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Abstract. This paper relates experiences with formal
methods that are relevant to the systems engineering
activities of requirements specification, design
documentation, and test case generation. Specifically,
this paper reviews the lessons learned from the
application of formal methods to selected components
of an air traffic management system. This project used
experimental tools developed at the University of
British Columbia: S, a formal specification tool; HPP,
an HTML documentation tool; and TCG, a test case
generation tool. The components experimented on are
from a recently fielded system written in C++ using
unimplemented pre- and post-conditions on
components. The purpose of the experiment was to
evaluate the usefulness of these formal methods to
uncover design or logic errors in the system
components and to assist in designing test cases. This
experience identified some ambiguities in the original
specification, evaluated the feasibility of the
experimental tools we used, and identified areas in
which the tools could be improved.

 INTRODUCTION

There is a widespread recognition that software
engineering falls short of its goal of building robust,
correct systems. There is an interest in enhancing its
methods with applicable techniques from formal
methods. There is a need to experiment with these new
methods, and to communicate the results of the
experiences, so that other organizations can more
effectively approach the use of formal methods in their
own application domains. This paper discusses a
specific industry experience using some tools of formal
methods applied to software for an Air Traffic
Management system to formalize requirements,
enhance design documentation, and facilitate test case
generation.

Our work considered C++ components whose
interfaces and function definitions were specified by
comments expressing pre- and post-conditions. Our
experiments formalized these assertions using a formal
description notation, documented our effort using an
HTML documentation tool compatible with the
notation, and attempted to generate software test cases
from the formal specification. As a result of our effort,

we identified some ambiguities in the original informal
specification, evaluated the feasibility of the
experimental tools we used, and identified areas in
which the tools could be improved.

Late in the project, some work was done with the
Z specification notation to obtain some perspective on
the experience with S.

This paper reports experiences with formal
methods used in software system development, but the
observations we make are relevant to any system
engineering problem. All engineering disciplines
require techniques to capture and analyze
requirements, elaborate and analyze a design, specify
interfaces, and evaluate the product. Evidence of the
wide applicability of these techniques can be found in
the survey article by (Clark et al. 1996) which reviews
examples of formal methods for specification and
verification in many different engineering domains. An
informative report of a positive experience with
evaluating formal methods in a nuclear reactor design
is reported in (Knight et al. 1997).

The formal methods tools discussed in this paper
are unreleased preliminary versions that are still under
development by the FormalWARE project.

FORMALWARE PROJECT

This work was done within the FormalWARE project.
This project is a joint industry-university research
initiative intended to foster the development of formal
methods that are directed toward industrial needs and
to encourage the use of these methods by industry in
British Columbia. The research partners are Raytheon
Systems Canada (formerly Hughes Aircraft of Canada
Limited), MacDonald Dettwiler and Associates, The
University of British Columbia, and The University of
Victoria with funding from the industrial participants
and the B.C. Advanced Systems Institute.

The MacDonald Dettwiler (MDA) involvement
has been in the areas of component requirement
specification and test case generation. Jamie Andrews,
a research associate of the FormalWARE consortium at
the time of this research, worked closely with MDA to
help familiarize this company with:
• the specification notation: S
• the S typechecker tool: FUSS



• the test case generation tool: TCG
• the HTML documentation tool: HPP
A full description of all of the projects of the
FormalWARE research consortium is at the web site:
http://www.cs.ubc.ca/formalWARE/.

AIR TRAFFIC MANAGEMENT CODE

Our experiment used samples of recently developed
code for an ATM (Air Traffic Management) system
and explored the usefulness of formal methods. This
system used informal comments that captured pre- and
post-conditions asserted to hold for each function
(Meyer 1988). These assertions were manually
reviewed during the original development phase. This
project, which started after coding and testing was
completed, examined how these assertions could be
translated into S.

The examples looked at in this section come from
a component that defines an airspace object. This is
part of an Environmental Processing subsystem, which
handles meteorological data, and other data describing
the environment within which ATM operates.  This
subsystem is part of a larger Aeronautical Information
System that supplies information used in air traffic
management.

