∈ O, order by descending likelihood
do

foreach zt ∈ Zt do
dit = assoc(oi, D(It));

end
Refine(oi);
if changed(oi) then

Re-compute occ(oi, Pt) for all views;
Re-compute p(oi|Zt, θ) by equation (1);

end
end

end
Append Ocat to Ofinal;

end
Ofinal = NMS(Ofinal);

Algorithm 1: The 3D Object Inference Procedure

both of these from the validation set of the UBC VRS
database. Then, our learning procedure associates image
space detections on the validation set to 3D annotated
objects by assigning the closest object if there is significant
overlap. If no overlapping object exists, a false detection
is indicated. The occlusion mask for each 3D object is
automatically computed, using the approach we described
above. This leads to a large set of (score, occ) pairs, and
also many false positive detection responses.

We define a model relating the terms and regress the
parameter θdetocc to fit the model to the collected data.
Our model is a unique 1D Gaussian for each value of the
occlusion ratio. For robustness in learning the parameters, we
bin training data with bin width 0.1 and vote into neighboring
bins with weight inverse to the distance from the bin centre.
To obtain final estimates over the entire parameter space,
we linearly interpolate parameters between bins. This allows
computation of the likelihood for any detector response over
the full space of occlusions. However, we have found this
process to become unreliable when less than 0.3 of the object
is visible, since our visual detector tends not to produce
any bounding boxes. We therefore truncate the model and
label all objects with occ(o, P ) > 0.7 as fully occluded
(i.e. we expect the detector to respond as if no object was
present). Figure 4 displays the model we obtain by applying
this process for the mug category.

V. 3D OBJECT INFERENCE

The model and learned parameters described previously
are used to infer objects as a robot explores an environment.
An exact inference technique would involve evaluating all
object regions in 6 continuous dimensions (3D location and
scale). One could also consider all possible near-intersections
of 2D detections, but number of near-intersections is the



(a) (b)
Sub-set Scenes Views Instances Boxes Mugs Bottles Bowls
Training 19 453 184 4026 56/1405 42/1119 17/378

Validation 11 295 116 2701 33/711 33/839 17/346
Test 30 334 303 3466 85/935 57/589 64/681

UBC VRS 60 1082 603 10193 174/3051 132/2547 98/1405
(c)

Fig. 5. The UBC VRS Dataset. (a) A sample point cloud, and poses from the survey path followed by the robot. (b) A sample image with 3D wireframes
projected to display user-annotated ground truth volumes. (c) Summary statistics of the annotations available for the UBC VRS database. The final 3
columns represent the (unique instances / number of bounding boxes) that are present for the specified category.

same as the cardinality of the power set of detections in the
worst case (with cardinality exponential in the number of
detections). We propose an approximation with complexity
linear in the number of collected views that still allows robust
inference in clutter.

We start by proposing a coarsely sampled set of object
volumes. This is a 3D analog to the sliding window approach
commonly used in visual detection (an apt name for our
3D sampler is sliding volume). These volumes will initially
tend to have large alignment errors with detections, because
a coarse spatial sampling is unlikely to include exactly the
correct region. Therefore, we iteratively refine the proposed
regions by alternating two steps: (1) performing data asso-
ciation that connects the closest detections to the projected
volume in each image; and (2) geometric refinement based
on gradient ascent, that maximizes the appearance likelihood
term. The outside-loop iteration is needed because as 3D
object volumes are moved to new positions, the greedily
chosen data associations may change, calling for another
step of refinement. We have found that this process stabilizes
very rapidly. Four iterations was the maximum needed across
the evaluation performed in the next section. A crucial step
has been running the gradient ascent process to convergence
for each association, rather than stopping after a few steps.
The optimal object position given an association quickly
leads to better associations and avoids oscillation between
two associations that suggest nearby locations. Algorithm
1 describes the procedure. We continue by describing our
experimental validation.

VI. EXPERIMENTAL EVALUATION

In this section, we will study the performance of our
system for detecting mugs, bottles and bowls in 3D, on

the test set of the UBC VRS database, which contains 30
realistic cluttered indoor scenes. Like the majority of modern
object recognizers, the outputs of our system are scored with
probabilistic confidence estimates. In practice, a physical
system would likely choose a single confidence threshold and
act only on the objects detected over this threshold. Here,
we evaluate across a range of thresholds, using standard
detector evaluation practices. Qualitative results are shown
for the threshold equal to one false positive per image and
recall versus false-positive-per-image curves are used for
quantitative results. The remainder of this section describes
our experimental evaluation. Next, we will describe the
UBC VRS data and annotations that have been used for
comparison.

A. UBC VRS Description and Testing Protocol

The UBC VRS database was collected by directing a
mobile platform, previously described in [20], to follow a
survey trajectory for a number of realistic scenes. For each
scene, the robot moves in a circular arc, collecting data from
vantage points evenly spaced throughout the traversable area.
Figure 5(a) shows the waypoints that make up the survey
trajectory, for one kitchen environment contained in the
dataset.

A fiducial-based registration system [21] has been used to
obtain accurate position information that mimics the outputs
of a SLAM algorithm. A human annotator has labeled
each image with bounding boxes containing three categories
(mugs, bowls and bottles) along with many other objects
that are not studied here. Each object’s 3D location is also
annotated as a bounding volume. This is done via triangu-
lation of numerous user-clicked points using the geometric



Fig. 6. 3D objects inferred by our system on a number of the UBC VRS scenes after 10 views. Displayed objects score over a threshold equivalent to
one false positive per image. Red volumes indicate mug hypotheses, green are bowls and blue are bottles.

registration. Figure 5(b) shows example human-annotated 3D
volumes.

All further results in this section involve the task of
inferring the set of objects present in the test portion of the
data set. The table in figure 5(c) summarizes the number of
annotations that form this set. Our testing protocol provides
data from a series of consecutive viewpoints along the survey
path for each scene to the inference system. This is exactly
the information that a robot could collect after moving in a
short path while exploring an environment.

The ground truth annotations are used to evaluate perfor-
mance using a methodology similar to that used in multi-
camera object tracking. Specifically, we use the criteria
outlined in the recent Performance Evaluation of Tracking
and Surveillance (PETS) workshop [22]. There, tracking
systems can access N − 1 views to produce results and
the N th view is designated for evaluation. Estimates are
projected into the evaluation view and compared to ground
truth annotations.

B. Sample Results

Figure 6 shows a thresholded set of object detections
after ten views have been considered. Our system is of-
ten able to find correct 3D positions and achieves partial
separation between true objects and false positives. That is,
many objects can correctly be returned before the first false
positive. However, mistakes are present. For example, the
first column of the figure shows a soap dispenser labeled as
“mug”. This instance is nearly unavoidable for our system
because the visual recognizer returns strong mug responses
in every view for this object, the 3D region has nearly the
same size as a typical mug, and the image rays intersect

on physical structure. At the displayed thresholding, several
false negatives are also visible: (first column) a large bowl
on the left and a mug on the right of each image; two bottles,
a mug and a bowl in the middle column, in the background
where the small image size makes the object recognizer less
confident in the image evidence; and two mugs and a bowl
in the rightmost column, which are recognized, only not with
a confidence below the display threshold. We also note that
the 3D position of the suggested regions is typically accurate
enough to visually represent the object well. However, in
this paper we have not considered grasping or other precise
robotic tasks. In that domain, a further refinement step is
likely necessary.

C. Quantitative Evaluation

This section reports a quantitative summary of our method
evaluated on all 30 test scenes in the UBC VRS dataset
using the testing protocol described above. The “recall vs
false-positive-per-image (fppi)” plot is a standard technique
in Computer Vision. Recall refers to the ratio of the number
of annotated objects correctly detected to the total number
of objects annotated (1.0 is perfect performance). Fppi is a
measure of precision. Each data point reflects the system’s
output thresholded at one specific confidence rate and the
threshold is varied to produce the curve.