Figure 1 provides an example of how assertions
were captured in a header file for the C++
implementation of a simple function:

int assocMap (int aAssocMapNr) const;
/*
  Requires:
    ! this.isNull();
    0 <= aAssocMapNr < nrAssocMaps();
  Ensures:
    result == the number of the
              associated map
*/

Figure 1. Simple C++ Function Header with
Assertions as a Comment

The above function takes as input aAssocMapNr
(the index of an associated map), decodes it into a map
identifier, and returns it to the caller. The purpose of
the function is to provide a code lookup mechanism to
provide compatibility between two subsystems that use
different integer values as indexes to their set of
associated airspace maps. The first line of the
“requires” pre-condition states that this airspace object
is not null (i.e., the object must have been initialized).
The second line requires that the number of the
associated map be within the range of maps currently
managed by this airspace object. The “ensures” post-
condition is the requirement that the returned number
is the proper integer code for the associated map.

Figure 2 provides a more complex example:

void setAirspaceComputedBoundary(
 UTL_Status_Object& status, OUT_PARAM
 int aNrAirspaceBoundaries, IN_PARAM
 ENP_ICW_Location airspaceBoundary[]
   IN_PARAM);
/*
  Requires:
    ! this.isNull();
    airspaceBoundary is an array of
aNrAirspaceBoundaries elements
  Ensures:
    ! this.isNull();
    if (input parameter is consistent
      with the invariants &&
      aNrAirspaceBoundaries <=
           AED_MAX_AIRSPACE_
           COMPUTED_BOUNDARIES)
    then
      the object is unchanged,
      except that
        for k>=0 and
        k<aNrAirspaceBoundaries
          airspaceComputedBoundary(k)
          == airspaceBoundary[k] &&
        nrAirspaceBoundaries ==
          aNrAirspaceBoundaries;
      status == UTL_SUCCESS;
    else
      this == old this;
      status ==
        UTL_BAD_VALUE_FOR_OPERATION;
*/

Figure 2.  More Complex C++ Function Header
with Assertions as a Comment

The above function takes an airspace boundary
data structure, airspaceBoundary[], with
aNrAirspaceBoundaries number of elements in it and
updates the airspace object. The pre-condition requires
that the airspace object has been initialized and that the
last two parameters of the function interface are
consistent. The post-condition ensures that if a set of
invariants is met and the function is being called with
a legitimate number for aNrAirspaceBoundaries, then
the object will be updated with changes to data visible
only through the airspaceComputedBoundary and
nrAirspaceBoundaries services, otherwise the object is
unchanged. In either case, an appropriate status is set.

SPECIFICATIONS USING THE S NOTATION

The specifications were written in the S notation. This
is a formalism based on typed predicate logic, an
extension to the propositional logic which is well-
known to most engineers and software developers. It
uses the familiar logical operators (OR, AND, NOT,
IF…THEN). It is typed in the sense that each identifier



must belong to a specific type just as is the case in a
strongly typed programming language. S was
conceived as an alternative to the Z specification
notation and is intended to overcome some of the
practical limitations of using Z. A description of S can
be found in (Joyce et al. 94).

 FUSS is a typechecker that parses S specifications
to check for conformance to the syntax and typing rules
of the notation in a manner analogous to the checking
performed by a compiler for a strongly typed
programming language to ensure that the specification
was syntactically correct and well typed. The use of
FUSS to check S specifications is analogous to the use
of FUZZ to check Z specifications.

The informal specification of Figure 1 was
translated into an S specification as:

forall x.
forall aAssocMapNr.
If NOT ((x.isNull) (at_time 1))
   AND (0 <= aAssocMapNr)
   AND (aAssocMapNr <
((x.nrAssocMaps) (at_time 1)))
then
   (is_map_ID_for aAssocMapNr
((x.assocMap) aAssocMapNr) (at_time
2)));

Figure 3.  S Formalization of the Simple C++
Function

There are several things to note about this syntax:
• The use of “forall” provides a simple, readable text to

identify the universal quantifier. This use of a format
that does not require special fonts is one of the most
useful features of S. Z specification notation has a
rather forbidding appearance to the non-
mathematically inclined. Unlike Z, S permits the
construction of very English-like specifications.
Furthermore, these specifications can easily be
included within ASCII-based documents such as
comments within code files or as text within the
project design documentation.

• S is a specification notation based on a declarative
paradigm. Our example is written in C++ code based
on a procedural paradigm where program steps make
sequential changes over time. Consequently, we need
a way to represent the passage of time in S.  Figure 4
shows how we do this by defining a new type “time”
and a new construct “at_time” to allow us to
represent successive times of interest during the
execution of the program:

:time;
at_time: num -> time;

Figure 4.   Specification of the Type “time”
and the Function

• The element “x” stands for our airspace object. The
expression “x.isNull” stands for the “isNull” method
applied to the object to return a boolean value. Figure
5 shows how this method was specified in S:

isNull: AED_Arspc_Object -> time -> bool;

Figure 5.   Specification of the “isNull” Method

 The above declaration of “isNull” says that this
function first takes a value of the type “airspace
object” followed by a value of type “time” and yields
a value of type “boolean”. The FUSS typechecker
uses this definition to check the expression:
“(x.isNull) (at_time 1)”.

• Because the function “assocMap” is a function
within an AED_Arspc_Object being called at a
particular time, we give it two additional parameters:
the object it belongs to and the time it is being called.
This could be written as “(assocMap x aAssocMapNr
(at_time 2))” where x is the object. Or, equivalently,
it could be written as “((x.assocMap) aAssocMapNr
(at_time 2))” which helps point out the fact that “x”
is the object being handled. Similarly, a call to the
isNull function could be written as “(isNull x
(at_time 1))” or “((x.isNull) (at_time 1))”.

• The post-condition (“result == the number of the
associated map”) is an example of a problem in
formalizing an informal specification and has
implications for generating test cases from a
specification.  This assertion has no representation
within the coded C++ functions of the original
airspace component.  A new function
“is_map_ID_for” was created to express the required
property. This creates problems later if test cases are
to be generated from this specification since this is
not an executable function of the C++ code. Any test
using this new function would be “white box” testing
(i.e. testing that requires the tester to have
knowledge of a property of the system under test that
is not available from the C++ functions of the
original airspace component).

• The S notation has no special formatting rules. The
indentations seen above are those chosen by the
authors for readability, and is not a style imposed by
S.

The informal specification of Figure 2 was translated
into an S specification as:

forall x j.
forall <parameters-list>
  <invariants-list>.
If NOT ((x.isNull) (at_time 1))
  AND ((array_size airspaceBoundary)



     == aNrAirspaceBoundaries)
then
  if
    invariants_met(<invariants-list>)
   AND
    (x.setAirspaceComputedBoundary)
    (status, aNrAirspaceBoundaries,
    airspaceBoundary) (at_time 1)
   AND(aNrAirspaceBoundaries <=
       AED_MAX_AIRSPACE_
       COMPUTED_BOUNDARIES)
   then
      <complicated-statement-
       asserting-the-object-
       has-not-changed>
     AND ((j<0) OR
       (j>=aNrAirspaceBoundaries)
       OR
         ((array_element
        ((x.airspaceComputedBoundary)
         (at_time 2)) j) ==
            (array_element
               airspaceBoundary j))
     AND ((x.nrAirspaceBoundaries)
           (at_time 2) ==
              aNrAirspaceBoundaries)
     AND ((value_of status
         (at_time 2)) == UTL_SUCCESS
  else
    <complicated-statement-
     asserting-the-object-
     has-not-changed>
    AND ((value_of status
       (at_time 2)) ==
         UTL_BAD_VALUE_FOR_OPERATION)

Figure 6.  An Abbreviated S Formalization of
the more Complex Function Specification

There are several things to note about Figure 6:
• The use of angle brackets represents places where

large chunks of specification were removed to make
the above more readable.

• In building specifications, we found that in dealing
with functions with large numbers of parameters we
had to repeat lists of variables. There was no
“macro” facility that let us substitute a simple
identifier for these long lists. This made our
specifications quite long. In fact, the actual
specification was 101 lines long, not the 19 lines
shown above.

• The predicate “invariants_met” is a 96 line long
definition. What this demonstrates is that the tool
requires the building up of a specification
infrastructure. This infrastructure can be quite large.
For the airspace component, some 160 lines of
informal specifications led to 1300 lines of formal
specifications. The larger the component, the more
this specification infrastructure size can be

amortized.  But a system with more components will
not generally gain as much from this kind of
amortization effect since most specifications are
local.