We begin by comparing the performance of our system
to the state-of-the-art visual category recognizer by Felzen-
szwalb et al. [1] in figure 7. For both bowls and bottles our
method achieves higher recall for nearly every fppi value.
In some cases, our system recognizes five to ten percent
more of the instances present with the same miss rate as the
image space detector. However, we acknowledge that this



(a)

(b)

Fig. 7. Performance of the (a) bowl and (b) bottle detector on the UBC VRS
test set compared with a state-of-the-art Deformable Parts Model (DPM) [1].
Note, that this detector has been scanned on the evaluation view directly
while our 3D results are projected after the robot has seen 7 of the other
views. Best viewed in colour.

comparison is problematic for several reasons. Our system
has access to imagery from many views as well as point
cloud data, while the visual DPM detector sees only the
evaluation image. Also, DPM reports its results directly as
bounding boxes on the evaluation image, while our technique
reports 3D volumes that must be projected, so incorrect 3D
location of objects can account for misses of our system. We
have provided this analysis simply to note that our system
does generally return more correct detection results than
DPM.

We next analyze the performance of our method as an
increasing number of views is made available to the inference
procedure. Data from a larger number of views allows the
visual appearance of 3D objects to be verified against a larger
number of image patches. It also leads to a larger maximum
baseline between views, since the path between first and
last view is longer. Larger baseline constrains the object’s
position more tightly and leads to less error in projection
of 3D volumes. Figure 8 displays our system’s performance
after path lengths, p ∈ {3, 7, 10, 12}. Performance generally

Fig. 8. Performance of our mug detector on the UBC VRS test set as the
number of input views available is varied. Best viewed in colour.

increases with a larger number of views, but there are local
deviations. We have investigated these and note that more
available views leads to a larger search space and more
accidental intersections between detections.

The final quantitative evaluation involves disabling a pri-
mary system component. We remove the effect of point cloud
data on the object likelihood, making for an entirely image-
driven approach. This is a simple change to our system
involving two small modifications: the geometry likelihood
is set to 1.0 for all objects, giving no information; and
the appearance-occlusion model is always evaluated as if
the object is fully un-occluded. Figure 9 demonstrates that
substantial performance is lost for bowls and bottles, while
the performance of the mug detector is only affected slightly.
The variation across categories appears to come from the fact
that the visual detector has learned a slightly more reliable
template for mugs than for the other two classes.

We have identified a number of true positive objects whose
score is lowered when the occlusion variable is not present.
This appears on the curves in figure 9 as the difference in
starting value of recall where the curves intersect the Y-axis.
It can be explained by the fact that the projection of the 3D
objects into occluded views are now penalized the same as
in un-occluded views. When detections are missed, due to
occlusion, the object’s score is penalized.

VII. CONCLUSION

We have presented a method that locates objects accurately
in cluttered indoor scenes. 3D annotations and point cloud
data are used during a learning phase to characterize the
effect of occlusion on the output of a visual recognizer.
The resulting model is integrated over many viewpoints to
produce accurate final estimates of the objects in the scene, in
3D, even in the face of substantial clutter and frequent object
occlusion. Our results show improved performance over one
of the best current visual detectors, and that 3D detections
are made accurately even when only a small number of views
are available.



(a) (b) (c)
Fig. 9. Performance of our system on the UBC VRS test set with and without the occlusion terms of the likelihood model for (a) bowls, (b) bottles and
(c) mugs. Best viewed in colour.

In future work, we plan to address the computational
challenges inherent in extending our model to operate in an
incremental fashion. Also, we currently summarize occlusion
masks as a single ratio. This ignores the fact that some
parts of an object’s appearance are more discriminative than
others, and we believe that continuing to exploit part-level
information along with 3D geometric constraints will allow
much enhanced understanding of object locations, even when
they are only partially visible, and will allow our system to
make a strong contribution to the field of indoor perception.
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