• A comparable translation of the informal
specification into Z has a significantly smaller size,
roughly 60% of the size of the S specification. The
size difference comes from two facts: Z supports a
schema facility which helps modularize and reuse
elements of the specification, and the Z specification
was done after we had gained some skill in formal
specifications. This second factor is hard to quantify,
but our assessment is that it is fair to say that S is not
as compact as Z. On the other hand, Z uses a
standard formatting that requires special tools and
creates layouts that are longer and require far more
blank space on the page than S. Also, it uses a
notation that is highly mathematical and opaque to
most software engineers.

• The Z notation uses an apostrophe decoration on a
variable to indicate the implicit passage of time. In
Figure 6 the last three lines could be represented as
status’ = UTL_BAD_VALUE_FOR_OPERATION
where the apostrophe captures the (at_time 2)
indication. Clearly, Z is more condensed. It could be
argued that Z is more opaque since it requires an
understanding of the notational convention.

HTML DOCUMENTATION TOOL

The HPP tool (developed by Nancy Day at the
University of B.C.) was used to generate on-line
documentation for the specification. It is able to
automatically generate an HTML document from a
specification. The usefulness of the hyperlinked
approach to specifications should be obvious: users are
able to jump to the definition of a construct. This is
extremely useful.

This tool lets users include a definition using the
following construct:

<HPPTAG s=”name-of-construct”,
[
put the specification here
]>

Figure 7. HPP Tag

The tool will automatically link all other
references to “name-of-construct” back to this
definition.

We found this to be an excellent idea for
documentation. Unfortunately, our other project
documentation is not currently in HTML format, so the
overall product documentation is not compatible with
this the use of this tool at this time. But this is
definitely the right idea for the future.



TEST CASE GENERATION

The TCG (Test Case Generation) is an experimental
tool, developed by Michael Donat of the University of
B.C. and described in (Donat 97). It is designed to
work from S specifications to produce test cases.

The automated generation of test cases offers the
potentially significant  advantages of reducing test
generation effort, permitting tailoring of test coverage
schemes, and ensuring consistency of test cases with
the system specifications. The strength of TCG’s
approach is that test case generation is based on logical
calculation rather than heuristics.

We encountered problems using TCG on subsets
of our specification because we used a prototype
version of the tool. Some of our problems are traceable
to the fact that we created specifications with large
numbers of universally quantified variables using a
specification style that differed from Donat’s approach.
We intend to re-evaluate this tool as it evolves.

LESSONS LEARNED

There were a number of useful lessons learned from
this research project.

Our experiment in formalizing specifications for
functions did help uncover some cases where the
natural language of the informal specification was
unclear. In this regard, formal methods is helpful
because it adds rigor to the process. But it did not
uncover any major errors in the manually generated
specifications. Our experience was inadequate to
properly judge the cost-effectiveness of this approach.
But in our estimation, the costs of formalization are
rather high and the benefits somewhat limited in the
context of the current experiment. While this
technology is promising, serious industrial use will
depend on the development of commercial grade tool
sets to aid the working engineer.

Working with a formal specification notation is a
highly-skilled task. Despite the efforts to create S as a
language which is English-like in its expressions, there
was a rather large learning curve to overcome. A
significant portion of the time spent was involved in
understanding the constructs of the notation. This was
the case despite the fact that the engineer working on
the task has many years experience programming and
a background in formal logic. The syntax and
semantics of formal specification notations are
significantly different from that of procedural
programming languages and, in the case of S, are
closer to the those of functional programming
languages such as ML.

The format of the informal specifications was not
conducive to a simple formal specification. Functions
had many parameters and the informal specifications
often referred to the internal state of the component

rather than to any externally observable condition. We
demonstrated that S could formalize these
specifications, but it required some rather extensive
definitions and we were left with more complicated
specifications than we would have liked. In retrospect
it would have helped to have used a more extensive
and complex substructure of definitions. For example,
Z has a schema construct that permits the
modularization of a specification through schema
inclusion. An equivalent technique has not yet been
developed for S.

Formalization does not remove all sources of
errors. Since the formalized specification is checked by
FUSS for only conformance to syntax and type rules,
there is still room for error in the specification. FUSS,
like many other formal methods tools, has no
underlying model of domain knowledge against which
the correctness of the specification can be checked, so
it is possible to make erroneous specifications. (An
analogy is that a clean compile of a software
component only guarantees that the program is
syntactically correct, not that it is defect free.) For
example, in our use of the “at_time” function to
express sequential dependencies in our specification,
there was no mechanism to ensure that the actual time
values were correct. There was at least one place where
a large section of specifications was meant to be tagged
as applying at time “3”. But because of a cut-and-paste
error in building this part of the specification, some
values were left at “2”. FUSS was unable to catch this
kind of error since it only understands the notational
formalities, not the intentions about the sequential
timing model in the mind of the person making the
specification. In our use of Z with a theorem prover we
were able to show, for very simple specifications that
used an underlying mathematical representation, that
the domain knowledge of the mathematical toolkit
helped move us a slight distance forward in handling
this problem of “domain specific knowledge” with
formal specifications.

Issues of system and component specification had
implications for automatic test case generation. If the
assertions for a function can be expressed in terms of
properties available within the specification, then
“black box” test cases can be generated. However, if an
assertion cannot be expressed with properties of the
system, then a new function has to be invented. The
value of this function can be checked during testing
only by a “white box” testing technique. In Figure 3
the “is_map_ID_for” is a function that can be checked
by a test if there is a way to look inside the airspace
object and ensure that the a number returned by the
“assocMap” function is in fact the valid map ID for the
number aAssocMapNr.



The S specification notation can be improved in
the following areas:
• While S provides some support for writing readable

specifications, there is still much that needs to be
done. Our experience was that the volume of
specification required to express fairly simple
requirements was surprisingly large. Some of this
concern might be addressed with more experience
with S which leads us to insights on how to write
more concise specifications. Some must come from
our recognition that formal specifications necessarily
must make explicit details that are implicit in less
formal specifications. And, finally, some of the
concern is expected to disappear when we have
enough experience to show that there are large
chunks of the formal specification which could be
reused in other projects because they are industry-
specific or domain-specific elements reusable in
similar systems.

• Some of the notational techniques used by S are
difficult for the non-specialist to master. The S
notation is based on lambda calculus which has non-
obvious differences for programmers who are used to
a procedural programming style of notation such as
C++. The goal of supporting English-like
specifications is laudatory, but the underlying syntax
of S is a stumbling block for an untrained engineer.
Our subsequent experience with Z was that despite
its forbidding notational appearance, it placed no
more real difficulty than S and in some ways was in
fact a more effective specification notation.

• Overloading of types is not permitted. Consequently
the common mathematical operators cannot be used
when different numerical types are specified.
Removal of this restriction would help in making the
“dot notation” style of S more useful since it would
permit the same name to be used for methods for
multiple types of objects.

An industrial equivalent of FUSS requires some
enhancements:
• A more helpful user interface then the command line

paradigm. A significant element of the success of the
menu-oriented windows interface is that it relieves
the user of remembering many commands. The
ability to use interface forms relieves the user of
remembering the complexities of command syntax.
In particular, a context-sensitive editor that identifies
errors upon input would reduce the number of edit-
run-debug cycles required by the current loosely
integrated command line interface toolset paradigm.

• Better localization of specification errors needs.
FUSS displays errors using the parsed version of the
specification. This creates problems for the user in
identifying what portion of his specification is the
source of the error.

The HPP hyperlink specification generator was
useful:
• The experience was generally very positive with this

tool. The only problem was a minor restriction over
the name used in setting up the HPPTAG to create a
named link to other sections of the document.

TCG is a research prototype that needs to be
enhanced to be ready for use in industry:
• The tool needs its algorithms optimized to handle

larger, more complex specifications.
• The format of the output from this tool is rather

voluminous and unwieldy. More control over
generating test cases and producing the
documentation about the test cases is essential.

CONCLUSIONS

Formal methods have been proposed for use in many
systems engineering tasks. We need to identify the
costs and benefits of using such methods in different
settings, to evaluate where they are more usable and
less usable, and how they can be improved. This paper
has described some experiences relevant to this
evaluation for the specific field of software
engineering.

This project was a valuable learning experience for
MacDonald Dettwiler. To achieve industrial
acceptance, formal methods must bridge the gap to the
working engineer. To achieve this, we need tools that
are robust, supplied with an appropriate graphical user
interface, designed to make fewer requirements for
logical sophistication on the engineer, optimized for
real world cases, and provided with good
documentation and tutorial support. Formal methods
are not a panacea that will guarantee robust and correct
systems, but they can be a valuable aid in developing
better systems. Our experience was, on the whole, a
positive one.
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